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1 Transition Systems

Integer Ltd. makes integer I/O machines, which have a button and a display.
You press the button and it prints an integer. You press the button again and
it prints another integer.

A machine has a variety of internal states. When you press the button, it’s
the current state that determines what integer gets printed, and what the new
state will be (it could be a different state, or it could be the same state).

A machine is described by

• a set X (the set of states)

• a function ζ : X −→ Z×X (what happens when you press the button)

• the current state x0 ∈ X

Exercise 1 Machine number 392 has Z × Z as set of states. The behaviour
function is ζ : ⟨n, n′⟩ 7→ ⟨n+ n′, ⟨n′ + 1, n− 2⟩⟩. The current state is ⟨4, 6⟩.
What is printed when you press the button three times?

A rival company Integer And Boolean Inc. makes machines with three but-
tons and a display. If you press the red button or the green button it prints
an integer, but if you press the bright pink button it prints a boolean. Such a
machine is described by

• a set X (the set of states)

• a function ζred : X −→ Z × X (what happens when you press the red
button)

• a function ζgreen : X −→ Z×X (what happens when you press the green
button)

• a function ζbrightpink : X −→ B × X (what happens when you press the
bright pink button).

• the current state x0 ∈ X
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Exercise 2 Machine number 25 has Z × Z as set of states. The behaviour
functions are

ζred : ⟨n, n′⟩ 7→ ⟨n, ⟨n′ + 1, n− 2⟩⟩
ζgreen : ⟨n, n′⟩ 7→ ⟨n′ + 1, ⟨n+ n′, 2n′⟩⟩

ζbrightpink : ⟨n, n′⟩ 7→ ⟨n > n′, ⟨n′, n′⟩⟩

The current state is ⟨3, 7⟩. What is printed when you press the red button, then
the green button, then the bright pink button, then the red button again?

Another company Interactive Integer make machines with a keyboard and
a display. If you enter an integer, it prints another integer. Such a machine is
described by

• a set X (the set of states)

• a function ζ : Z×X −→ Z×X

• the current state x0 ∈ X.

Exercise 3 Machine number 40 has Z × Z as set of states. The behaviour
function is given by

ζ : ⟨m, ⟨n, n′⟩⟩ 7→ ⟨m+ n, ⟨2m+ n′, n− 1⟩⟩

The current state is ⟨4, 4⟩. What is printed when you enter 5, then 3, then 5
again?

A somewhat unsuccessful company Unreliable Integer makes machines with
a button and a display. If you press the button it might print an integer or it
might print one of three error messages:

CRASH
BANG
WALLOP

Then the button jams shut and remains so forever. Such a machine is de-
scribed by

• a set X (the set of states)

• a function X −→ Z×X + E, where E is the set of error messages,

• the current state x0 ∈ X.

Exercise 4 Machine number 6 has Z×Z as set of states. The behaviour func-
tion is described by

ζ : ⟨n, n′⟩ 7→
{

inl ⟨n+ 3, ⟨n′, 7⟩⟩ if n′ ⩽ 4
inr BANG otherwise

The current state is ⟨3, 2⟩. What is printed if you press the button twice?
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A more popular company is Probabilistic Integer. If you press the button
it consults some random data to decide what integer to print. The machine is
described by

• a set X (the set of states)

• a function ζ : X × (Z × X) −→ [0, 1], where
∑

⟨n,y⟩∈Z×Xζ(x, ⟨n, y⟩) = 1
for each x ∈ X.

• the current state x0 ∈ X.

A newcomer to the market is Nondeterministic Integer who make machines
with a button and a display. If you press the button it prints an integer. But
the behaviour doesn’t just depend on the internal state, it also depends on a
monkey hidden inside the machine. The machine is described by

• a set X (the set of states)

• a relation r : X p // X

• the current state x0 ∈ X.

Exercise 5 Machine number 24 has set of states Z×Z. The behaviour relation
is described by

⟨n, n′⟩ r ⟨m, ⟨p, p′⟩⟩ def⇔ m > n and p = p′ + n

The current state ⟨2, 5⟩ is. Describe one possible output if you press the button
three times.

2 Coalgebras

These descriptions have more in common than appears at first sight. A machine
consists of a set X together with a function

• X −→ Z×X (Integer Ltd.)

• X −→ (Z×X)× (Z×X)× (B×X) (Integer And Boolean Inc.)

• X −→ (Z×X)Z (Interactive Integer)

• X −→ Z×X + E (Unreliable Integer)

• X −→ D(Z×X) (Probabilistic Integer), where DY is the set of discrete
probability distributions on Y .

• X −→ P(Z×X) (Nondeterministic Integer)

and a current state x0 ∈ X.

Definition 6 Let C and D be categories. A functor F : C −→ D associates
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• to each C-object X, a D-object FX

• to each C-morphism X
f // Y , a D-morphism FX

Ff // FY

in such a way that

• for every object X we have F idX = idFX

• for any morphisms X
f // Y

g // Z we have F (f ; g) = Ff ;Fg.

A endofunctor on a category C is a functor F : C −→ C.
For example, there’s an endofunctor on Set that sends

• a set X to the set Z×X

• a function X
f // Y is mapped to the function Z×X

Z×f // Z× Y
that sends ⟨n, x⟩ to ⟨n, f(x)⟩.

Typically we write a functor by saying only what it does to objects, but this is
sloppy.

Definition 7 Let C be a category and let F be an endofunctor on C. An F -
coalgebra consists of

• a C-object X, the carrier

• a C-morphism ζ : X −→ FX, the structure.

We call X the carrier of the coalgebra and ζ the structure of the coalgebra.

For example, a machine made by Integer Ltd. is a X 7→ Z×X coalgebra. Only
one thing is missing: a coalgebra does not have a current state. If F is an
endofunctor on Set, we say that a pointed F -coalgebra is an F -coalgebra (X, ζ)
together with a state x0 ∈ X. In general a pointed set is a set X together with
an element x0 ∈ X.

What about the other machines? Each of these is given as a (pointed)
coalgebra for a suitable endofunctor on Set.

• If F,G,H are endofunctors on Set then so is X 7→ FX×GX×HX, with

X
f // Y mapping to

FX ×GX ×HX
Ff×Gf×Hf // FY ×GY ×HY

that sends (a, b, c) to ((Ff)a, (Gf)b, (Hf)c), and so is X 7→ FX +GX +
HX.

• X 7→ XZ is an endofunctor, with X
f // Y mapping to

XZ fZ
// Y Z

that sends (ai)i∈I to (f(ai))i∈Z.

4



• X 7→ X + E is an endofunctor, with X
f // Y mapping to

X + E
f+E // Y + E

that sends inl x to inl f(x) and inr e to inr e.

• The endofunctor D maps X to the set of discrete distributions on X is an
endofunctor. A discrete distribution is a function d : X −→ [0, 1] such that∑

x∈x d(x) = 1. The function X
f // Y is mapped to DX

Df // DY
that sends d to y 7→

∑
x∈f−1(y)d(x).

• The endofunctor P maps X to the set of subsets of X. A function

X
f // Y is mapped to PX

Pf // PY that sends U to {f(x) | x ∈ U}.

Exercise 8 Accepting Integer makes machines that consist of

• a set X of states

• a function ζ : X −→ Z×X

• a subset U ⊆ X of accepting states

• a current state x0 ∈ X

What endofunctor on Set is such a machine a pointed coalgebra for?

3 Subfunctors

Let F be an endofunctor on Set. A subfunctor G of F associates to each set X a

subset GX of FX, in such a way that for any function X
f // Y and element

a ∈ GX, we have (Ff)a ∈ GY . This enables us to define GX
Gf // GY to be

Ff , so G is also an endofunctor on Set. If we have an F -coalgebra (X, ζ) we
can ask: is it a G-coalgebra? In other words, is ζ(x) ∈ GX for all x ∈ X?

For example, DfinX is the set of finite distributions on X, i.e. those d ∈ DX
such that the set {x ∈ X | d(x) > 0} is finite. A Dfin-coalgebra is a special kind
of probabilistic transition system.

Exercise 9 Which of these are subfunctors of P? A set X is sent to:

• The set of inhabited subsets of X. (Hint: yes)

• The set of finite subsets of X. (Hint: yes)

• The set of subsets of X of size at most 3.

• The set of finite subsets of even size.

• The set of countable subsets of X.

(If you know about cardinals:) Give all the subfunctors of P.

Thus we have lively transition systems and finitely branching transition systems.
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4 Active and Passive States

In the examples above, the states of the system are passive, waiting for input
from outside. We could also consider a set of active states, that are executing
a program and will then output. For example, a machine made by Interactive
Input could be described as

• a set Y of active states

• a function ξ : Y −→ Z× (Y Z)

• a current state y0 ∈ Y .

Or it could be described as

• a set X of passive states

• a set Y of active states

• a function ζ : X −→ Y Z

• a function ξ : Y −→ Z×X.

together with a passive state x0 ∈ X or passive state y0 ∈ Y .
Each of these (leaving aside the current state) is a coalgebra. In the last

case we use an endofunctor on Set2 that maps (X,Y ) to (Y Z,Z×X).

5 The Category of Coalgebras

Of course we want to make coalgebras into a category.

Definition 10 Let C be a category and let F be an endofunctor on C. Let (X, ζ)
and (Y, ξ) be F -coalgebras. A F -coalgebra morphism From (X, ζ) to (Y, ξ) is a

C-morphism X
f // Y such that

FX
Ff // FY

X
f
//

ζ

OO

Y

ξ

OO commutes.

Now we get a category Coalg(F ) whose objects are F -coalgebras and whose
morphisms are F -coalgebra morphisms. Composition and identities are the
same as in C.
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6 The Category of Algebras

The dual notion is that of F -algebra, which consists of

• a C-object X, the carrier

• a C-morphism ζ : FX −→ X.

An F -coalgebra morphism From (X, θ) to (Y, ϕ) is a C-morphism X
h // Y

such that

FX
Fh //

θ
��

FY

ϕ

��
X

h
// Y

commutes.

So we get a categoryAlg(F ) whose objects are F -algebras and whose morphisms
are F -algebra morphisms. Composition and identities are the same as in C.

Here’s an example. A pointed magma (X, e, ∗) consists of a set X with
an element e and binary operation ∗. (It’s a monoid when the associativity
law, right unital law and left unital law are satisfied.) A homomorphism from
(X, e, ∗) to (Y, p,⊗) is a function h : X → Y that preserves the point and
the binary operation. The category of pointed magmas and homomorphisms
is (isomorphic to) the category of F -algebras, for a suitable endofunctor F on
Set. Which?

7 Coalgebra-to-algebra morphisms

A morphism from an F -coalgebra (X, ζ) to an F -algebra (Y, ϕ) is a C-morphism

X
g // Y such that

FX
Fg // FY

ϕ

��
X

Fg
//

ζ

OO

Y

commutes.

So we get a bimodule from the category Coalg(F ) to the category Alg(F ).
That means that we can compose a coalgebra-to-algebra morphism g with a
coalgebra morphism f on the left, or a coalgebra morphism h on the right, and
the associativity laws for f ′; f ; g and g;h;h′ and f ; g;h are all satisfied.

Exercise 11 Let F be the endofunctor on Set sending a set X to 1 + Z+X2,
which we write as

{Nil} ∪ {Justn | n ∈ Z} ∪ {Parts(x, y) | x, y ∈ X}

Let A be the set of lists of integers and B the set of sorted lists of integers.
(Repetitions are allowed.) Let ζ :A → FA be the function sending
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• the empty list to Nil

• the list [n] to Justn

• a list s++t, where |s| > 0 and |t| ∈ {|s|, |s|+ 1}, to Parts (s, t).

Let ϕ :FB → B be the function sending

• Nil to the empty list

• Justn to [n]

• Parts(s, t) to the merge of s and t.

Show that there is a unique morphism from the F -coalgebra (A, ζ) to the F -
algebra (B,ϕ).

8 Final Coalgebras

Definition 12 In a category C, an isomorphism is a morphism f :x → y such
that there’s a (necessarily unique) morphism g :y → x such that

x
f //

id
��

y

g

��

id

��
x

f
// y

For example, the isomorphisms in Set are the bijections.

Definition 13 Let C be a category. An object x is

1. initial if for every object y there’s a unique morphism x → y.

2. terminal (or final) if for every object y there is a unique morphism y → x.

Note that the initial object is unique up to unique isomorphism, and likewise
the terminal object.

A map from a (specified) initial algebra to an algebra (X, θ) is called a
catamorphism. A map from a coalgebra (Y, ζ) to a (specified) final coalgebra is
called a anamorphism.

Lemma 14 (Lambek’s lemma) Let C be a category with endofunctor F .

• Let (X, θ) be an initial F -algebra. Then θ is an isomorphism.

• Same for final coalgebra.

A final F -coalgebra N is a final object in the category Coalg(F ). Thus
from any coalgebra M there is a unique coalgebra morphism from M to N . It
is called the anamorphism.
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Lemma 15 (Lambek’s Lemma) Let F be an endofunctor on a category C. Let

(X, ζ) be a final coalgebra. Then X
ζ // FX is an isomorphism.

(Note: for a set A, we write A∗ for the set of lists of elements of A, and Aω

for the set of infinite sequences of elements of A.)
If you buy a machine from Unreliable Integer, i.e. a pointed coalgebra for

X 7→ E + Z × X, its full behaviour over time is described by a finite list of
integers followed by an error, of an infinite list of integers. Two machines with
the same infinite trace are trace equivalent. They are equivalent for all practical
purposes. Admittedly they have different states, but those states are internal
so you cannot observe them.

So why bother with states at all? An employee at Unreliable Integer makes
a machine in which the set of states is Z∗×E+Zω, the set of behaviours. Then
the behaviour of a state s is actually s.

Theorem 16 Let A and B be sets. The endofunctor on Set sending X to
B +A×X has final coalgebra B ×A∗ +Aω with structure

A∗ ×B +Aω ∼= (1 +A×A∗)×B +A×Aω

∼= B +A× (A∗ ×B +Aω)

and initial algebra B ×A∗ with inverse structure

A∗ ×B ∼= (1 +A×A∗)×B
∼= B +A× (A∗ ×B)

If you buy a machine form Interactive Integer, i.e. a pointed coalgebra for
X 7→ Z → (Z×X), then a behaviour converts a nonempty list of integers (input)
into an integer (output).

Theorem 17 The endofunctor on Set sending X to A → (B × X) has final
coalgebra A∗ → B with structure

A∗ → B ∼= (1 +A×A∗) → B
∼= B × (A → (A∗ → B))

Theorem 18 The endofunctor on Set sending X to B × (A → X) has final
coalgebra A∗ → B with structure

A∗ → B ∼= (1 +A×A∗) → B
∼= B × (A → (A∗ → B))

9 Infinite Trees

If you buy a machine from Integer and Boolean Inc., the full behaviour is defined
by an infinite tree rather than an infinite list. To be more precise, consider finite
traces such as the following:
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I pressed the red button.
The machine printed 17.
I pressed the bright pink button.
The machine printed TRUE.
I pressed the red button.
The machine printed 42.

A finite trace is a sequence a0, b0, a1, b1, . . . , an−1, bn−1 where each ai is a button
and bi is an appropriate response (integer if ai is the red button or green button,
boolean if ai is the bright pink button).

Now an infinite tree is a set U of finite traces with the following properties:

• the empty trace ε ∈ U

• if s and t are traces and s is a prefix of t and t ∈ U then s ∈ U .

• if s ∈ U and a is a button then there is a unique appropriate response b
to a such that s+ (a, b) ∈ U .

Now if U is an infinite tree, then for each button a

• let ba be the response such that (a, ba) ∈ U

• let Ua be the set of all traces t such that (a, ba) + t ∈ U .

The set of infinite trees, with the function ζ mapping U at a to (ba, Ua), forms
a coalgebra for

X 7→ (Z×X)× (Z×X)× (B×X)

This is a final coalgebra.

10 The Rolling Rule

Let F :C −→ D and G :D −→ D be functors. If (x, θ) is an initial GF -algebra,
then (Fx, Fθ) is an initial FG-algebra.

For example, once we know a final coalgebra for the endofunctor B × (A →
−), we can obtain a final coalgebra for the endofunctor A → (B ×−).

11 Limits of algebras and colimits of coalgebras

Let F be an endofunctor on C. If C has all limits then Alg(F ) does too. If C
has all colimits then Coalg(F ) does too.

We can say more: the forgetful functor U :Alg(F ) → C creates limits, and
the forgetful functor Coalg(F ) → C creates coimits.

This means that if we have a diagramD : I → Alg(F ), which gives a diagram
UD : I → C, and this has a limit (V, (pi)i∈I), then there’s a unique algebra
structure θ :FV → V making all the projections (pi)i∈I into algebra morphisms,
and the resulting cone is a limit.
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12 Inductive and coinductive definition of pred-
icates

Let A and B be posets. A function f :A → B is monotone when a ⩽ b implies
f(a) ⩽ f(b).

Let A be a poset and f a monotone endofunction on A. An element a ∈ A
is a prefixpoint of f when f(x) ⩽ x, and a postfixpoint of f when x ⩽ f(x). We
can look for a least prefixpoint (analogous to initial algebra) and for a greatest
postfixpoint (analogous to final coalgebra). Each of these is a fixpoint.

Any infimum of prefixpoints is a prefixpoint, and any supremum of postfix-
points is a postfixpoint. If A is a complete lattice, then there must be a least
prefixpoint, viz. the infimum of all prefixpoints. And likewise there must be a
greatest postfixpoint.

Let’s see an example. Let F be the endofunction on PN that sends R to

{7} ∪ {0|1 ∈ R} ∪ {1|0 ∈ R} ∪ {m+ n+ 17 | m,n ∈ R}

A subset R is a prefixpoint when

• 7 ∈ R

• if 1 ∈ R then 0 ∈ R

• if 0 ∈ R then 1 ∈ R

• if m,n ∈ R then m+ n+ 17 ∈ R.

So 7 and 31 are in the least prefixpoint, and everything in the least prefixpoint
is ⩾ 7. However, the greatest postfixpoint includes 0 and 1.

13 Recursive coalgebras and corecursive alge-
bras

An F -coalgebra is recursive when there’s a unique map from it to every F -
algebra.

For the functors we’ve seen (preserve monos and inverse images), corecursive
coincides with well-founded, i.e. no element has an infinite trace. (Due to Paul
Taylor.)

An F -algebra is corecursive when there’s a unique map from every F -
coalgebra to it.

Applying F preserves these properties. Limit of algebras and colimit of
coalgebras preserve these properties.

There are other constructions that generate recursive coalgebras and core-
cursive algebras. They’re called recursion principles.
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14 The inductive and coinductive chain

Let f be an endofunction a poset A with suprema of well-ordered chains. Then
we can form the least prefixpoint as follows. Form the increasing sequence
(cα)α∈A of postfixpoints that are ⩽ every prefixpoint as follows:

• a0 is the least element

• an+1 is f(an)

• an =
∨

m<n am if n is a limit.

If an is a fixpoint, then it’s the least prefixpoint. Conversely, if f has a least
prefixpoint, it’s achieved at some n.

What about for initial algebras? If F is an endofunctor on a category C
with colimits of ordinal chains, we can form the inductive chain that consists of
recursive coalgebras.

a0
f0 // a1

f1 // a2
f2 // · · ·

If fn is an isomorphism, we have an initial F -algebra. (This is called Adámek’s
theorem.)

Exercise 19 Show that a polynomial functor preserves the limit of every (in-
habited) connected diagram. Deduce that the final coalgebra is reached at ω.

15 Bisimulation

I’ve bought two machines from Integer and Boolean Inc.
Machine I has state set X = {A,B}. Pressing the red button

• from state A, prints 3 and remains in state A

• from state B, prints 5 and moves to state A

Pressing the green button

• from state A, prints 8 and moves to state B

• from state B, prints 4 and remains in state B

Pressing the bright pink button

• from state A, prints TRUE and remains in state A

• from state B, prints FALSE and moves to state A.

The current state is x0 = A.
Machine II has state set X ′ = N. Pressing the red button

• from state n < 6, prints 4 and moves to state n+ 7
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• from even state n ⩾ 6, prints 3 and moves to state n+ 2

• from odd state n ⩾ 6, prints 5 and moves to state n+ 5

Pressing the green button

• from state n < 6, prints 9 and remains in state n

• from even state n ⩾ 6, prints 8 and moves to state n+ 25

• from odd state n ⩾ 6, prints 4 and remains in state n

Pressing the bright pink button

• from state n < 6, prints FALSE and moves to state n+ 1

• from even state n ⩾ 6, prints TRUE and moves to state n+ 8

• from odd state n ⩾ 6, prints FALSE and moves to state n+ 13

The current state is x′
0 = 10.

I want to show these two machines have the same anamorphic image—set of
finite traces. But actually writing out the set of finite traces is difficult. There
is an alternative method.

Suppose that R is a relation from X to X ′, with the following property. For
any x R x′ and button a, we have ζax = ⟨n, y⟩ and ζax

′ = ⟨n, y′⟩ with y R y′.
Thus

related states
applied to the same input
give the same output
ending up in related states.

Such a relation is called a bisimulation between the two transition systems.
Two pointed coalgebras (X, ζ, x0) and (X ′, ζ ′, x′

0) are bisimilar when there
is some bisimulation R from (X, ζ) to (X ′, ζ ′) such that x0 R x1.

For our example we could take R to be

{(A,n) | n ⩾ 6, n even } ∪ {(B,n) | n ⩾ 6, n odd }

Theorem 20 Let (X, ζ, x0) and (X ′, ζ ′, x′
0) be pointed coalgebras for the endo-

functor
X 7→ (Z×X)× (Z×X)× (B×X)

They are bisimilar iff they have the same anamorphic image (set of finite traces).

Exercise 21 Machine III and Machine IV are produced by Interactive Integer.
Machine III has set of states X = Z.

• A state n > 0, when it receives an input m, prints m + n and moves to
state −m− 2n.
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• The state 0, when it receives an input m, prints 17 and moves to state 2.

• A state n < 0, when it receives an input m, prints m − n and moves to
state m− 2n

The current state is x0 = 5
Machine IV has set of states Z× Z. State ⟨n, n′⟩, receiving input m, prints

m+n and moves to state ⟨m+ 2n,m+ n+ n′⟩. The current state is x′
0 = ⟨5, 7⟩.

Show the two machines are bisimilar.

16 Nondeterminism

A machine made by Nondeterministic Integer is a pointed coalgebra for

X 7→ P(Z×X)

A machine made by Nondeterministic Integer And Boolean is a pointed coalge-
bra for

X 7→ P(Z×X)× P(Z×X)× P(B×X)

A machine made by Nondeterministic Interactive Integer is a pointed coalgebra
for

X 7→ (P(Z×X))Z

Let (X, ζ) and (X ′, ζ ′) be coalgebras. Suppose that R is a relation from X
to X ′ with the following property. For any x R x′ and input m,

• if ⟨n, y⟩ ∈ ζ(x)m then ⟨n, y′⟩ ∈ ζ ′(x′)m for some y′ such that y R y′

• if ⟨n, y′⟩ ∈ ζ ′(x′)m then ⟨n, y⟩ ∈ ζ(x)m for some y such that y R y′

Then R is a bisimulation. If it has the first property, it’s a simulation.
The largest bisimulation (i.e. the union of all bisimulations) from (X, ζ) to

(X ′, ζ ′) is called bisimilarity. The largest simulation is called similarity.
These are coinductive definitions.

• Similarity is a preorder.

• Bisimilarity is an equivalence relation.

• Bisimilarity implies mutual similarity.

• Similarity implies finite and infinite trace inclusion. That means: if x is
similar to y, then every finite or infinite trace of x is a finite or infinite
trace of y.
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Coalgebra morphisms are functional bisimulations

Due to Aczel, Mendler, Rutten, . . .
Let (X, ζ) and (Y, ξ) be coalgebras.

Let X
f // Y be a function.

Then f is a coalgebra morphism iff f , regarded as a relation, is a bisimula-
tion.

Corollary If (X, ζ)
f // (Y, ξ) is a coalgebra morphism, then every x ∈ X

is bisimilar to f(x).

Encompassment

(X, ζ) is encompassed by (Y, ξ) when for every state in X there is a bisimilar
state in Y .

You can think of this as saying that (Y, ξ) is at least as expressive as (X, ζ).
This is a preorder on transition systems.

If (X, ζ)
f // (Y, ξ) is a coalgebra morphism, then (X, ζ) is encompassed

by (Y, ξ).
If f is a surjective coalgebra morphism, then (X, ζ) and (Y, ξ) are mutually

encompassed.

17 Strongly Extensional Coalgebras

A coalgebra M = (X, ζ) is extensional when ζ is injective. It’s strongly exten-
sional when any two bisimilar states x, x′ ∈ X are equal. Such a coalgebra has
various significant properties.

• Any coalgebra morphism from M is injective.

• Given another coalgebra N encompassed by M , there’s a unique coalge-

bra morphism N
f // M . It’s the bisimilarity relation from N to M .

Moreover N is strongly extensional iff f is injective.

Strongly extensional Quotients

Let M = (X, ζ) be a coalgebra. Let Y be X quotiented by bisimilarity. There’s

a unique Y
ξ // FY such that the quotient map X

p // Y is a coalgebra
morphism from (X, ζ) to (Y, ξ). Moreover (Y, ξ) is strongly extensional.
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Bisimilarity via Cospans

Two pointed coalgebras (X, ζ, x0) and (Y, ξ, y0) are bisimilar iff there is a cospan
of coalgebra morphisms

(X, ζ)

f

##

(Y, ξ)

g

{{
(Z, ϕ)

such that f(x0) = g(y0).

Final Coalgebras

Suppose M = (X, ζ) is an F -coalgebra. Then it is final iff it is all-encompassing
and strongly extensional.

Suppose M = (X, ζ) is a final F -coalgebra. Then two pointed F -coalgebras
are bisimilar iff they have the same anamorphic image.

Suppose M = (X, ζ) is an F -coalgebra. Then it is all-encompassing iff its
strongly extensional quotient is final.

18 Finding An All-Encompassing Coalgebra

In the case of P, there is no all-encompassing coalgebra.
But let’s consider finitely nondeterministic or countably nondeterministic

systems (X, ζ). Any state x has a countable set of descendants, and we can
restrict ζ to this set to get a countable coalgebra. This is isomorphic to a
coalgebra carried by a subset of N.

Now take the sum of all coalgebras carried by a subset of N. This is an all-
encompassing system. So its strongly extensional quotient is a final coalgebra.

19 Relators

Let F be an endofunctor on Set. An F -relator maps each relation X pR // Y

to a relation FX pΓR // FY in such a way that the following hold.

• For any relations X p
R,S // Y , if R ⊆ S then ΓR ⊆ ΓS.

• For any set X we have (=FX) ⊆ Γ(=X)

• For any relations X pR // Y pS // Z we have (ΓR); (ΓS) ⊆ Γ(R;S)

• For any functions Z
f // X and W

g // Y , and any relation X pR // Y ,
we have Γ(f × g)−1R = (Ff × Fg)−1ΓR.
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Γ is a conversive relator when Γ(Rc) = (ΓR)c for every relation X pR // Y .
Let (X, ζ) and (X ′, ζ ′) be F -coalgebras. Let Γ be an F -relator.

A relation X pR // X ′ is a Γ-simulation when xR x′ implies that ζ(x) ΓR ζ ′(x′).
By choosing different relators Γ, we get different notions of simulation and

bisimulation.

Deterministic Examples

Z × R relates ⟨n, x⟩ to ⟨n, x′⟩ when x R x′. This gives an Z × − relator, the
in-house relator of Integer Ltd.

R×S ×T relates ⟨x, y, z⟩ to ⟨x′, y′, z′⟩ when x R x′ and y S y′ and z T z′.
We get the in-house relator of Integer and Boolean Inc.

RZ relates p to p′ when pm R p′m for each input m. This gives the in-house
relator of Interactive Integer.

R+E relates inl x to inl x′ when x R x′ and also relates inr e to inr e. This
gives the in-house relator of Unreliable Integer.

Nondeterministic Examples

We have two P-relators.
Sim R relates U ∈ PX to V ∈ PY when

• for all x ∈ U there exists y ∈ V such that x R y

This gives simulation.
Bisim R relates U ∈ PX to V ∈ PY when

• for all x ∈ U there exists y ∈ V such that x R y

• for all y ∈ V there exists x ∈ U such that x R y.

This gives bisimulation.
If G is a subfunctor of F , then any F -relator is also a G-relator.

Systems with Divergence

A system diverges (or hangs) when it runs forever without producing any output.
For example, a machine made by Interactive Divergent Integer is a pointed
coalgebra for

X 7→ P(Z×X + {⇑})Z

This is similar to the Unreliable Integer machines we considered previously. Let

(X, ζ) and (X ′, ζ ′) be such coalgebras. Let X pR // X ′ be a relation.
R is an inclusion simulation when for any x R x′ and input m,

• if x ⇝m,n y then there exists y′ such that x′ ⇝m,n y′ and x′ R y′.

• if xm ⇑ then x′m ⇑.
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If we just have the first condition, R is a lower simulation.
R is an smash simulation when for any xR x′ and input m, if xm ̸⇑ then

• x′m ̸⇑

• if x ⇝m,n y then there exists y′ such that x′ ⇝m,n y′ and y R y′

• if x′ ⇝m,n y′ then there exists y such that x ⇝m,n y and y R y′

If we just have the first and third conditions, R is an upper simulation.
If R is an upper and lower simulation, it’s a convex simulation.
If R and its converse are a lower (resp. upper, convex) simulation, then R

is a lower (resp. upper, convex) bisimulation
Altogether we obtain numerous (in fact nineteen) different relators on

X 7→ P(X + {⇑})

Three of them are conversive.

Probabilistic Systems

DX is the set of (discrete) distributions on X.
We need a D-relator for bisimulation.

Given a relation X pR // Y , we defines a relation DX pDR // DY . This
relates d ∈ DX to d′ ∈ DY when

dU ⩽ d′R(U)

for every U ⊆ X. Here

R(U)
def
= {y ∈ Y | ∃x ∈ U. xRy}

This is a conversive relator.

Endofunctor on Preord

Preord is the category of preordered sets and monotone functions.
Our endofunctor F on Set lifts to an endofunction FΓ on Preord.

• A preordered set (X,⩽) maps to (FX,Γ(⩽)).

• A monotone function A
f // B maps to Ff .

Saying it’s a lift means that we have

Preord
FΓ //

��

Preord

��
Set

F
// Set
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19.1 FΓ-coalgebras

What is an FΓ-coalgebra (X,⩽, ζ)? It is an F -coalgebra (X, ζ) together with
an endosimulation (⩽) on (X, ζ).

We have a forgetful functor U : Coalg(FΓ) −→ Coalg(F ), which maps
(X,⩽, ζ) to (X, ζ).

U has a right adjoint E : Coalg(F ) −→ Coalg(FΓ) which maps (X, ζ) to
(X, similarity, ζ).

U has a left adjoint ∆ : Coalg(F ) −→ Coalg(FΓ) which maps (X, ζ) to
(X, (=X)ζ)

Since U and ∆ are right adjoints, they preserve final objects.
Therefore a final FΓ-coalgebra is an all-encompassing, extensional F -coalgebra,

preordered by similarity.
We can use a final FΓ-coalgebra to characterize both bisimilarity and simi-

larity.
Let (X, ζ) and (Y, ξ) be F -coalgebras (transition systems). Let f and g be

the anamorphisms from (X, (=X), ζ) and (Y, (=Y ), ξ).
Then for x ∈ X and y ∈ Y

• x is bisimilar to y iff f(x) = g(x)

• x is similar to y iff f(x) ⩽ g(x).

What if we take an all-encompassing system (e.g. a final F -coalgebra) and
quotient by similarity?

Is this a final coalgebra?
See my FoSSaCS’11 paper!
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