
Typed λ-calculus: Further Questions

P. B. Levy

University of Birmingham

The exam for this course consists of all exercises in Handouts
2–4, if you haven’t done them already, and two additional questions
below.

1 Answers To “Concepts and Syntax” Exercises

Here are the answers to the exercises in Section 8 of Handout 1.

Question What integer is

let 3 be x.
let inl λyZ.(x+ y) be u.
let 4 be x.
match u as {inl f.f2, inr f.0}

?
Correct answer 5
Plausible but incorrect answer 6
Question What integer is

let λxZ. inl λyZ.(x+ y) be f.
let f0 be u.
match u as {

inl g. let f1 be v. match v as {inl h. g3, inr h. 0},
inr g. 0
}

?
Correct answer 3
Plausible but incorrect answer 4. Both these exercises illustrate

the idea of static binding, meaning that bindings cannot be changed.
The incorrect answers, 6 and 4, are not in accordance with our
definition of the notation. Unfortunately, Emacs Lisp would give
you these answers. That is because it uses dynamic binding, mean-
ing that a binding of x overwrites any previous binding of x.

2 P. B. Levy

Question (variant record type) For sets A,B,C,D,E, we define
α(A,B,C,D,E) to be the set of tuples

{〈#left, x, y〉|x ∈ A, y ∈ B}∪{〈#right, x, y, z〉|x ∈ C, y ∈ D, z ∈ E}

Now think of α as an operation on types. Inventing a reason-
able syntax, given 2 introduction rules and 1 elimination rule for
α(A,B,C,D,E).

Answer We invent the syntax

〈#left,M,N〉 〈#right,M,N, P 〉

for terms of type α(A,B,C,D,E). And we invent the syntax

case M of {〈#left, x, y〉. N, 〈#right, x, y, z〉. N ′}

for pattern-matching a term M of type α(A,B,C,D,E).
The introduction rules are

Γ `M : A Γ ` N : B

Γ ` 〈#left,M,N〉 : α(A,B,C,D,E)

Γ `M : C Γ ` N : D Γ ` P : E

Γ ` 〈#right,M,N, P 〉 : α(A,B,C,D,E)

The elimination rule is

Γ `M : α(A,B,C,D,E)
Γ, x : A, y : B ` N : F Γ, x : C, y : D, z : E ` N ′ : F

Γ ` case M of {〈#left, x, y〉. N, 〈#right, x, y, z〉. N ′} : F

Question For setsA,B,C,D,E, F,G, we define β(A,B,C,D,E, F,G)
to be the set of functions that take
– a sequence of arguments (#left, x, y), where x ∈ A and y ∈ B,

to an element of C
– a sequence of arguments (#right, x, y, z), where x ∈ D and
y ∈ E and z ∈ F , to an element of G.

Thus the first argument is always a tag, indicating how many
other arguments there are, what their type is, and what the type
of the result should be.
Now think of β as an operation on types. Inventing a reason-
able syntax, give 1 introduction rule and 2 elimination rules for
β(A,B,C,D,E, F,G).

Typed λ-calculus: Further Questions 3

Answer We invent the syntax

λ{(#left, x, y) .M, (#right, x, y, z). M ′}

for something of type β(A,B,C,D,E, F,G). And we invent the
syntax

M(#left, N,N ′) M(#right, N,N ′, N ′′)

for applying a term M of type β(A,B,C,D,E, F,G).
The introduction rule is

Γ, x : A, y : B `M : C Γ, x : D, y : E, z : F `M ′ : G

Γ ` λ{(#left, x, y) .M, (#right, x, y, z). M ′} : β(A,B,C,D,E, F,G)

The elimination rules are

Γ `M : β(A,B,C,D,E, F,G) Γ ` N : A Γ ` N ′ : B

Γ `M(#left, N,N ′) : C

Γ `M : β(A,B,C,D,E, F,G) Γ ` N : D Γ ` N ′ : E Γ ` N ′′ : F

Γ `M(#right, N,N ′, N ′′) : G

2 Question on Pure λ-calculus

This question is about the pure (i.e. no imperative features) simply
typed λ-calculus.

In this language, a syntactic isomorphism from A to B consists
of a term x : A ` M : B and a term y : B ` N : A such that the
equations

x : A `N [M/x] = x : B

y : B `M [N/x] = y : A

are provable in the equational theory. (NB This definition, as it
stands, is not suitable for λ-calculus with imperative features.) Con-
struct syntactic isomorphisms

(A+B) + C ∼= A+ (B + C)

(A×B)→ C ∼= A→ (B → C)

(A+B)→ C ∼= (A→ C)× (B → C)

4 P. B. Levy

3 Question on λ-calculus with Imperative
Features

CELL is a storage cell (piece of computer memory) that stores an
integer.

Consider call-by-value λ-calculus, without divergence or printing,
but with the facility to write to and read from CELL.

– CELL := M. N , where M is an integer expression. To evaluate
this, first evaluate M , the put the answer in CELL (overwriting
whatever was there previously), then evaluate N .

– read CELL as x. N . To evaluate this, define x to be whatever is
currently in CELL, then evaluate N .

We write s,M ⇓ s′, T to mean that if M (a closed term) is evaluated
at a time when CELL contains s (an integer), then it evaluates
to T (a terminal term, with the same type as M) with CELL then
containing s′ (an integer). Give an inductive definition of the relation
⇓.

