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The exam for this course consists of all exercises in Handouts
2–4, if you haven’t done them already, and two additional questions
below.

1 Answers To “Concepts and Syntax” Exercises

Here are the answers to the exercises in Section 8 of Handout 1.

Question What integer is

let 3 be x.
let inl λyZ.(x+ y) be u.
let 4 be x.
match u as {inl f.f2, inr f.0}

?
Correct answer 5
Plausible but incorrect answer 6
Question What integer is

let λxZ. inl λyZ.(x+ y) be f.
let f0 be u.
match u as {

inl g. let f1 be v. match v as {inl h. g3, inr h. 0},
inr g. 0
}

?
Correct answer 3
Plausible but incorrect answer 4. Both these exercises illustrate

the idea of static binding, meaning that bindings cannot be changed.
The incorrect answers, 6 and 4, are not in accordance with our
definition of the notation. Unfortunately, Emacs Lisp would give
you these answers. That is because it uses dynamic binding, mean-
ing that a binding of x overwrites any previous binding of x.



2 P. B. Levy

Question (variant record type) For sets A,B,C,D,E, we define
α(A,B,C,D,E) to be the set of tuples

{〈#left, x, y〉|x ∈ A, y ∈ B}∪{〈#right, x, y, z〉|x ∈ C, y ∈ D, z ∈ E}

Now think of α as an operation on types. Inventing a reason-
able syntax, given 2 introduction rules and 1 elimination rule for
α(A,B,C,D,E).

Answer We invent the syntax

〈#left,M,N〉 〈#right,M,N, P 〉

for terms of type α(A,B,C,D,E). And we invent the syntax

case M of {〈#left, x, y〉. N, 〈#right, x, y, z〉. N ′}

for pattern-matching a term M of type α(A,B,C,D,E).
The introduction rules are

Γ `M : A Γ ` N : B

Γ ` 〈#left,M,N〉 : α(A,B,C,D,E)

Γ `M : C Γ ` N : D Γ ` P : E

Γ ` 〈#right,M,N, P 〉 : α(A,B,C,D,E)

The elimination rule is

Γ `M : α(A,B,C,D,E)
Γ, x : A, y : B ` N : F Γ, x : C, y : D, z : E ` N ′ : F

Γ ` case M of {〈#left, x, y〉. N, 〈#right, x, y, z〉. N ′} : F

Question For setsA,B,C,D,E, F,G, we define β(A,B,C,D,E, F,G)
to be the set of functions that take
– a sequence of arguments (#left, x, y), where x ∈ A and y ∈ B,

to an element of C
– a sequence of arguments (#right, x, y, z), where x ∈ D and
y ∈ E and z ∈ F , to an element of G.

Thus the first argument is always a tag, indicating how many
other arguments there are, what their type is, and what the type
of the result should be.
Now think of β as an operation on types. Inventing a reason-
able syntax, give 1 introduction rule and 2 elimination rules for
β(A,B,C,D,E, F,G).
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Answer We invent the syntax

λ{(#left, x, y) .M, (#right, x, y, z). M ′}

for something of type β(A,B,C,D,E, F,G). And we invent the
syntax

M(#left, N,N ′) M(#right, N,N ′, N ′′)

for applying a term M of type β(A,B,C,D,E, F,G).
The introduction rule is

Γ, x : A, y : B `M : C Γ, x : D, y : E, z : F `M ′ : G

Γ ` λ{(#left, x, y) .M, (#right, x, y, z). M ′} : β(A,B,C,D,E, F,G)

The elimination rules are

Γ `M : β(A,B,C,D,E, F,G) Γ ` N : A Γ ` N ′ : B

Γ `M(#left, N,N ′) : C

Γ `M : β(A,B,C,D,E, F,G) Γ ` N : D Γ ` N ′ : E Γ ` N ′′ : F

Γ `M(#right, N,N ′, N ′′) : G

2 Question on Pure λ-calculus

This question is about the pure (i.e. no imperative features) simply
typed λ-calculus.

In this language, a syntactic isomorphism from A to B consists
of a term x : A ` M : B and a term y : B ` N : A such that the
equations

x : A `N [M/x] = x : B

y : B `M [N/x] = y : A

are provable in the equational theory. (NB This definition, as it
stands, is not suitable for λ-calculus with imperative features.) Con-
struct syntactic isomorphisms

(A+B) + C ∼= A+ (B + C)

(A×B)→ C ∼= A→ (B → C)

(A+B)→ C ∼= (A→ C)× (B → C)
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3 Question on λ-calculus with Imperative
Features

CELL is a storage cell (piece of computer memory) that stores an
integer.

Consider call-by-value λ-calculus, without divergence or printing,
but with the facility to write to and read from CELL.

– CELL := M. N , where M is an integer expression. To evaluate
this, first evaluate M , the put the answer in CELL (overwriting
whatever was there previously), then evaluate N .

– read CELL as x. N . To evaluate this, define x to be whatever is
currently in CELL, then evaluate N .

We write s,M ⇓ s′, T to mean that if M (a closed term) is evaluated
at a time when CELL contains s (an integer), then it evaluates
to T (a terminal term, with the same type as M) with CELL then
containing s′ (an integer). Give an inductive definition of the relation
⇓.


