
Typed λ-calculus: Concepts and Syntax

P. B. Levy

University of Birmingham

1 Introduction

λ-calculus is a small language based on some common mathematical
idioms. It was invented by Alonzo Church in 1936, but his version
was untyped, making the connection with mathematics rather prob-
lematic. In this course we’ll be looking at a typed version.

λ-calculus has had an impact throughout computer science and
logic. For example

– it is the basis of functional programming languages such as Haskell,
Standard ML, OCaml, Lisp, Scheme, Erlang, Scala, F].

– it is often used to give semantics for programming languages.
This was initiated by Peter Landin, who in 1965 described the
semantics of Algol-60 by translating it into λ-calculus.

– it closely corresponds to a kind of logic called intuitionistic logic,
via the Curry-Howard isomorphism. That isn’t in this course, but
you may notice that a lot of notation (e.g. `) and terminology
(“introduction/elimination rule”) has been imported from logic
into λ-calculus. And the influence in the opposite direction has
been much greater.

2 Notations for Sets and Elements

or Sums your primary school never taught you
In this section, we’re going to learn some notations and abbrevi-

ations for describing sets and elements of sets.
Recall that x ∈ A means “x is an element of the set A”.

2.1 Sets

First, the notations for describing sets.

2 P. B. Levy

integers We define Z to be the set of integers.
booleans We define B to be the set of booleans {true, false}.
cartesian product Suppose A and B are sets. Then we write A×B

for the set of ordered pairs

{〈x, y〉|x ∈ A, y ∈ B}

disjoint union Suppose A and B are sets. Then we write A + B
for the set of ordered pairs

{inl x|x ∈ A} ∪ {inr x|x ∈ B}

Here we use inl and inr as “tags”. If you like, you could define

inl x
def
= 〈0, x〉

inr x
def
= 〈1, x〉

function space Suppose A and B are sets. Then we write A→ B
for the set of functions from A to B. (You will also see this written
as BA.)

These operations on sets correspond to familiar operations on nat-
ural numbers. If A is finite with m elements, and B is finite with n
elements, then

– A×B has mn elements
– A+B has m+ n elements
– A→ B has nm elements.

2.2 Integers and Booleans

Recall that Z is the set of integers, and B is the set of booleans.
Some ways of describing integers.

Arithmetic Here is an integer:

3 + (7× 2)

Conditionals Here is another integer:

case (7 > 5) of {true. 20 + 3, false. 53}

This is an “if. . . then . . . else” construction.

Typed λ-calculus: Concepts and Syntax 3

Local definitions Here is another integer:

let (2× 18) + (3× 102) be y. (y + 17× y)

This is a shorthand for
y+ 17× y, where we define y to be (2× 18) + (3× 102)

It’s rather like a constant declaration in programming.

Exercise 1. What integer is

1. (2 + 5)× 8
2. case (case 1 > 8 of {true. 5 > 2 + 4, false. 3 > 2}) of {true. 3×

7, false. 100}
3. let (let 3 + 2 be x. x× (x+ 3)) be y. y + 15
4. let (5 + 7) be x. case x > 3 of {true. 12, false. 3 + 3}
?

2.3 Cartesian Product

Recall that A× B is the set of ordered pairs 〈x, y〉 such that x ∈ A
and y ∈ B.

projections If x is an ordered pair, we write πx for its first com-
ponent, and π′x for its second component. For example, here is
another integer

let 〈3, 7 + 2〉 be x. (πx)× (π′x) + (π′x)

pattern-match We can also pattern-match an ordered pair. For
example:

let 〈3, 7 + 2〉 be x. case x of 〈y, z〉. y × z + z

Here, you don’t need to select the appropriate case, because
there’s only one. Since x is the pair 〈3, 9〉, it matches the pattern
〈y, z〉, and y and z are thereby defined to be 3 and 9 respectively.

Pattern-matching is often a more convenient notation than projec-
tions.

Exercise 2. What integer is

1. let 〈7, let 3 be x. x+ 7〉 be y. πy + (case y of 〈u, v〉. u+ v)
2. case (π〈7, 357× 128〉 > 2) of {true. 13, false. 2}
3. let 〈5, 〈2, true〉〉 be x. πx+ π(case x of 〈y, z〉. z)

?

4 P. B. Levy

2.4 Disjoint Union

Recall that A+ B is the set of all ordered pairs inl x, where x ∈ A,
and all ordered pairs inr x where x ∈ B.

We can pattern-match an element of A + B. For example, here
is an integer:

let inl 3 be x. let 7 be y.
case x of {inl z. z + y, inr z. z × y}

Since x is defined here to be inl 3, it matches the pattern inl z, and
z is thereby defined to be 3.

Exercise 3. What integer is

1.
case (case (3 < 7) of {true. inr (8 + 1), false. inl 2})
of {inl u. u+ 8, inr u. u+ 3}

2.
let 〈3, inr 〈7, true〉〉 be z.πz + case π′z
of {inl y. y + 2, inr y. let 4 be x. ((x+ πy) + πz)}

?

2.5 Function Space

Recall that A→ B is the set of all functions from A to B.

λ-abstraction Suppose A is a set. We write λxA. to mean “the
function that takes each x ∈ A to ”. For example, λxZ.(2×x+1)
is the function taking each integer x to 2× x+ 1.

application If f is a function from A to B, and x ∈ A, then we
write fx to mean f applied to x. For example, here is another
integer:

(λxZ. (2× x+ 1))7

And that completes our notation.

Exercise 4. What integer is

1. ((λfZ→Z. λxZ. (f (f x)))λxZ. (x+ 3)) 2
2. let λxZ+B. case x of {inl y. y + 3, inr y.7} be f. (f inl 5) + (f inr false)
3. let λxZ×Z. (case x of 〈y, z〉. (2×y+z)) be f. f 〈let 4 be u. u+ 1, 8〉

?

Typed λ-calculus: Concepts and Syntax 5

3 A Calculus For Integers and Booleans

3.1 Calculus of Integers

We want to turn all of the above notations into a calculus. Typically,
calculi are defined inductively. As an example, here is a little calculus
of integer expressions:

– n is an integer expression for every n ∈ Z.
– If M is an integer expression, and N is an integer expression,

then M +N is an integer expression.
– If M is an integer expression, and N is an integer expression,

then M ×N is an integer expression.

Thus an integer expression is a finite string of symbols. Don’t get
confused between the integer expression 3 + 4, and the integer 3 + 4,
which is 7. (I normally won’t bother with the underlining, but in
principle it’s necessary.)

Actually, I lied: an integer expression isn’t really a finite string
of symbols, it’s a finite tree of symbols. So (3 + 4)× 2 and 3 + 4× 2
represent different expressions. But 3 + 4 × 2 and 3 + ((4 × 2)) are
the same expression i.e. the same tree.

Remark 1. Since this isn’t a course on induction, I’m not delving
into this in any more detail. But here is something for your notes,
anticipating what you’ll learn in the categories course.

The above inductive definition can be understood as describing a
category. An object of this category is an algebra consisting of a set
X, equipped with an element n ∈ X, for each n ∈ Z, and two binary
operations + and ×. A morphism is an algebra homomorphism i.e.
a function between sets that preserves all this structure. Then the
set of integer expressions (trees of symbols) is an initial algebra, i.e.
an initial object in this category of algebras.

Let us write ` M : int to mean “M is an integer expression”.
Then the above inductive definition can be abbreviated as follows.

n ∈ Z
` n : int

`M : int ` N : int

`M +N : int

`M : int ` N : int

`M ×N : int

6 P. B. Levy

The two expressions shown above can be written as “proof trees”,
this time with the root at the bottom (like in botany).

` 3 : int ` 4 : int

` 3 + 4 : int ` 2 : int

` (3 + 4)× 2 : int

and

` 3 : int

` 4 : int ` 2 : int

` 4× 2 : int

` 3 + 4× 2 : int

3.2 Calculus of Integers and Booleans

Next we want to make a calculus of integers and booleans. We define
the set of types (i.e. set expressions) to be {int, bool}. We write
` M : A to mean that M is an expression of type A. To the above
rules we add:

` true : bool ` false : bool

`M : int ` N : int

`M > N : bool

`M : bool ` N : B ` N ′ : B

` case M of {true. N, false.N ′} : B

3.3 Local Definitions

We next want to add local definitions to our calculus, but this
presents a problem. On the one hand, let 3 be x. x + 4 should
definitely be an integer expression. If we type it into the computer,
we get

Answer: 7

So we want ` let 3 be x. x + 4 : int.
But x + 4 is not valid as an integer expression. If we type it into

the computer, we get

Typed λ-calculus: Concepts and Syntax 7

Error: you haven’t defined x.

So we don’t want ` x + 4 : int.

How then can we define the calculus? We have a valid expression
with a subterm that is not syntactically valid!

The solution is to write

x : int ` x + 4 : int

This means: “once x has been defined to be some integer, x+ 4 is an
integer expression”.

Exercise 5. Which of the following would you expect to be correct
statements?

1. x : int ` x + y : int

2. x : int ` let 3 be y. x + y : int

3. x : int, y : int ` x + y : int

4. x : int, y : int ` x + 3 : int

Some terminology.

1. A, B and C range over types.

2. M and N and (if I’m desperate) P range over terms.

3. x, y and z are called identifiers (not “variables” please, the bind-
ing doesn’t change over time).

4. A finite set of distinct identifiers with associated types, such as

x : int, y : int, z : bool (1)

is called a typing context. Note that1 a typing context is a set, so
the order doesn’t matter: the typing context

x : int, z : bool, y : int

is the same as (1).

5. Γ and ∆ range over typing contexts.

1 At least in these notes. Different papers may follow different conventions.

8 P. B. Levy

6. If Γ is a typing context, x an identifier and A a type, we write

Γ, x : A

to mean Γ extended with the declaration x : A. What if x already
appears in Γ? Then that declaration is overwritten by the new
one. For example,

x : bool, y : int, z : bool, x : int

describes the typing context (1).
7. Any term that can be proved in the empty context, i.e. `M : A,

is said to be closed.

Before I can give you the rules for let, I have to go back and
change all the rules we’ve seen so far to incorporate a context. So
the rule for + becomes

Γ `M : int Γ ` N : int

Γ `M +N : int

and similarly for × and >.
The rule for 3 becomes

Γ ` 3 : int

and similarly for all the other integers, and true and false.
And the rule for conditionals becomes

Γ `M : bool Γ ` N : B Γ ` N ′ : B

Γ ` case M of {true. N, false. N ′} : B

We need a rule for identifiers, so that we can prove things like
x : int, y : int ` x : int. Here’s the rule:

(x : A) ∈ Γ
Γ ` x : A

And finally we want a rule for let. How do we prove that Γ `
let M be x. N : B? Certainly we would have to prove something

Typed λ-calculus: Concepts and Syntax 9

about M and something about N . To be more precise: we have to
show that Γ `M : A, and we have to show Γ, x : A ` N : B. So the
rule is

Γ `M : A Γ, x : A ` N : B

Γ ` let M be x. N : B
Exercise 6. Prove ` let 3 be x. x + 2 : int

4 Bound Identifiers

4.1 Scope and Shadowing

Let’s consider the following term:

x : int, y : int ` (x + y) + let 3 be y. (x + y) : int

There are 4 occurrences of identifiers in this term. The two occur-
rences of x are free. The first occurrence of y is free, but the second
is bound. More specifically, it is bound to a particular place.

We can draw a binding diagram for any term:

– replace every binding of an identifier by a rectangle
– replace each bound occurrence by a circle, and draw an arrow

from the circle to the rectangle where it is bound
– leave the free occurrences

How do we draw this? Every binding has a scope which is the
term that it is applied to. Any occurrence of x that is outside the
scope of an x-binder is a free occurrence. If it is inside the scope of
an x-binding, it is bound to that x-binding. Sometimes, an x-binder
sits inside the scope of another x-binder:

let 3 be x. let 4 be x. (x + 2)

This is called shadowing, and the scope of the inner binder is sub-
tracted from the scope from the outer binder. So the occurrence of
x at the end is bound to the second binder. The rule is always

Given an occurrence of x, move up the branch of the tree,
and as soon as you hit an x-binder, that’s the place the occur-
rence is bound to. If you never hit an x-binder, the occurrence
is free.

Exercise 7. Draw a binding diagram for

let 3 be x. let (let x + 2 be y. y + 7) be y. x + y

10 P. B. Levy

4.2 α-equivalence

Now here is a variation on the above term:

x : int, y : int ` (x + y) + let 3 be z. (x + z) : int

The only difference is that we’ve changed a bound identifier. So
the binding diagrams are the same. We say that two terms are α-
equivalent when the binding diagrams are the same.

α-equivalent terms are, to all intents and purposes, the same. In
fact, it would be more accurate to define a term to be a binding
diagram. We take this as the definition. Bound identifiers are just a
convenient way of writing a term (rather like brackets are), but the
term itself is a binding diagram.

Remark 2. An elegant approach to syntax with binders is to describe
the set of binding diagrams as an initial algebra. This may be done
in several ways, e.g. using a presheaf category as in Fiore, Plotkin
and Turi’s paper “Abstract syntax and variable binding” in LICS
1999. Since this is beyond the scope of the course, we will make do
with the informal description of binding diagrams above.

5 The λ-calculus

5.1 Types

Now that we’ve learnt the general concepts of a calculus with bind-
ing, we’re ready to make a calculus out of all the notations that we
saw. The types of this calculus are given by the inductive definition:

A ::= int | bool | A× A | A+ A | A→ A | 0 | 1

where 0 is a type corresponding to the empty set, and 1 is a type
corresponding to a singleton set (a set with one element).

Like a term, a type is just a tree of symbols. Don’t confuse the
type int→ int with the set Z→ Z.

As we look at the typing rules for A×B and A+B and A→ B,
we’ll see that there are two kinds.

– The introduction rules for a type tell us how to form something
of that type.

Typed λ-calculus: Concepts and Syntax 11

– The elimination rules for a type tell us how to use something of
that type.

In fact, we’ve already seen these for the type bool. The typing rules
for true and false are introduction rules. The typing rule for con-
ditionals is an elimination rule.

(The type int is an exception to this neat pattern. Because of
problems with infinity, there isn’t a simple elimination rule.)

5.2 Cartesian Product

How do we form something of type A × B? We use pairing. So the
introduction rule is

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B
How do we use something of type A×B? As we saw before, there’s

actually a choice here: we can either project or pattern-match. For
projections, our elimination rules are

Γ `M : A×B

Γ ` πM : A

Γ `M : A×B

Γ ` π′M : B

For pattern-matching, how do we prove that Γ ` caseM of 〈x, y〉. N :
C? Certainly we have to show something about M and something
about N . And to be more precise: we have to show that Γ ` M :
A×B, and that Γ, x : A, y : B ` N : C. So the elimination rule is

Γ `M : A×B Γ, x : A, y : B ` N : C

Γ ` case M of 〈x, y〉. N : C

We also include a type 1, representing a singleton set—the nullary
product. The introduction rule is

Γ ` 〈〉 : 1

If we are using projection syntax, there are no elimination rules. If
we are using pattern-match syntax, there is one elimination rule:

Γ `M : 1 Γ ` N : C

Γ ` case M of 〈〉. N : C

12 P. B. Levy

5.3 Disjoint Union

The rules for disjoint union are fairly similar to those for bool. You
might like to think about why this should be so.

How do we form something of type A + B? By pairing with a
tag. So we have two introduction rules:

Γ `M : A

Γ ` inl M : A+B

Γ `M : B

Γ ` inr M : A+B

How do we use something of type A + B? By pattern-matching it.
To prove that Γ ` case M of {inl x. N, inr x. N ′} : C, we have to
prove something about M , something about N and something about
N ′. To be more precise, we have to prove that Γ `M : A+ B, that
Γ, x : A ` N : C and that Γ, x : B ` N ′ : C. So here’s the elimination
rule:

Γ `M : A+B Γ, x : A ` N : C Γ, x : B ` N ′ : C

Γ ` case M of {inl x. N, inr x. N ′} : C

We also include a type 0 representing the empty set—the nullary dis-
joint union. It has no introduction rule and the following elimination
rule:

Γ `M : 0

Γ ` case M of {} : A

5.4 Function Space

We’re almost done now—we just need the rules for A→ B. How do
we form something of type A→ B? We use λ-abstraction. To show
that Γ `M : A→ B, we need to show that Γ, x : A `M : B. So the
introduction rule is

Γ, x : A `M : B

Γ ` λxA.M : A→ B

How do we use something of type A→ B? By applying it to some-
thing of type A. And that gives us something of type B. So the
elimination rule is

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Typed λ-calculus: Concepts and Syntax 13

6 Substitution

The most important operation on terms (i.e. operation on binding
diagrams) is substitution. If M and N are terms, we write M [N/x]
for the term in which we substitute N for x in M . For example, if M
is (x+ y)× 3 and N is (y× 2) then M [N/x] is ((y× 2) + y)× 3. It is
most important to remember here that terms are binding diagrams:

1. Suppose M is x+let 3 be x. x×7, and N is y×2, Writing these
as binding diagrams ensures that we substitute for only the free
occurrences. We therefore obtain (y× 2) + let 3 be x. x× 7.

2. Suppose M is let 3 be y. x + y, and N is y × 2. Writing these
as binding diagrams ensures that the free occurrence of y in N
remains free. So we obtain let 3 be z. (y × 2) + z. If we try to
substitute naively, we get let 3 be y. (y × 2) + y. That’s the
wrong answer, because the free occurrence of y in N has been
captured. “Substitution” always means capture-free substitution.

Exercise 8. Substitute

let x + 1 be x. x + y

for x in
x + (let x + 2 be y. let x + y be x. x + y)

7 Exercises

1. Turn some of the descriptions of integers from the notes into ex-
pressions. Write out binding diagrams and proof trees for these
examples (hint: use a large piece of paper in landscape orienta-
tion).

2. What integer is

let 3 be x.
let inl λyZ. (x+ y) be u.
let 4 be x.
x+ (case u of {inl f. f 2, inr f. 0})

?

14 P. B. Levy

3. What integer is

let λxZ. inl λyZ. (x+ y) be f.
let f 0 be u.
case u of {

inl g. let f 1 be v. case v of {inl h. g 3, inr h. 0},
inr g. 0
}

?
4. (variant record type) For setsA,B,C,D,E, we define α(A,B,C,D,E)

to be the set of tuples

{〈#left, x, y〉|x ∈ A, y ∈ B}∪{〈#right, x, y, z〉|x ∈ C, y ∈ D, z ∈ E}

Now think of α as an operation on types. Give typing rules for

– 〈#left,M,N〉
– 〈#right,M,N, P 〉
– case M of {〈#left, x, y〉. N, 〈#right, x, y, z〉. N ′}

i.e. two introduction rules and one elimination rule for α.
5. (variant function type) For sets A,B,C,D,E, F,G, we define
β(A,B,C,D,E, F,G) to be the set of functions that take
– a sequence of arguments (#left, x, y), where x ∈ A and y ∈ B,

to an element of C
– a sequence of arguments (#right, x, y, z), where x ∈ D and
y ∈ E and z ∈ F , to an element of G.

Thus the first argument is always a tag, indicating how many
other arguments there are, what their type is, and what the type
of the result should be.
Now think of β as an operation on types. Give typing rules for

– M(#left, N,N ′)
– M(#right, N,N ′, N ′′)
– λ{(#left, x, y).M, (#right, x, y, z).M ′}

i.e. two elimination rules and one introduction rule for β.

