
Typed λ-calculus: Denotational

Semantics of Call-By-Value

P. B. Levy

University of Birmingham

Preliminary note: substitution in CBV

For the pure calculus, we gave a substitution lemma expressing
[[M [N/x]]] in terms of [[M]] and [[N]]. But that will not be possible
in CBV, as the following example demonstrates. We define terms
x : bool `M,M ′ : bool and ` N : bool by

M
def
= true

M ′ def
= case x of {true. true, false. true}

N
def
= error CRASH

But in any CBV semantics we will have

[[M]] = [[M ′]] because M =η bool M
′

[[M [N/x]]] 6= [[M ′[N/x]]]

However, what we will be able to describe semantically is the
substitution of a restricted class of terms, called values.

V ::= x | n | true | false | inl V | inr V | λx.M

A value, in any syntactic environment, is terminal. And a closed term
is a value iff it is terminal. In the study of call-by-value, we define

a substitution Γ
k // ∆ to be a function mapping each identifier

x : A in Γ to a value ∆ ` V : A. If W is a value, then k∗W is a
value, for any substitution k.

1 Denotational Semantics for CBV

Let us think about how to give a denotational semantics for call-by-
value λ-calculus with errors. Let E be the set of errors.

2 P. B. Levy

1.1 First Attempt

Let’s propose that for a type A, its denotation [[A]] will be a set that’s
a universe for terms : by this I mean that a closed term of type A
will denote an element of [[A]]. Then we should have

[[bool]] = B + E

[[int]] = Z + E

[[bool× int]] = (B× Z) + E

[[A×B]] = [[A]] ∗ [[B]]

where ∗ is an operation on sets that would have to satisfy

(B + E) ∗ (Z + E) = (B× Z) + E

I can’t see any such operation, so we give up on this proposal.

1.2 Second Attempt

Let’s make [[A]] a set that’s a universe for values, meaning that a
closed value of type A will denote an element of type [[A]]. In partic-
ular we want

[[bool]] = B
[[int]] = Z

[[A+B]] = [[A]] + [[B]]

[[A×B]] = [[A]]× [[B]]

and we postpone the semantic equation for →.
A semantic environment for Γ maps each identifier x : A in Γ to

an element of [[A]]. We write [[Γ]] for the set of semantic environments.
A closed term of type B either returns a closed value or raises

an error. So it should denote an element of [[B]] +E. More generally,
a term Γ ` M : B should denote, for each semantic environment
ρ ∈ [[Γ]], an element of [[B]] + E. Hence

[[Γ]]
[[M]] // [[B]] + E

Typed λ-calculus: Denotational Semantics of Call-By-Value 3

Now let’s think about [[A→ B]]. A closed value of type A → B
is a λ-abstraction λxA.M . This can be applied to a closed value V
of type A, and gives a closed term M [V/x] of type B. So we define

[[A→ B]] = [[A]]→ ([[B]] + E)

We can easily write out the semantics of terms now.

1.3 Substitution Lemma

According to what we have said, a value Γ ` V : A denotes a function

[[Γ]]
[[V]] // [[A]] + E

To formulate a substitution lemma, we also want V to denote a
function

[[Γ]]
[[V]]val // [[A]]

and [[V]]val should be related to [[V]] by

[[V]]ρ = inl [[V]]valρ (1)

or as a diagram:

[[Γ]]
[[V]]val //

[[V]] $$HHHHHHHHH [[A]]

inl
��

[[A]] + E

We define [[V]]val and verify (1) by induction on V .

Given a substitution Γ
k // ∆ , we obtain a function [[∆]]

[[k]] // [[Γ]] .

It maps ρ ∈ [[∆]] to the semantic environment for Γ that takes each
identifier x : A in Γ+ to [[k(x)]]valρ.

Now we can formulate two substitution lemmas: one for substi-
tution into terms, and one for substitution into values.

Proposition 1. Let Γ
k // ∆ be a substitution, and let ρ be a se-

mantic environment for ∆.

4 P. B. Levy

1. For any term Γ `M : B, we have [[k∗M]]ρ = [[M]]([[k]]ρ), or as a
diagram:

[[∆]]

[[k]]

��

[[k∗M]]

$$IIIIIIIII

[[Γ]]
[[M]]

// [[B]] + E

2. For any value Γ ` V : B, we have [[k∗V]]valρ = [[V]]val([[k]]ρ), or as
a diagram:

[[∆]]

[[k]]val

��

[[k∗V]]

$$IIIIIIIII

[[Γ]]
[[V]]val

// [[B]] + E

As usual we first prove this for renamings (or at least weakening).

1.4 Computational Adequacy

It is all very well to define a denotational semantics, but it’s no
good if it doesn’t agree with the way the language was defined (the
operational semantics).

Proposition 2. Let M be a closed term.

1. If M ⇓ V , then [[M]] = inl [[V]]val.
2. If M e, then [[M]] = inr e.

We prove this by induction on ⇓ and .

