Typed A-calculus: Denotational
Semantics of Call-By-Value

P. B. Levy

University of Birmingham

Preliminary note: substitution in CBV

For the pure calculus, we gave a substitution lemma expressing
[M[N/x]] in terms of [M] and [N]. But that will not be possible
in CBV, as the following example demonstrates. We define terms
x :bool - M, M’ :bool and - N : bool by

M = true
M’ = case x of {true. true, false. true}
N = error CRASH

But in any CBV semantics we will have
[M]=[M'] because M =, poo1 M’
[MIN/x]] # [M'[N/x]]

However, what we will be able to describe semantically is the
substitution of a restricted class of terms, called values.

Vi= x| n| true | false | inl V | inr V | Ax.M

A value, in any syntactic environment, is terminal. And a closed term
is a value iff it is terminal. In the study of call-by-value, we define

a substitution T —> A to be a function mapping each identifier
x:Ain T to avalue A=V : A If W is a value, then £*W is a
value, for any substitution k.

1 Denotational Semantics for CBV

Let us think about how to give a denotational semantics for call-by-
value A-calculus with errors. Let E be the set of errors.

2 P. B. Levy

1.1 First Attempt

Let’s propose that for a type A, its denotation [A] will be a set that’s
a universe for terms: by this I mean that a closed term of type A
will denote an element of [A]. Then we should have

[bool] =B+ E
[int]=Z+ FE

[oool x int] = (B x Z) + E
I=

[Ax B] =[A] « [B]

where * is an operation on sets that would have to satisfy
B+E)*x(Z+E)=BxZ)+E

I can’t see any such operation, so we give up on this proposal.

1.2 Second Attempt

Let’s make [A] a set that’s a wuniverse for values, meaning that a
closed value of type A will denote an element of type [A]. In partic-
ular we want

[bool] =B

[int] =Z
A+ B] =[] + [B]
[Ax B]=[A] x [B

and we postpone the semantic equation for —.
A semantic environment for I' maps each identifier x : A in I" to
an element of [A]. We write [I'] for the set of semantic environments.
A closed term of type B either returns a closed value or raises
an error. So it should denote an element of [B] 4+ E. More generally,
a term I' = M : B should denote, for each semantic environment
p € [T'], an element of [B] + E. Hence

R 7y

Typed A-calculus: Denotational Semantics of Call-By-Value 3

Now let’s think about [A — B]. A closed value of type A — B
is a A-abstraction Ax4.M. This can be applied to a closed value V'
of type A, and gives a closed term M [V/x] of type B. So we define

[A— B]=[A] — ([B] + E)

We can easily write out the semantics of terms now.

1.3 Substitution Lemma

According to what we have said, a value I' = V' : A denotes a function

] YL 4+ B

To formulate a substitution lemma, we also want V' to denote a

function

] M2 4]

and [V]"* should be related to [V] by
[V1p =inl [V]**'p (1)

or as a diagram:
[[Vuval

[

[A]

V] linl

[A] + FE

We define [V]"?" and verify (1) by induction on V.

Given a substitution T —%> A | we obtain a function [A] M, I -
It maps p € [A] to the semantic environment for I' that takes each
identifier x : A in T+ to [k(x)]**p.

Now we can formulate two substitution lemmas: one for substi-
tution into terms, and one for substitution into values.

Proposition 1. Let 2> A bea substitution, and let p be a se-
mantic environment for A.

4 P. B. Levy

1. For any term T' = M : B, we have [k*M]p = [M]([k]p), or as a
diagram:

[A]

k* M
Ml ku

1] —7 181 + B

2. For any value T' =V : B, we have [k*V]"¥'p = [V]¥([k]p), or as
a diagram:

[A]

Hk]]val \L W]}

] 081 + 2

As usual we first prove this for renamings (or at least weakening).

1.4 Computational Adequacy

It is all very well to define a denotational semantics, but it’s no
good if it doesn’t agree with the way the language was defined (the
operational semantics).

Proposition 2. Let M be a closed term.

1. If M LV, then [M] = inl [V]*.
2. If M 4 e, then [M] = inr e.

We prove this by induction on |} and 7.

