
Typed λ-calculus: Substitution and

Equations

P. B. Levy

University of Birmingham

1 Substitution again

1.1 Substitutions and Renamings

Suppose we have a term Γ ` M : B, and we want to turn it into a
term in context ∆, by replacing the identifiers. For example, we’re
given the term

x : int, y : bool, z : int ` z+case y of {true. x+z, false. x+1} : int

and we want to change it to something in the context u : bool, x :
int, y : bool.

A substitution from Γ to ∆ is a function k taking each identifier
x : A in Γ to a term ∆ ` k(x) : A.

For example, using the above Γ and ∆, a substitution from Γ to
∆ is

x 7→ 3 + x

y 7→ u

z 7→ case y of {true. x + 2, false. x}

We write k∗M for the result of replacing all the free identifiers in M
according to k (avoiding capture, of course). In the above example,
we obtain

u : bool, x : int, y : bool `
case y of {true. x + 2, false. x}+
case u of {true. (3 + x) + case y of {true. x + 2, false. x},
false. (3 + x) + 1} : int

2 P. B. Levy

Exercise 1. Apply to the term

x : int→ int, y : int ` let 5 be w. (xy) + (xw) : int

the substitution

x 7→ y

y 7→ w + 1

to obtain a term in context

w : int, y : int→ int, z : int

An important special kind of substitution is one that maps each
identifier to an identifier; this is called a renaming. An even more
special case is the inclusion from Γ to Γ′, where Γ ⊆ Γ′. This is called
weakening. You will often see it expressed as a proposition.

Proposition 1. If Γ ⊆ Γ′ and Γ `M : A then Γ′ `M : A.

This is proved by induction, using the fact that if Γ ⊆ Γ′ then
Γ, x : B ⊆ Γ′, x : B.

1.2 Substitution by Induction

Let us think how to define substitution on terms (rather than on
binding diagrams) by induction. Some of the inductive clauses are
easy:

k∗3 = 3

k∗(M +N) = k∗M + k∗N

k∗x = k(x)

But what about substituting into a let expression? Let’s first re-
member the typing rule for let :

Γ `M : A Γ, x : A ` N : B

Γ ` let M be x. N : B

We define

k∗(let M be x. N) = let k∗M be w. (k, x 7→ w)∗N

Typed λ-calculus: Substitution and Equations 3

where w is some identifier that doesn’t appear in ∆, and the substitu-

tion Γ, x : A
k,x 7→w// ∆, x : A is defined to map (y : B) ∈ Γ (provided

y 6= x) to k(y), and x to w. Note the use of Proposition 1 in this
definition: ∆, w : A ` k(y) : B follows from ∆ ` k(y) : B since
w 6∈ ∆.

A consequence of this is that if you want to prove a theorem
about substitution, you’ll first have to prove it for renaming, or at
least for weakening.

Next we define

– the identity subsitution on Γ to send each (x : A) ∈ Γ to x

– the composite of substitutions Γ
k // Γ′

l // Γ′′ to send (x :
A) ∈ Γ to l∗(k(x)).

While we have defined subsitution for terms, this involves an ar-
bitrary choice of fresh identifier. Because of this, it is only on binding
diagrams that we obtain a canonical operation. Furthermore, pro-
vided we work with binding diagrams (or up to α-equivalence), we
have equations:

(k; l)∗M = l∗k∗M

id∗ΓM = M

It follows that contexts and substitutions form a category, i.e. com-
position satisfies the associativity, left unital and right unital laws.

2 Evaluation Through β-reduction

Intuitively, a β-reduction means simplification. I’ll write M N to
mean that M can be simplified to N . We begin with some arithmetic
simplifications, sometimes called δ-reductions :

m+ n m+ n

m× n m× n
m > n true if m > n

m > n false if m 6 n

4 P. B. Levy

There is a β-reduction rule for local definitions:

let M be x. N N [M/x]

But the most interesting are the β-reductions for all the types.
The rough idea is: if you use an introduction rule and then, imme-
diately, use an elimination rule, then they can be simplified.

For the boolean type, the β-reduction rule is

case true of {true.N, false.N ′} N

case false of {true.N, false.N ′} N ′

For the type A×B, if we use projections the β-reduction rule is

π〈M,M ′〉 M

π′〈M,M ′〉 M ′

If we use pattern-matching, the β-reduction rule is

case 〈M,M ′〉 of 〈x, y〉. N N [M/x,M ′/y]

For the type A+B, the β-reduction rule is

case inl M of {inl x. N, inr y. N ′} N [M/x]

case inr M of {inl x. N, inr y. N ′} N ′[M/y]

For the type A→ B, the β-reduction rule is

(λx.M)N M [N/x]

A term which is the left-hand-side of a β-reduction is called a
β-redex.

You can simplify any term M by picking a subterm that’s a
β-redex, and reduce it. Do this again and again until you get a β-
normal term, i.e. one that doesn’t contain any β-redex. It can be
shown that this process has to terminate (the strong normalization
theorem).

Typed λ-calculus: Substitution and Equations 5

Proposition 2. A closed term M that is β-normal must have an
introduction rule at the root. (Remember that we consider n to be an
introduction rule, but not +× >.) Hence, if M has type int, then it
must be n for some n ∈ Z.

We prove the first part by induction on M .

Exercise 2. All the sums that we did can be turned into expressions
and evaluated using β-reduction. Try:

1. let 〈5, 〈2, true〉〉 be x. πx + π(case x of 〈y, z〉. z)

2.
case (case (3 < 7) of {true. inr 8 + 1, false. inl 2}) of
{inl u. u + 8, inr u. u + 3}

3. ((λfint→int.λxint.(f(fx)))λxint.(x + 3))2

3 η-expansion

The η-expansion laws express the idea that

– everything of type bool is true or false
– everything of type A×B is a pair 〈x, y〉
– everything of type A+B is a pair inl x or a pair inr x
– everything of type A→ B is a function.

They are given by first applying an elimination, then an introduction
(the opposite of β-reduction).

Let’s begin with the type bool. Suppose we have a term Γ `
M : bool. Then for any term Γ, z : bool ` N : B, we can expand
N [M/z] to

case M of {true. N [true/z], false. N [false/z]}

The reason this ought to be true is that, whatever we define the
identifiers in Γ to be, M will be either true or false. Either way,
both sides should be the same.

What about A×B? If we’re using projections, then any Γ `M :
A×B can be η-expanded to 〈πM, π′M〉.

And if we’re using pattern-match, for terms Γ ` M : A× B and
Γ, z : A×B ` N : C, we can expand N [M/z] into

case M of 〈x, y〉N [〈x, y〉/z]

6 P. B. Levy

(I’m supposing the x and y we use here don’t appear in Γ, z : A×B.)
For A+B, it’s similar. Suppose Γ `M : A+B and Γ, z : A+B `

N : C. Then N [M/z] can be expanded into

case M of {inl x.N [inl x/z], inr y.N [inr y/z]}

(Again, I’m supposing the x and y don’t appear in Γ, z : A+B.)
And finally, A→ B. Any term Γ `M : A→ B can be expanded

as λxA. (Mx).
(Again, I’m supposing the x doesn’t appear in Γ.)

Exercise 3. Take the term

f : (int+ bool)→ (int+ bool) ` f : (int+ bool)→ (int+ bool)

Apply an η-expansion for →, then for +, then for bool.

4 Equality

λ-calculus isn’t just a set of terms; it comes with an equational the-
ory. If Γ `M : B and Γ ` N : B, we write Γ `M = N : B to express
the intuitive idea that, no matter what we define the identifiers in
Γ to be, M and N have the same “meaning” (even though they’re
different expressions).

First of all we need rules to say that this is an equivalence rela-
tion:

Γ `M : B

Γ `M = M : B

Γ `M = N : B

Γ ` N = M : B

Γ `M = N : B Γ ` N = P : B

Γ `M = P : B

Secondly, we need rules to say that this is compatible—preserved by
every construct:

Γ `M = M ′ : A Γ, x : A ` N = N ′ : B

Γ ` let M be x. N = let M ′ be x. N ′ : B

and so forth. A compatible equivalence relation is often called a
congruence.

Typed λ-calculus: Substitution and Equations 7

Thirdly, each of the β-reductions that we’ve seen is an axiom of
this theory.

Γ ` N : B Γ ` N ′ : B

Γ ` case true of {true. N, false. N ′} = N : B

Γ, x : A `M : B Γ ` N : A

Γ ` (λxA.M)N = M [N/x] : B

Fourthly, each of the η-expansions is an axiom of the theory, e.g.

Γ `M : A→ B

Γ `M = λxA. (Mx) : A→ B

Proposition 3. If Γ `M = N : B and Γ
k // ∆ is a substitution,

then ∆ ` k∗M = k∗N : B

As usual we prove this first for renaming, or at least for substitution.

5 Exercises

1. Suppose that Γ ` M : bool and Γ ` N0, N1, N2, N3 : C. Show
that

Γ ` case M of {
true. case M of {true.N0, false.N1},
false. case M of {true.N2, false.N3}
}
= case M of {true.N0, false.N3} : C

2. Show that inl − is injective, i.e. if Γ ` M,M ′ : A and Γ `
inl M = inl M ′ : A+B then Γ `M = M ′ : A.

3. Write down the η-law for the 0 type.
4. Given a term Γ, x : A `M : 0, show that it is an “isomorphism”

in the sense that there is a term Γ, y : 0 ` N : A satisfying

Γ, y : 0 `M [N/x] = y : 0

Γ, x : A ` N [M/y = x : A

5. Give β and η laws for α(A,B,C,D,E) and for β(A,B,C,D,E, F,G).
(See yesterday’s exercises for a description of these types.)

