Typed A-calculus: Substitution and
Equations

P. B. Levy

University of Birmingham

1 Substitution again

1.1 Substitutions and Renamings

Suppose we have a term I' H M : B, and we want to turn it into a
term in context A, by replacing the identifiers. For example, we're
given the term

x : int,y : bool,z : int - z+case y of {true. x+z,false. x+1} : int

and we want to change it to something in the context u : bool, x :
int,y : bool.
A substitution from I' to A is a function k taking each identifier
x:Ain [toaterm A F k(x) : A.
For example, using the above I" and A, a substitution from I" to
A is
x—3+x

y—u

z+> case y of {true. x + 2, false. x}

We write k* M for the result of replacing all the free identifiers in M
according to k (avoiding capture, of course). In the above example,
we obtain

u:bool,x: int,y : bool -

case y of {true. x + 2, false. x}+

case u of {true. (3 +x) + case y of {true. x + 2, false. x},
false. (3+x)+ 1} :int

2 P. B. Levy

Exercise 1. Apply to the term
x:int — int,y:int b let 5 be w. (xy) + (xw) : int
the substitution

XI—)Y

y—w+1
to obtain a term in context
w:int,y:int — int,z: int

An important special kind of substitution is one that maps each
identifier to an identifier; this is called a renaming. An even more
special case is the inclusion from I" to IV, where I' C I". This is called
weakening. You will often see it expressed as a proposition.

Proposition 1. If T C IV and ' M : A then "= M : A.

This is proved by induction, using the fact that if ' C I” then
Ix:BCI',x:B.

1.2 Substitution by Induction

Let us think how to define substitution on terms (rather than on
binding diagrams) by induction. Some of the inductive clauses are
easy:

k*3=3
E'(M+ N)=k"M + k*N
k*x = k(x)

But what about substituting into a let expression? Let’s first re-
member the typing rule for let :

'EM:A T''x:AFN:B
I'let M bex. N: B

We define

k*(let M be x. N) = let k"M be w. (k,x+— w)*N

Typed A-calculus: Substitution and Equations 3

where w is some identifier that doesn’t appear in A, and the substitu-

k,x—w

tion I''x: A——=A,x: A is defined to map (y: B) € I' (provided
y # x) to k(y), and x to w. Note the use of Proposition 1 in this
definition: A,w : A F k(y) : B follows from A F k(y) : B since
w A

A consequence of this is that if you want to prove a theorem
about substitution, you’ll first have to prove it for renaming, or at
least for weakening.

Next we define

— the identity subsitution on I' to send each (x: A) € I' to x

— the composite of substitutions T'—= " —>T7 to send (x :
A) €T to I*(k(x)).

While we have defined subsitution for terms, this involves an ar-
bitrary choice of fresh identifier. Because of this, it is only on binding
diagrams that we obtain a canonical operation. Furthermore, pro-
vided we work with binding diagrams (or up to a-equivalence), we
have equations:

(k:0)*M = I"k*M
id: M = M

It follows that contexts and substitutions form a category, i.e. com-
position satisfies the associativity, left unital and right unital laws.

2 Evaluation Through B-reduction

Intuitively, a S-reduction means simplification. I'll write M ~» N to
mean that M can be simplified to N. We begin with some arithmetic
simplifications, sometimes called §-reductions:

m+n~m+mn
m X n~>mxn
m >n-~trueif m >n
m >n~ falseif m < n

4 P. B. Levy

There is a (B-reduction rule for local definitions:
let M be x. N ~» N[M/x]

But the most interesting are the (-reductions for all the types.
The rough idea is: if you use an introduction rule and then, imme-
diately, use an elimination rule, then they can be simplified.

For the boolean type, the S-reduction rule is

case true of {true.N,false.N'} ~ N
case false of {true.N,false.N'} ~» N’

For the type A x B, if we use projections the g-reduction rule is

m(M, M) ~ M
7 (M, M) ~ M’

If we use pattern-matching, the G-reduction rule is
case (M, M') of (x,y). N~ N[M/x, M'/y]
For the type A + B, the B-reduction rule is

case inl M of {inl x. N,inr y. N'} ~» N[M /%]
case inr M of {inl x. N,inr y. N'} ~ N'[M/y]

For the type A — B, the (-reduction rule is
(Ax.M)N ~~ M[N/x]

A term which is the left-hand-side of a (-reduction is called a
(B-redex.

You can simplify any term M by picking a subterm that’s a
B-redex, and reduce it. Do this again and again until you get a [3-
normal term, i.e. one that doesn’t contain any [-redex. It can be
shown that this process has to terminate (the strong normalization
theorem).

Typed A-calculus: Substitution and Equations 5

Proposition 2. A closed term M that is (-normal must have an
introduction rule at the root. (Remember that we consider n to be an
introduction rule, but not +x >.) Hence, if M has type int, then it
must be n for some n € Z.

We prove the first part by induction on M.

FExercise 2. All the sums that we did can be turned into expressions
and evaluated using J-reduction. Try:

1. let (5,(2,true)) be x. 7x + 7(case x of (y,z). z)
case (case (3 < 7) of {true. inr 8 + 1, false. inl 2}) of
" {inl uw. u+8,inr u. u+ 3}
3. ((Mfint—int-AKint-(£(£X))) AXine-(x + 3))2

3 mn-expansion

The n-expansion laws express the idea that

— everything of type bool is true or false

— everything of type A x B is a pair (z,y)

— everything of type A + B is a pair inl x or a pair inr x
— everything of type A — B is a function.

They are given by first applying an elimination, then an introduction
(the opposite of [-reduction).

Let’s begin with the type bool. Suppose we have a term I'
M : bool. Then for any term I',z : bool - N : B, we can expand
N[M/z] to

case M of {true. N[true/z|, false. N|false/z|}

The reason this ought to be true is that, whatever we define the
identifiers in I' to be, M will be either true or false. Either way,
both sides should be the same.

What about A x B? If we're using projections, then any I' = M :
A x B can be n-expanded to (w M, 7' M).

And if we’re using pattern-match, for terms I' - M : A x B and
I'z: Ax BF N :C, we can expand N[M/z] into

case M of (x,y)N|[(x,y)/z]

6 P. B. Levy

(I'm supposing the x and y we use here don’t appear in ',z : Ax B.)
For A+ B, it’s similar. Suppose ' - M : A+ BandI',;z: A+ B
N : C. Then N[M/z] can be expanded into

case M of {inl x.N[inl x/z], inr y.N|[inr y/z|}

(Again, I'm supposing the x and y don’t appear in I',z: A+ B.)
And finally, A — B. Any term I' = M : A — B can be expanded
as Axa. (Mx).
(Again, I'm supposing the x doesn’t appear in T".)

Ezercise 3. Take the term
f : (int +bool) — (int +bool) F £ : (int + bool) — (int + bool)

Apply an n-expansion for —, then for +, then for bool.

4 Equality

A-calculus isn’t just a set of terms; it comes with an equational the-
ory. f ' M :Band '+ N : B, wewrite ' - M = N : B to express
the intuitive idea that, no matter what we define the identifiers in
[' to be, M and N have the same “meaning” (even though they’re
different expressions).

First of all we need rules to say that this is an equivalence rela-
tion:

'-M:B 'M=N:B
'EM=M:B 'EN=M:B

'-M=N:B I'EN=P:B
'-M=P:B

Secondly, we need rules to say that this is compatible—preserved by
every construct:

'-M=M::A4 T'x:A-N=N":B
'Flet M bex. N=1et M bex. N : B

and so forth. A compatible equivalence relation is often called a
congruence.

Typed A-calculus: Substitution and Equations 7

Thirdly, each of the S-reductions that we’ve seen is an axiom of
this theory.

'N:B T'HN':B
' case true of {true. N,false. N'} =N :B

''x:AFM:B T'EN:A
I'F (Axa.M)N = M[N/x]: B

Fourthly, each of the n-expansions is an axiom of the theory, e.g.
'-M:A— B
I'EM=MXy. (Mx): A— B

Proposition 3. If ' M = N : B and P> A isa substitution,
then A k"M =k*N : B

As usual we prove this first for renaming, or at least for substitution.

5 Exercises

1. Suppose that I' F M : bool and I' = Ny, Ny, No, N3 : C'. Show

that
['F case M of {

true. case M of {true.Ny, false.N;},
false. case M of {true.N,, false. N3}

}

= case M of {true.Ny, false.N3}: C

2. Show that inl — is injective, ie. if ' = M, M’ : A and '

inl M =inl M': A+ Bthen ' M = M': A.

Write down the n-law for the 0 type.

4. Given a term I',x : AF M : 0, show that it is an “isomorphism”
in the sense that there is a term I',y : 0 = N : A satisfying

@

Iy:0F M[N/x]=y:0
Dx: AFEN[M/y=x:A

5. Give B and nlaws for a(A, B,C, D, F') and for (A, B,C, D, E, F,G).

(See yesterday’s exercises for a description of these types.)

