
Typed λ-calculus: course notes

P. B. Levy

University of Birmingham

1 Introduction

λ-calculus is a small language based on some common mathematical
idioms. It was invented by Alonzo Church in 1936, but his version
was untyped, making the connection with mathematics rather prob-
lematic. In this course we’ll be looking at a typed version.

λ-calculus has had an impact throughout computer science and
logic. For example:

– It is the basis of functional programming languages such as Haskell,
Standard ML, OCaml, Lisp, Scheme, Erlang, Scala, F].

– It is often used to give semantics for programming languages.
This was initiated by Peter Landin, who in 1965 described the
semantics of Algol-60 by translating it into λ-calculus.

– It closely corresponds to a kind of logic called intuitionistic logic,
via the Curry-Howard isomorphism. That isn’t covered in this
course, but you may notice that some notation (e.g. `) and termi-
nology (“introduction/elimination rule”) has been imported from
logic into λ-calculus. And the influence in the opposite direction
has been much greater.

2 Notations for Sets and Elements

or Sums your primary school never taught you
In this section, we’re going to learn some notations and abbrevi-

ations for describing sets and elements of sets.
Recall that x ∈ R means “x is an element of the set R”.

2.1 Sets

First, the notations for describing sets.

2 P. B. Levy

integers We define Z to be the set of integers.
booleans We define B to be the set of booleans {true, false}.
cartesian product Suppose R and S are sets. Then we write R×S

for the set of ordered pairs

{〈x, y〉|x ∈ R, y ∈ S}

disjoint union Suppose R and S are sets. Then we write R+S for
the set of ordered pairs

{inl x|x ∈ R} ∪ {inr y|y ∈ S}

Here we use inl and inr as “tags”. If you like, you could define

inl x
def
= 〈0, x〉

inr x
def
= 〈1, x〉

function space Suppose R and S are sets. Then we write R → S
for the set of functions from R to S. (You will also see this written
as SR.)

unit We define 1 to be the set whose sole element is the empty tuple
〈 〉.

empty set We define 0 to be the empty set.

These operations on sets correspond to familiar operations on nat-
ural numbers. If R is finite with m elements, and S is finite with n
elements, then

– R× S has mn elements
– R + S has m+ n elements
– R→ S has nm elements.

2.2 Integers and Booleans

Recall that Z is the set of integers, and B is the set of booleans.
Some ways of describing integers.

Arithmetic Here is an integer:

3 + (7× 2)

Typed λ-calculus: course notes 3

Conditionals Here is another integer:

case (7 > 5) of {true. 20 + 3, false. 53}

This is an “if. . . then . . . else” construction.
Local definitions Here is another integer:

let y be (2× 18) + (3× 102). (y + 17× y)

This is a shorthand for
y+ 17× y, where we define y to be (2× 18) + (3× 102)

It’s rather like a constant declaration in programming.

Exercise 1. What integer is

1. (2 + 5)× 8
2. case (case 1 > 8 of {true. 5 > 2 + 4, false. 3 > 2}) of {true. 3×

7, false. 100}
3. let y be (let x be 3 + 2. x× (x+ 3)). y + 15
4. let x be (5 + 7). case x > 3 of {true. 12, false. 3 + 3}

?

2.3 Cartesian Product

Recall that R × S is the set of ordered pairs 〈x, y〉 such that x ∈ R
and y ∈ S.

projections If x is an ordered pair, we write πlx for its first com-
ponent, and πrx for its second component. For example, here is
another integer

let x be 〈3, 7 + 2〉. (πlx)× (πrx) + (πrx)

pattern-match We can also pattern-match an ordered pair. For
example:

let x be 〈3, 7 + 2〉. split x as 〈y, z〉. y × z + z

Here, you don’t need to select the appropriate case, because
there’s only one. Since x is the pair 〈3, 9〉, it matches the pattern
〈y, z〉, and y and z are thereby defined to be 3 and 9 respectively.

4 P. B. Levy

Pattern-matching is often a more convenient notation than projec-
tions.

Exercise 2. What integer is

1. let y be 〈7, let x be 3. x+ 7〉. πly + (split y as 〈u, v〉. u+ v)
2. case (πl〈7, 357× 128〉 > 2) of {true. 13, false. 2}
3. let x be 〈5, 〈2, true〉〉. πlx+ πl(case x of 〈y, z〉. z)

?

2.4 Disjoint Union

Recall that R + S is the set of all ordered pairs inl x, where x ∈ R,
and all ordered pairs inr y where y ∈ S.

We can pattern-match an element of R+S. For example, here is
an integer:

let x be inl 3. let y be 7.
case x of {inl z. z + y, inr w. w × y}

Since x is defined here to be inl 3, it matches the pattern inl z, and
z is thereby defined to be 3.

Exercise 3. What integer is

1.
case (case (3 < 7) of {true. inr (8 + 1), false. inl 2})
of {inl u. u+ 8, inr v. v + 3}

2.
let z be 〈3, inr 〈7, true〉〉. πlz + case πrz
of {inl y. y + 2, inr y. let 4⇒ x. ((x+ πly) + πlz)}

?

2.5 Function Space

Recall that R→ S is the set of all functions from R to S.

λ-abstraction Suppose R is a set. We write λxR. to mean “the
function that takes each x ∈ R to ”. For example, λxZ.(2×x+1)
is the function taking each integer x to 2× x+ 1.

application If f is a function from R to S, and x ∈ R, then we
write fx to mean f applied to x. For example, here is another
integer:

(λxZ. (2× x+ 1))7

Typed λ-calculus: course notes 5

And that completes our notation.

Exercise 4. What integer is

1. ((λfZ→Z. λxZ. (f (f x)))λxZ. (x+ 3)) 2
2. let f be λxZ+B. case x of {inl y. y + 3, inr y.7}. (f inl 5) + (f inr false)
3. let f be λxZ×Z. (split x as 〈y, z〉. (2× y + z)). f 〈let u be 4. u+ 1, 8〉
?

3 A Calculus For Integers and Booleans

3.1 Calculus of Integers

We want to turn all of the above notations into a calculus. Typically,
calculi are defined inductively. As an example, here is a little calculus
of integer expressions:

– n is an integer expression for every n ∈ Z.
– If M is an integer expression, and N is an integer expression,

then M +N is an integer expression.
– If M is an integer expression, and N is an integer expression,

then M ×N is an integer expression.

Thus an integer expression is a finite string of symbols. Don’t get
confused between the integer expression 3 + 4, and the integer 3 + 4,
which is 7. (I normally won’t bother with the underlining, but in
principle it’s necessary.)

Actually, I lied: an integer expression isn’t really a finite string
of symbols, it’s a finite tree of symbols. So (3 + 4)× 2 and 3 + 4× 2
represent different expressions. But 3 + 4 × 2 and 3 + ((4 × 2)) are
the same expression i.e. the same tree.

Remark 1. Since this isn’t a course on induction, I’m not delving
into this in any more detail. But here is something for your notes,
anticipating what you’ll learn in the categories course.

The above inductive definition can be understood as describing a
category. An object of this category is an algebra consisting of a set
X, equipped with an element n ∈ X, for each n ∈ Z, and two binary
operations + and ×. A morphism is an algebra homomorphism i.e.
a function between sets that preserves all this structure. Then the
set of integer expressions (trees of symbols) is an initial algebra, i.e.
an initial object in this category of algebras.

6 P. B. Levy

Let us write ` M : int to mean “M is an integer expression”.
Then the above inductive definition can be abbreviated as follows.

n ∈ Z
` n : int

`M : int ` N : int

`M +N : int

`M : int ` N : int

`M ×N : int

The two expressions shown above can be written as “proof trees”,
this time with the root at the bottom (like in botany).

` 3 : int ` 4 : int

` 3 + 4 : int ` 2 : int

` (3 + 4)× 2 : int

and

` 3 : int

` 4 : int ` 2 : int

` 4× 2 : int

` 3 + 4× 2 : int

3.2 Calculus of Integers and Booleans

Next we want to make a calculus of integers and booleans. We define
the set of types (i.e. set expressions) to be {int, bool}. We write
` M : A to mean that M is an expression of type A. To the above
rules we add:

` true : bool ` false : bool

`M : int ` N : int

`M > N : bool

`M : bool ` N : B ` N ′ : B

` case M of {true. N, false.N ′} : B

3.3 Identifiers

In the following I will assume we have an infinite set of identifiers.

Typed λ-calculus: course notes 7

3.4 Local Definitions

We next want to add local definitions to our calculus, but this
presents a problem. On the one hand, let x be 3. x + 4 should
definitely be an integer expression. If we type it into the computer,
we get

Answer: 7

So we want ` let x be 3. x + 4 : int.
But x + 4 is not valid as an integer expression. If we type it into

the computer, we get

Error: you haven’t defined x.

So we don’t want ` x + 4 : int.
How then can we define the calculus? We have a valid expression

with a subterm that is not syntactically valid!
The solution is to write

x : int ` x + 4 : int

This means: “once x has been defined to be some integer, x+ 4 is an
integer expression”.

Exercise 5. Which of the following would you expect to be correct
statements?

1. x : int ` x + y : int
2. x : int ` let y be 3. x + y : int
3. x : int, y : int ` x + y : int
4. x : int, y : int ` x + 3 : int

If we have `M : B, then M is said to be closed.
Now let us be more precise. We assume a fixed infinite set Iden

of identifiers. (Not “variables” please; the binding doesn’t change
over time.) A typing context is a finite set of distinct identifiers with
associated types, such as

x : int, y : int, z : bool (1)

Since it is a set (at least in these notes), the order doesn’t matter:
the typing context

x : int, z : bool, y : int

8 P. B. Levy

is the same as (1).
If Γ is a typing context, x an identifier and A a type, we write

Γ, x : A

to mean Γ extended with the declaration x : A. What if x already
appears in Γ? Then that declaration is overwritten by the new one.
For example,

x : bool, y : int, z : bool, x : int

describes the typing context (1).
Some conventions.

1. The letters M ,N ,P range over terms whereas x,y,z range over
elements (e.g. integers).

2. The letters A,B,C range over types whereas R,S,T range over
sets.

3. The letters x,y,z are used in two different ways.

– In definitions and theorems they range over Iden, and they
don’t necessarily refer to distinct identifiers, i.e. we might have
x = y.

– But in examples, we take Iden to be the set of strings over
the English alphabet, and x,y,z are single-character strings,
which are obviously distinct.

4. The letters Γ,∆ range over typing contexts.

Before I can give you the rules for let, I have to go back and
change all the rules we’ve seen so far to incorporate a context. So
the rule for + becomes

Γ `M : int Γ ` N : int

Γ `M +N : int

and similarly for × and >.
The rule for 3 becomes

Γ ` 3 : int

and similarly for all the other integers, and true and false.

Typed λ-calculus: course notes 9

And the rule for conditionals becomes

Γ `M : bool Γ ` N : B Γ ` N ′ : B

Γ ` case M of {true. N, false. N ′} : B

We need a rule for identifiers, so that we can prove things like
x : int, y : int ` x : int. Here’s the rule:

(x : A) ∈ Γ
Γ ` x : A

And finally we want a rule for let. How do we prove that Γ `
let x be M. N : B? Certainly we would have to prove something
about M and something about N . To be more precise: we have to
show that Γ `M : A, and we have to show Γ, x : A ` N : B. So the
rule is

Γ `M : A Γ, x : A ` N : B

Γ ` let x be M. N : B

Exercise 6. Prove ` let x be 3. x + 2 : int.

4 The λ-calculus

4.1 Types

Now that we’ve learnt the general concepts of a calculus with bind-
ing, we’re ready to make a calculus out of all the notations that we
saw. The types of this calculus are given by the inductive definition:

A ::= int | bool | A× A | A+ A | A→ A | 0 | 1

where 0 is a type corresponding to the empty set, and 1 is a type
corresponding to a singleton set (a set with one element).

Like a term, a type is just a tree of symbols. Don’t confuse the
type int→ int with the set Z→ Z.

As we look at the typing rules for A×B and A+B and A→ B,
we’ll see that there are two kinds.

– The introduction rules for a type tell us how to form something
of that type.

10 P. B. Levy

– The elimination rules for a type tell us how to use something of
that type.

In fact, we’ve already seen these for the type bool. The typing rules
for true and false are introduction rules. The typing rule for con-
ditionals is an elimination rule.

(The type int is an exception to this neat pattern. Because of
problems with infinity, there isn’t a simple elimination rule.)

4.2 Cartesian Product

How do we form something of type A × B? We use pairing. So the
introduction rule is

Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B
How do we use something of type A×B? As we saw before, there’s

actually a choice here: we can either project or pattern-match. For
projections, our elimination rules are

Γ `M : A×B

Γ ` πlM : A

Γ `M : A×B

Γ ` πrM : B

For pattern-matching, how do we prove that Γ ` splitM as 〈x, y〉. N :
C? Certainly we have to show something about M and something
about N . And to be more precise: we have to show that Γ ` M :
A×B, and that Γ, x : A, y : B ` N : C. So the elimination rule is

Γ `M : A×B Γ, x : A, y : B ` N : C
x 6= y

Γ ` split M as 〈x, y〉. N : C

We also include a type 1, representing a singleton set—the nullary
product. The introduction rule is

Γ ` 〈 〉 : 1

If we are using projection syntax, there are no elimination rules. If
we are using pattern-match syntax, there is one elimination rule:

Γ `M : 1 Γ ` N : C

Γ ` split M as 〈 〉. N : C

Typed λ-calculus: course notes 11

4.3 Disjoint Union

The rules for disjoint union are fairly similar to those for bool. You
might like to think about why this should be so.

How do we form something of type A + B? By pairing with a
tag. So we have two introduction rules:

Γ `M : A

Γ ` inl M : A+B

Γ `M : B

Γ ` inr M : A+B

How do we use something of type A + B? By pattern-matching it.
To prove that Γ ` case M of {inl x. N, inr x. N ′} : C, we have to
prove something about M , something about N and something about
N ′. To be more precise, we have to prove that Γ `M : A+ B, that
Γ, x : A ` N : C and that Γ, x : B ` N ′ : C. So here’s the elimination
rule:

Γ `M : A+B Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` case M of {inl x. N, inr y. N ′} : C

We also include a type 0 representing the empty set—the nullary dis-
joint union. It has no introduction rule and the following elimination
rule:

Γ `M : 0

Γ ` case M of {} : A

4.4 Function Space

We’re almost done now—we just need the rules for A→ B. How do
we form something of type A→ B? We use λ-abstraction. To show
that Γ `M : A→ B, we need to show that Γ, x : A `M : B. So the
introduction rule is

Γ, x : A `M : B

Γ ` λxA.M : A→ B

How do we use something of type A→ B? By applying it to some-
thing of type A. And that gives us something of type B. So the
elimination rule is

Γ `M : A→ B Γ ` N : A

Γ `M N : B

12 P. B. Levy

5 Weakening

The following property of terms is called weakening.

Proposition 1. Suppose Γ ⊆ Γ′, i.e. every declaration x : A in Γ is
also in Γ′. Then Γ `M : B implies Γ′ `M : B.

Easy inductive proof.

6 Implicit vs Explicit Types

Here’s a judgement with more than one derivation:

` πl〈true, inl true〉 : bool

Is non-uniqueness of derivations a bad thing? It’s debatable. We can
reduce or eliminate it by annotating terms with types. There is a
variety of positions we could adopt regarding where annotations are
placed.

1. Fully implicit typing (“Curry style”)
No types are written at all. In this case every term, if it is ty-
peable at all, has a principal type. That’s a type expression that
may include type identifiers: the set of types the term has are
precisely the instances of that expression. For example λx. λy. y
has principal type X → (Y → Y).

Exercise 7. What is the principal type of λx. λy. x (y 3)?

2. Fully explicit typing
Every syntactic construct is annotated with all relevant types.
Example:

Γ `M : A→ B Γ ` N : A

Γ ` appA,B(M,N) : B

Γ `M : A

Γ ` inlA,BM : A+B

3. Set-theoretic typing
In set theory λx. x is meaningless but inl true is meaningful. Ac-
cordingly we write λxA but no other types are written. This is
the convention adopted throughout these notes.

Typed λ-calculus: course notes 13

4. Unique derivation for terms (“Church style”)

For any typing context Γ and term M , there should be at most
one type B and derivation Γ ` M : B. We must give enough
information to enable someone to synthesize the type. That sug-
gests rules such as

Γ, x : A `M : B

Γ ` λxA.M : A→ B

Γ `M : A

Γ ` inlBM : A+B

Γ `M : 0

Γ ` caseBM of { } : B

5. Unique derivation for typed terms

For any typing context Γ and type B and term M , there should
be at most one derivation Γ ` M : B. We must give enough
information to enable someone to check the type. That suggests
rules such as

Γ `M : A→ B Γ ` N : A

Γ ` appA(M,N)

Γ `M : A×B

Γ ` πlBM : A

7 Bound Identifiers

Let’s consider the following term:

x : int, y : int ` (x + y) + let y be 3. (x + y) : int

There are 4 occurrences of identifiers in this term. The two occur-
rences of x are free. The first occurrence of y is free, but the second
is bound. More specifically, it is bound to a particular place.

We can draw a binding diagram1 for any term as follows:

– replace every binding of an identifier by a rectangle;
– replace each bound occurrence by a circle, and draw an arrow

from the circle to the rectangle where it is bound;

1 The notion of binding diagram appeared in Quine’s book “Mathematical Logic” and
Bourbaki’s book “Theory of Sets”, in the context of predicate logic.

14 P. B. Levy

– leave the free occurrences.

The binding diagram of the above term is

(x+y) + let (. (x +)be 3)

How do we draw this? Every binding has a scope which is the
term that it is applied to. Any occurrence of x that is outside the
scope of an x-binder is a free occurrence. If it is inside the scope of
an x-binding, it is bound to that x-binding. Sometimes, an x-binder
sits inside the scope of another x-binder:

let x be 3. let x be 4. (x + 2)

This is called shadowing, and the scope of the inner binder is sub-
tracted from the scope from the outer binder. So the occurrence of
x at the end is bound to the second binder.

let . let . +2be 3 be 4

General rule:

Given an occurrence of x, move up the branch of the tree,
and as soon as you hit an x-binder, that’s the place the occur-
rence is bound to. If you never hit an x-binder, the occurrence
is free.

Exercise 8. Draw a binding diagram for

let x be 3. let y be (let y be x + 2. y + 7). x + y

We write BD(M) for the binding diagram of M . Two terms with the
same binding diagram are α-equivalent.

M ≡α N ⇐⇒ BD(M) = BD(N)

Typed λ-calculus: course notes 15

For example, here is a term α-equivalent to the above one:

x : int, y : int ` (x + y) + let z be 3. (x + z) : int

The only difference is that we’ve changed a bound identifier.

Every binding diagram is BD(M) for some term M , because the
set of identifiers is infinite.

Warning We’ve learnt two distinct concepts: term and binding
diagram. Unfortunately, people use “term” for either of these, and
so shall we. When we want to avoid ambiguity we say α-explicit term
for the former.

Warning The way we have defined binding diagram, using squares,
circles and arrows, doesn’t enable us to meaningfully make defini-
tions by structural recursion over binding diagrams. As you have
learnt in category theory, structural recursion depends on the notion
of initial algebra. There are several ways of exhibiting the collection
of binding diagrams as an initial algebra, but they are beyond the
scope of the course. For example: Fiore, Plotkin and Turi’s paper
“Abstract syntax and variable binding” (LICS 1999).

8 Substitution

8.1 Substitution and Binding Diagrams

An important operation on terms is substitution. If M and N are
terms, we write M [N/x] for the term in which we substitute N for x
in M . For example, if M is (x+y)×3 and N is (y×2) then M [N/x]
is ((y× 2) + y)× 3.

The preceding paragraph is a slight lie: substitution is actually
an operation on binding diagrams, not on α-explicit terms. We must
remember this in order to perform substitution correctly.

1. Suppose M is x + let x be 3. x × 7, and N is y × 2, Writing
the binding diagrams ensures that we replace only the free oc-
currences. We therefore obtain

M [N/x] = (y× 2) + let x be 3. x× 7

16 P. B. Levy

2. Suppose M is let y be 3. x + y, and N is y × 2. Writing these
as binding diagrams ensures that the free occurrence of y in N
remains free. So we obtain

M [N/x] = let z be 3. (y× 2) + z

If we try to substitute naively, we get let y be 3. (y × 2) + y.
That’s the wrong answer, because the free occurrence of y in N
has been captured. Substitution of binding diagrams is capture-
free.

It is desirable to define M [N/x] by structural recursion over the
binding diagram M , but we are not in a position to do this.

Exercise 9. Substitute

let x be x + 1. x + y

for x in

x + (let y be x + 2. let x be x + y. . x + y)

8.2 The category of substitutions

Suppose we have a term Γ ` M : B, and we want to turn it into a
term in context Γ′, by replacing the identifiers. For example, we’re
given the term

x : int, y : bool, z : int ` z+case y of {true. x+z, false. x+1} : int

and we want to change it to something in the context u : bool, x :
int, y : bool.

A substitution from Γ to Γ′ is a function k taking each identifier
x : A in Γ to a term (more precisely: a binding diagram) Γ′ ` k(x) :
A.

For example, using the above Γ and Γ′, a substitution from Γ to
Γ′ is

x 7→ 3 + x

y 7→ u

z 7→ case y of {true. x + 2, false. x}

Typed λ-calculus: course notes 17

We write k∗M for the result of replacing all the free identifiers in M
according to k (avoiding capture, of course). In the above example,
we obtain

u : bool, x : int, y : bool `
case y of {true. x + 2, false. x} +
case u of {
true. (3 + x) + case y of {true. x + 2, false. x},
false. (3 + x) + 1
} : int

Exercise 10. Apply to the term

x : int→ int, y : int ` let w be 5. (xy) + (xw) : int

the substitution

x 7→ y

y 7→ w + 1

to obtain a term in context

w : int, y : int→ int, z : int

To form a category, we define

– the identity subsitution on Γ to send each (x : A) ∈ Γ to x

– the composite of substitutions Γ k // Γ′ l // Γ′′ to send (x :
A) ∈ Γ to l∗(k(x)).

We obtain the equations

(k; l)∗M = l∗k∗M (2)

id∗ΓM = M (3)

These are pictorially obvious. We are not in a position to prove them
by structural induction over the binding diagram M .

The associativity law for composition follows from (2), the left
identity law from (3), and the right identity law from the equation

k∗x = k(x)

Therefore contexts and substitutions form a category.

18 P. B. Levy

9 Exercises

1. Turn some of the descriptions of integers from the notes into ex-
pressions. Write out binding diagrams and proof trees for these
examples (hint: use a large piece of paper in landscape orienta-
tion).

2. What integer is

let x be 3.
let u be inl λyZ. (x+ y).
let x be 4.
x+ (case u of {inl f. f 2, inr f. 0})

?
3. What integer is

let f be λxZ. inl λyZ. (x+ y).
let u be f 0.
case u of {
inl g. let v be f 1. case v of {inl h. g 3, inr h. 0},
inr g. 0
}

?
4. (variant tuple type) For setsR,R′, S, S ′, S ′′, we define

∑
(0.R,R′; 1.S, S ′, S ′′)

to be the set of tuples

{〈0, x, y〉|x ∈ R, y ∈ R′} ∪ {〈1, x, y, z〉|x ∈ S, y ∈ S ′, z ∈ S ′′}

Here 0 and 1 are serving as “tags”.
Now suppose that for typesA,A′, B,B′, B′′ we want a type

∑
(0.A,A′; 1.B,B′, B′′)

as an operation on types. Give typing rules for

– 〈0,M,N〉
– 〈1,M,N, P 〉
– case M of {〈0, x, y〉. N, 〈1, x, y, z〉. N ′}

i.e. two introduction rules and one elimination rule for
∑

(0.A,A′; 1.B,B′, B′′).
5. (variant function type) For sets R,R′, S, T, T ′, T ′′, U , we define∏

(0.R,R′ ` S; 1.T, T ′, T ′′ ` U) to be the set of functions that
take

Typed λ-calculus: course notes 19

– a sequence of arguments (0, x, y), where x ∈ R and y ∈ R′, to
an element of S

– a sequence of arguments (1, x, y, z), where x ∈ T and y ∈ T ′
and z ∈ T ′′, to an element of U .

Now suppose that for types A,A′, B, C, C ′, C ′′, D we want a type∏
(0.A,A′ ` B; 1.C, C ′, C ′′ ` D) as an operation on types. Give

typing rules for

– M (0, N,N ′)

– M (1, N,N ′, N ′′)

– λ{(0, xA, yB).M, (1, xD, yE, zF).M ′}
i.e. two elimination rules and one introduction rule for

∏
(0.A,A′ `

B; 1.C, C ′, C ′′ ` D)

10 Evaluation Through β-reduction

Intuitively, a β-reduction means simplification. I’ll write M N to
mean that M can be simplified to N . We begin with some arithmetic
simplifications, sometimes called δ-reductions :

m+ n m+ n

m× n m× n
m > n true if m > n

m > n false if m 6 n

There is a β-reduction rule for local definitions:

let x be M. N N [M/x]

But the most interesting are the β-reductions for all the types.
The rough idea is: if you use an introduction rule and then, imme-
diately, use an elimination rule, then they can be simplified.

For the boolean type, the β-reduction rule is

case true of {true.N, false.N ′} N

case false of {true.N, false.N ′} N ′

20 P. B. Levy

For the type A×B, if we use projections the β-reduction rule is

πl〈M,M ′〉 M

πr〈M,M ′〉 M ′

If we use pattern-matching, the β-reduction rule is

split 〈M,M ′〉 as 〈x, y〉. N N [M/x,M ′/y]

For the type A+B, the β-reduction rule is

case inl M of {inl x. N, inr y. N ′} N [M/x]

case inr M of {inl x. N, inr y. N ′} N ′[M/y]

For the type A→ B, the β-reduction rule is

(λxA.M)N M [N/x]

A term which is the left-hand-side of a β-reduction is called a
β-redex.

To simplify a term M we pick a subterm that’s a β-redex or δ-
redex, and reduce it. If M has no subterm that’s a β- or δ-redex, it’s
said to be βδ-normal.

Proposition 2. A closed term M that is βδ-normal must have an
introduction rule at the root. In other words, it must have one of the
following forms:

true | false | n | 〈 〉 | 〈M,N〉 | inl M | inr M | λxA.M

We should prove the first part by induction on M (but it’s a binding
diagram so we’re not in a position to do so).

Proposition 3. (Strong normalization of β, δ-reduction) There is
no infinite sequence of β- and δ-reductions:

M0 M1 M2 · · ·

Proposition 4. (Confluence of β, δ-reduction) For a term M , if
M ∗ N and M ∗ N ′, then there is a term P such that N ∗ P
and N ′ ∗ P .

Typed λ-calculus: course notes 21

Confluence is also called the Church-Rosser property. It does not
make use of types and holds even for untyped systems.

Thus given a term M , we simplify it by picking a β- or δ-redex
subterm, if there is one, and reducing it. We do this again and again,
and by strong normalization we eventually reach βδ-normal form.
By confluence this βδ-normal form does not depend on the choice of
redex suterms. And if `M : int, we know that the βδ-normal form
must be of the form n.

Exercise 11. All the sums that we did can be turned into expressions
and evaluated using β-reduction. Try:

1. let x be 〈5, 〈2, true〉〉. πlx + πl(split x as 〈y, z〉. z)

2.
case (case (3 < 7) of {true. inr 8 + 1, false. inl 2}) of
{inl u. u + 8, inr u. u + 3}

3. ((λfint→int.λxint.(f(fx)))λxint.(x + 3))2

11 η-expansion

The η-expansion laws express the idea that

– everything of type bool is true or false
– everything of type A×B is a pair 〈x, y〉
– everything of type A+B is a pair inl x or a pair inr x
– everything of type A→ B is a function.

They are given by first applying an elimination, then an introduction
(the opposite of β-reduction).

Let’s begin with the type bool. Suppose we have a term Γ `
M : bool. Then for any term Γ, z : bool ` N : B, we can expand
N [M/z] to

case M of {true. N [true/z], false. N [false/z]}

The reason this ought to be true is that, whatever we define the
identifiers in Γ to be, M will be either true or false. Either way,
both sides should be the same.

What about A×B? If we’re using projections, then any Γ `M :
A×B can be η-expanded to 〈πlM,πrM〉.

22 P. B. Levy

And if we’re using pattern-match, for terms Γ ` M : A× B and
Γ, z : A×B ` N : C, we can expand N [M/z] into

split M as 〈x, y〉. N [〈x, y〉/z]

where x, y 6∈ Γ and x 6= y.
For A+B, it’s similar. Suppose Γ `M : A+B and Γ, z : A+B `

N : C. Then N [M/z] can be expanded into

case M of {inl x. N [inl x/z], inr y. N [inr y/z]}

where x, y 6∈ Γ.
And finally, A→ B. Any term Γ `M : A→ B can be expanded

as

λxA. (Mx)

where x 6∈ Γ.

Exercise 12. Take the term

f : (int+ bool)→ (int+ bool) ` f : (int+ bool)→ (int+ bool)

Apply an η-expansion for →, then for +, then for bool.

12 Equality

λ-calculus isn’t just a set of terms; it comes with an equational the-
ory. If Γ ` M : B and Γ ` N : B, we write Γ ` M =βη N : B to
express the intuitive idea that, no matter what we define the iden-
tifiers in Γ to be, M and N have the same “meaning” (even though
they’re different expressions).

First of all we need rules to say that this is an equivalence rela-
tion:

Γ `M : B

Γ `M =βη M : B

Γ `M =βη N : B

Γ ` N =βη M : B

Γ `M =βη N : B Γ ` N =βη P : B

Γ `M =βη P : B

Typed λ-calculus: course notes 23

Secondly, we need rules to say that this is compatible—preserved by
every construct:

Γ `M =βη M
′ : A Γ, x : A ` N =βη N

′ : B

Γ ` let x be M. N =βη let x be M ′. N ′ : B

and so forth. A compatible equivalence relation is often called a
congruence.

Thirdly, each of the β-reductions that we’ve seen is an axiom of
this theory.

Γ ` N : B Γ ` N ′ : B

Γ ` case true of {true. N, false. N ′} =βη N : B

Γ, x : A `M : B Γ ` N : A

Γ ` (λxA.M)N =βη M [N/x] : B

Fourthly, each of the η-expansions is an axiom of the theory, e.g.

Γ `M : A→ B

Γ `M =βη λxA. (Mx) : A→ B

where x 6∈ Γ.

Proposition 5. If Γ ` M =βη N : B and Γ k // Γ′ is a substitu-
tion, then Γ′ ` k∗M =βη k

∗N : B

13 Exercises

1. Suppose that Γ ` M : bool and Γ ` N0, N1, N2, N3 : C. Show
that

Γ ` case M of {
true. case M of {true.N0, false.N1},
false. case M of {true.N2, false.N3}
}
=βη case M of {true.N0, false.N3} : C

2. Show that inl − is injective, i.e. if Γ ` M,M ′ : A and Γ `
inl M =βη inl M

′ : A+B then Γ `M =βη M
′ : A.

24 P. B. Levy

3. Write down the η-law for the 0 type.
4. A typing context Γ is inconsistent if there is a term Γ ` M : 0.

Show that if Γ is inconsistent then for every type A there is a
unique (up to =βη) term Γ ` N : A.

5. Given a term Γ, x : A `M : 0, show that it is an “isomorphism”
in the sense that there is a term Γ, y : 0 ` N : A satisfying

Γ, y : 0 `M [N/x] =βη y : 0

Γ, x : A ` N [M/y] =βη x : A

6. Give β and η laws for
∑

(0.A,A′; 1.B,B′, B′′) and for
∏

(0.A,A′ `
B; 1.C, C ′, C ′′ ` D). (See yesterday’s exercises for a description
of these types.)

14 Denotational Semantics

14.1 Denotation of Terms

Now we relate our syntax to the “real” world of sets and functions.
The first step: to each type A, we associate a set [[A]]. This is by

structural recursion on A.

[[int]] = Z
[[bool]] = B

[[A+B]] = [[A]] + [[B]]

[[0]] = 0

[[A×B]] = [[A]]× [[B]]

[[1]] = 1

[[A→ B]] = [[A]]→ [[B]]

Recall that a typing context Γ is a set of distinct identifiers with
types e.g. x : A, y : B.

A syntactic environment for Γ provides, for each identifier x : A
in Γ, a closed term of type A. (If you like, it’s a substitution from Γ
to the empty context.)

A semantic environment for Γ provides, for each identifier x : A
in Γ, an element of [[A]].

Typed λ-calculus: course notes 25

For example:

x : int→ int, y : bool

is a typing context.

x 7→ λxint.(x + 1)

y 7→ true

is a syntactic environment for that context.

x 7→ λxZ.(x+ 1)

y 7→ true

is a semantic environment for that context.

We define [[Γ]] to be the set of semantic environments for Γ. (This
is after defining the semantics of types.) So we have bijections:

[[ε]] ∼= 1

[[Γ, x : A]] ∼= [[Γ]]× [[A]] (provided x 6∈ Γ)

Now suppose we have a term Γ ` M : B. The denotation of
M provides, for each semantic environment ρ ∈ [[Γ]], an element
[[M]]ρ ∈ [[B]]. So we can say

[[Γ]]
[[M]] // [[B]]

To be completely precise we should write [[Γ `M : B]] rather than
[[M]] but I will usually not bother to do this.

This denotation is defined by structural recursion on the proof
of Γ `M : B. For example,

[[case M of {inl x.N, inr y.N ′}]]ρ
=

case [[M]]ρ of {inl x.[[N]](ρ, x 7→ x), inr y.[[N ′]](ρ, y 7→ y)}

26 P. B. Levy

14.2 Complications

– If we are using implicit typing, it is necessary to show that the
denotation of Γ ` M : B is independent of the derivation. This
property is called coherence.

– We have given the denotation of α-explicit terms. It’s also pos-
sible to give the denotation of binding diagrams, by structural
recursion, although we are not in a position to do so. We then
prove for any term Γ `M : B that

[[M]] = [[BD(M)]]

14.3 Substitution Lemma

Next, given a substitution Γ k // Γ′ , we obtain a function [[Γ′]]
[[k]] // [[Γ]]

(note the change of direction). It maps ρ ∈ [[Γ′]] to the semantic en-
vironment for Γ that takes each identifier x : A in Γ to [[k(x)]]ρ.

We use this to formulate a substitution lemma.

Lemma 1. Let Γ `M : B be a term.
For any semantic environment ρ for Γ′ we have

[[k∗M]]ρ = [[M]]([[k]]ρ)

As a diagram:
[[Γ′]]

[[k]]

��

[[k∗M]]

!!
[[Γ]]

[[M]]
// [[B]]

This should be proved by structural induction over the binding
diagram M . Once again, we are not in a position to do this.

As a special case of the substitution lemma, we can express
[[M [N/x]]] in terms of [[M]] and [[N]]:

[[M [N/x]]]ρ = [[M]](ρ, x 7→ [[N]]ρ)

Armed with the substitution lemma, it is easy to prove the sound-
ness of all our equations:

Proposition 6. If Γ `M =βη N : A then [[M]] = [[N]].

Typed λ-calculus: course notes 27

Now, let’s write

– Tmβη(Γ ` B) to mean the set of =βη equivalence classes of terms
Γ `M : B

– [[Γ ` B]] to mean the set of functions from [[Γ]] to [[B]].

Our denotational semantics provides a function

Tmβη(Γ ` B)→ [[Γ ` B]]

15 Leftist and rightist connectives

15.1 Reversible rules

Each connective (except int) has a reversible rule. For + it is

Γ, A ` C Γ, B ` C
================

Γ, A+B ` C

At the syntactic level, this means that we have a bijection

Tmβη(Γ, x : A ` C) × Tmβη(Γ, y : B ` C) ∼= Tmβη(Γ, z : A+B ` C)

assuming x, y, z 6∈ Γ.

– A pair of equivalence classes [Γ, x : A ` M : C]βη and [Γ, y : B `
M ′ : C]βη corresponds to

[Γ, z : A+B ` case z of {inl x.M, inr y. M ′} : C]βη

– Conversely, an equivalence class [Γ, z : A + B ` N : C]βη corre-
sponds to [Γ, x : A ` N [inl x/z]]βη and [Γ, y : B ` N [inr y/z]]βη.

The fact that these operations are inverse follows from the β- and
η-laws.

At the semantic level, we have a bijection

[[Γ, x : A ` C]] × [[Γ, y : B ` C]] ∼= [[Γ, z : A+B ` C]]

assuming x, y, z 6∈ Γ. More generally, for any sets R, S, T, U , we have
a bijection

((R× S)→ U) × ((R× T)→ U) ∼= (R× (S + T))→ U

28 P. B. Levy

The reversible rule for bool is similar:

Γ ` C Γ ` C
===========
Γ, bool ` C

For → the reversible rule is

Γ, A ` B
=========
Γ ` A→ B

At the syntactic level, this means that we have a bijection

Tmβη(Γ, x : A ` B) ∼= Tmβη(Γ ` A→ B)

assuming x 6∈ Γ.

– An equivalence class [Γ, x : A ` M : B]βη corresponds to [Γ `
λxA. M : A→ B]βη.

– Conversely, an equivalence class [Γ ` N : A→ B]βη corresponds
to [Γ, x : A ` Nx : B]βη.

The fact that these operations are inverse follows from the β- and
η-laws.

At the semantic level, we have a bijection

[[Γ, A ` B]] ∼= [[Γ ` A→ B]]

assuming x 6∈ Γ. More generally, for any sets R, S, T , we have a
bijection

(R× S)→ T ∼= R→ (S → T)

For × there are two reversible rules, just as there are two versions
of the elimination rules. The one that fits projections is

Γ ` A Γ ` B
===========

Γ ` A×B

The one that fits pattern-matching is

Γ, A,B ` C
===========
Γ, A×B ` C

Typed λ-calculus: course notes 29

We describe bool,+, 0,×, 1 as leftist connectives because they ap-
pear to the left of ` in the conclusion of a reversible rule. We likewise
describe →,×, 1 as rightist. Note that the connectives ×, 1 are bi-
partisan.

Is it surprising that product type with projection syntax should
resemble a function type? Think of 〈M,N〉 as a function that maps
0 to M and 1 to N . Then πlM is M applied to 0, and πrM is M
applied to 1.

15.2 Naturality

An important property of the reversible rules is that they are “nat-
ural”. (This is closely linked to category theory, but we shall not
explore this connection here.)

Take, for example, the reversible rule for →.

Γ, A ` B
=========
Γ ` A→ B

This is natural in Γ, in a sense I shall explain.
A substitution k : Γ→ Γ′ gives rise to an operation k∗, sending

a term Γ,∆ ` M : C to a term term Γ′,∆ ` M [k(x)/x]x∈Γ : C.
(Assuming ∆ disjoint from Γ and from Γ′.)

Given a term Γ, x : A ` M : B, we can move down the rule and
then apply k∗. Or we can apply k∗ and then move down the rule.
Naturality says we get the same result. This is obvious.

For a leftist example, take the reversible rule for A+B.

Γ, A ` C Γ, B ` C
================

Γ, A+B ` C
This is natural in Γ, just like the previous example, but it is also
natural in C, in a sense I shall explain.

A term Γ, w : C ` P : C ′ gives rise to an operation P †, sending
a term Γ,∆ ` M : C to Γ,∆ ` P [M/w] : C. (Assuming ∆ disjoint
from Γ.)

Given two (equivalence classes of) terms Γ, x : A ` M : C and
Γ, y : B ` M ′ : C, we can move down the reversible rule and apply
P †, or apply P † to M and to M ′ and then move down the reversible
rule. Naturality says we get the same result. This can be proved
using the β- and η-laws.

30 P. B. Levy

16 Something Imperative

So far we have seen simply typed λ-calculus, as an equational the-
ory. This is a purely functional language. But, sometimes, allegedly
functional languages allow programmers to throw in something im-
perative.

1. In ML you can command the computer to print a character before
evaluating a term.

Γ `M : B
c ∈ A

Γ ` print c. M : B

Here A is the set of characters that can be printed.
2. You can cause the computer to halt with an error message

e ∈ E
Γ ` error e : B

Here E is the set of error messages.
3. In both Haskell and ML, we can write a program that diverges

i.e. fails to terminate.

Γ ` diverge : B

Indeed, it is an annoying fact that any language in which you
can program every total computable function from Z to Z must also
have programs that diverge.

Proposition 7. Let f : Z×Z⇀ Z be a computable partial function.
(Think: f is an interpreter for the programming language. The first argument encodes

a program of type int → int, and f(m,n) applies the program that m encodes to n.)

Suppose that, for every total computable function g : Z −→ Z, there
exists m such that ∀n ∈ Z. f(m,n) = g(n). Then f is not total.

It must be admitted that terms like

print "hello". λxint.3

λxbool.case x of {true. 3, false. error CRASH}

Typed λ-calculus: course notes 31

seem very strange in the way that they mix functional idioms with
imperative features (sometimes called computational effects). It’s not
apparent that they have any meaning whatsoever.

And the situation is even worse than this. Let’s say we have two
terms Γ `M,N : B. Then in the βη theory we have

Γ `M = M [error CRASH/z] z : 0 fresh for Γ

= case (error CRASH) of {} by the η-law for 0

= N [error CRASH/z] by the η-law for 0

= N : B

So our equational theory tells us that any two terms are equal. Even
true and false. That theory goes straight into the bin.

Note In the sequel we shall, for the most part, concentrate on
the connectives bool,+,→. This is a selection that includes some
leftist and some rightist connectives.

17 Operational Semantics

17.1 Introduction

We can give meaning to this kind of hybrid functional/imperative
language by giving a way of executing/evaluating terms. This is
called an operational semantics.

Really, our task is to give a way of evaluating closed terms of
type int to a value n. To do this, we need to evaluate closed terms
of other types. So, for every type, we need a set of terminal terms,
where we stop evaluating.

For bool, the terminal terms are the values true and false.
For function type, we’ll say that the terminal terms are λ-abstractions.

It seems silly to evaluate under λx when we don’t know what x is.
We’ll leave out × and 1 since they are bipartisan.
Having made these decisions, several questions remain.

– To evaluate let x be M. N , do we
1. evaluate M to a terminal term T , and then evaluate N [T/x]
2. or just substitute M , unevaluated, for x?

– To evaluateMN , we certainly have to evaluateM to a λ-abstraction
λx.P . But what about N? Do we

32 P. B. Levy

1. evaluate N to a terminal term T (perhaps before evaluating
M , perhaps after)?

2. substitute N , unevaluated, for x?
– To evaluate inl M , do we

1. evaluate M—so inl T is terminal only if T is
2. stop straight away—so inl M is always terminal?

This seems to open up a huge space of different languages, all
with the same syntax. However, there is really a single, fundamental
question underlying all the ones above. Do we bind an identifier to

1. a terminal term
2. a wholly unevaluated term?

The first answer is known as call-by-value and the second answer is
known as call-by-name. To put it another way,

– in call-by-value, a syntactic environment consists of terminal terms
– in call-by-name, a syntactic environment consists of unevaluated

terms.

It’s clear that this decision determines the answer to the first two
questions. In fact, though it is not so obvious, it determines the
answer to the third question too.

To see this, suppose we want to evaluate

case M of {inl x.N, inr y.N ′}

Clearly the first stage is to evaluate M . So we evaluate M to inl P ,
and we then know we want to evaluate N with a suitable binding
for x. In call-by-value, we must evaluate P , and then bind x to the
result, so inl P is not terminal. But in call-by-name, we bind x to
P unevaluated, so inl P must be terminal.

Thus, in call-by-value, the closed terms that are terminal are
given by

T ::= n | true | false | inl T | inr T | λx.M

whereas in call-by-name, the closed terms that are terminal are given
by

T ::= n | true | false | inl M | inr M | λx.M

i.e. anything whose root is an introduction rule.

Typed λ-calculus: course notes 33

17.2 First-Order Interpreters

Here is a little interpreter to evaluate terms in call-by-value (using
left-to-right order). It is a recursive first-order program. To evaluate

– n, return n.
– true, return true.
– false, return false.
– λx.M , return λx.M .
– inl M , evaluate M . If it returns T , return inl T .
– inr M , evaluate M . If it returns T , return inr T .
– M +N , evaluate M . If it returns m, evaluate N . If that returns
n, return m+ n.

– let x be M. N , evaluate M . If it returns T , evaluate N [T/x].
– case M of {true.N, false.N ′}, evaluate M . If it returns true,

evaluate N , but if it returns false, evaluate N ′.
– caseM of {inl x.N, inr x.N ′}, evaluate M . If it returns inl T ,

evaluate N [T/x], but if it returns inr T , evaluate N ′[T/x].
– MN , evaluate M . If it returns λx.P , evaluate N . If that returns
T , evaluate P [T/x].

– print c. M , print c and then evaluate M .
– error e, halt with error message e.
– diverge, diverge.

Note that we only ever substitute terminal terms.
Now here is an interpreter for call-by-name. To evaluate

– n, return n.
– true, return true.
– false, return false.
– λx.M , return λx.M .
– inl M , return inl M .
– inr M , return inr M .
– M +N , evaluate M . If it returns m, evaluate N . If that returns
n, return m+ n.

– let x be M. N , evaluate N [M/x].
– case M of {true.N, false.N ′}, evaluate M . If it returns true,

evaluate N , but if it returns false, evaluate N ′.
– caseM of {inl x.N, inr x.N ′}, evaluate M . If it returns inl P ,

evaluate N [P/x], but if it returns inr P , evaluate N ′[P/x].

34 P. B. Levy

– MN , evaluate M . If it returns λx.P , evaluate P [N/x].
– print c. M , print c and then evaluate M .
– error e, halt with error message e.
– diverge, diverge.

Note that we only ever substitute unevaluated terms.

Exercise 13. 1. Evaluate

let x be error CRASH. . 5

in CBV and CBN
2. Evaluate

(λx.(x + x))(print "hello". 4)

in CBV and CBN.
3. Evaluate

case (print "hello". inr error CRASH) of
{inl x. x + 1, inr y. 5}

in CBV and CBN.

17.3 Big-Step Semantics

We’ll leave aside printing now, and just think about errors.
One way of turning the big-step semantics into a mathematical

description is using an evaluation relation. We will write M ⇓ T to
mean that M (a closed term) evaluates to T (a terminal term), and
M e to mean that M halts with error message e.

We define ⇓ and inductively. For call-by-value evaluation, here
are some of the clauses:

λx.M ⇓ λx.M error e e

M ⇓ λx.P N ⇓ T P [T/x] ⇓ T ′

MN ⇓ T ′
M e

MN e

M ⇓ λx.P N e

MN e

M ⇓ λx.P N ⇓ T P [T/x] e

MN e

Evaluation always terminates:

Typed λ-calculus: course notes 35

Proposition 8. Let `M : B be a closed term. Then either

– M ⇓ T for unique terminal T : B, and there does not exist e such
that M e, or

– M e for unique error e ∈ E, and there does not exist T such
that M ⇓ T .

This can be proved using a method due to Tait.
Similarly, we can inductively define ⇓ and for CBN, and Prop. 8

holds for these predicates.

18 Programs

A program is a closed term of type int or bool. Any program M
has a well-defined operational behaviour 〈〈M〉〉.

In λ-calculus with errors,

– if `M : int then 〈〈M〉〉 ∈ Z + E
– if `M : bool then 〈〈N〉〉 ∈ B + E.

In λ-calculus with printing,

– if `M : int then 〈〈M〉〉 ∈ A∗ × Z
– if `M : bool then 〈〈N〉〉 ∈ A∗ × B.

Now programs have meaning, but what about general terms?

19 Observational Equivalence

With the pure λ-calculus, we knew what the intended meaning was,
so we could easily write down equations between terms. But we do
not have, at this stage, a denotational semantics for the calculus with
errors or printing. So what does it mean for two terms to be “the
same”?

For programs, it’s pretty clear. If M and M ′ are programs of the
same type, they’re “the same” iff 〈〈M〉〉 = 〈〈M〉〉.

But what about the more general case of terms Γ ` M,M ′ : B?
Here’s a way of answering this question. Let’s say C[·] is a program
context, i.e. it’s like a program except that it contains zero or more
occurrences of a hole [·]. If

〈〈C[M]〉〉 6= 〈〈CM ′〉〉

36 P. B. Levy

for some C[·] then undoubtedly we should consider M and M ′ to be
different.

On the other hand, if they behave the same in any program
context, i.e.

〈〈C[M]〉〉 = 〈〈C[M ′]〉〉 for every program context C[·]

then we could regard them as the same. In this situation, we say
that they are observationally equivalent (or contextually equivalent),
and we write Γ `M ' N : B. This is really the coarsest reasonable
equivalence relation we could consider.

Let’s look at some examples of this.
We start with the equivalence

(λx.M)N 'M [N/x]

This, the β-law for→, holds in CBN but not in CBV. As an example,
put N to be error CRASH, and put M to be 3.

Next, consider the equivalence

z : bool ` 3 ' case z of {true.3, false.3} : int

This is an instance of the η-law for bool, and it holds in CBV.
The reason is (warning: sloppy argument) that a syntactic environ-
ment must consist of terminal terms, so z must be either true or
false. In CBN it fails because we can apply the program context
let z be (error CRASH). [·].

Remark 2. This program context is different from let y be (error CRASH). [·].
So, by contrast with terms, we can’t α-convert a program context.

Next, consider the equivalence

` λxint.error e ' error e : int→ int

This seems unlikely: the LHS terminates whereas the RHS raises an
error. It fails in CBV: take the program context let y be [·]. 3. In
CBN it holds, but it is rather subtle. The reason (warning: sloppy
argument) is that, inside a program context—which, you will recall,

Typed λ-calculus: course notes 37

must have ground type—there is no way of causing the hole’s con-
tents to be evaluated except to apply it to something. And when we
apply it, it raises an error.

A very similar example is this one:

` λxint.print c. M ' print c. λxint.M : int→ int

Again, this fails in CBV but holds in CBN.

20 Exercises

1. Find a program context to show that

z : bool `
case z of {true.case z of {true.3, false.3}, false.3}
' case z of {true.3, false.3} : int

fails in CBN with printing (no errors or divergence). Give a sloppy
argument to explain why this equivalence is valid in CBV.

2. Give reversible rules for
∑

(0.A,A′; 1.B,B′, B′′) and for
∏

(0.A,A′ `
B; 1.C, C ′, C ′′ ` D).

3. Extend each set of terminal terms and each definitional inter-
preter to incorporate

∑
(0.A,A′; 1.B,B′, B′′) and

∏
(0.A,A′ `

B; 1.C, C ′, C ′′ ` D).

Preliminary note: substitution in CBV

For the pure calculus, we gave a substitution lemma expressing
[[M [N/x]]] in terms of [[M]] and [[N]]. But that will not be possible
in CBV, as the following example demonstrates. We define terms
x : bool `M,M ′ : bool and ` N : bool by

M
def
= true

M ′ def= case x of {true. true, false. true}
N

def
= error CRASH

But in any CBV semantics we will have

[[M]] = [[M ′]] because M =η bool M
′

[[M [N/x]]] 6= [[M ′[N/x]]] because 〈〈M [N/x]〉〉 6= 〈〈M ′[N/x]〉〉

38 P. B. Levy

However, what we will be able to describe semantically is the
substitution of a restricted class of terms, called values.

V ::= x | n | true | false | inl V | inr V | λx.M

A value, in any syntactic environment, is terminal. And a closed term
is a value iff it is terminal. In the study of call-by-value, we define

a substitution Γ k // Γ′ to be a function mapping each identifier
x : A in Γ to a value Γ′ ` V : A. If W is a value, then k∗W is a
value, for any substitution k.

21 Denotational Semantics for CBV

Let us think about how to give a denotational semantics for call-by-
value λ-calculus with errors. Let E be the set of errors.

21.1 First Attempt

Let’s propose that for a type A, its denotation [[A]] will be a set that’s
a semantic domain for terms : by this I mean that a closed term of
type A will denote an element of [[A]]. Then we should have

[[bool]] = B + E

[[int]] = Z + E

[[bool + int]] = (B + Z) + E

[[A+B]] = [[A]] ∗ [[B]]

where ∗ is an operation on sets that would have to satisfy

(B + E) ∗ (Z + E) = (B + Z) + E

Such operations exist but they are weird. Let’s try something else.

21.2 Second Attempt

Let’s make [[A]] a set that’s a semantic domain for values, meaning
that a closed value of type A will denote an element of type [[A]]. In

Typed λ-calculus: course notes 39

particular we want

[[bool]] = B
[[int]] = Z

[[A+B]] = [[A]] + [[B]]

and we postpone the semantic equation for →.
A semantic environment for Γ maps each identifier x : A in Γ to

an element of [[A]]. We write [[Γ]] for the set of semantic environments.
A closed term of type B either returns a closed value or raises

an error. So it should denote an element of [[B]] +E. More generally,
a term Γ ` M : B should denote, for each semantic environment
ρ ∈ [[Γ]], an element of [[B]] + E. Hence

[[Γ]]
[[M]] // [[B]] + E

Now let’s think about [[A→ B]]. A closed value of type A → B
is a λ-abstraction λxA.M . This can be applied to a closed value V
of type A, and gives a closed term M [V/x] of type B. So we define

[[A→ B]] = [[A]]→ ([[B]] + E)

We can easily write out the semantics of terms now.

21.3 Substitution Lemma

According to what we have said, a value Γ ` V : A denotes a function

[[Γ]]
[[V]] // [[A]] + E

To formulate a substitution lemma, we also want V to denote a
function

[[Γ]]
[[V]]val // [[A]]

and [[V]]val should be related to [[V]] by

[[V]]ρ = inl [[V]]valρ (4)

40 P. B. Levy

As a diagram:

[[Γ]]
[[V]]val //

[[V]] $$

[[A]]

inl
��

[[A]] + E

We define [[V]]val and verify (4) by induction on V .

Given a substitution Γ k // Γ′ , we obtain a function [[Γ′]]
[[k]] // [[Γ]] .

It maps ρ ∈ [[Γ′]] to the semantic environment for Γ that takes each
identifier x : A in Γ to [[k(x)]]valρ.

Now we can formulate two substitution lemmas: one for substi-
tution into terms, and one for substitution into values.

Lemma 2. Let Γ k // Γ′ be a substitution.

1. Let Γ `M : B be a term.
For any semantic environment ρ for Γ′ we have

[[k∗M]]ρ = [[M]]([[k]]ρ)

As a diagram:

[[Γ′]]

[[k]]

��

[[k∗M]]

$$
[[Γ]]

[[M]]
// [[B]] + E

2. Let Γ ` V : B be a value.
For any semantic environment ρ for Γ′ we have

[[k∗V]]valρ = [[V]]val([[k]]ρ)

As a diagram:

[[Γ′]]

[[k]]

��

[[k∗V]]val

!!
[[Γ]]

[[V]]val
// [[B]]

Typed λ-calculus: course notes 41

21.4 Computational Adequacy

It is all very well to define a denotational semantics, but it’s no
good if it doesn’t agree with the way the language was defined (the
operational semantics).

Proposition 9. (Soundness) Let M be a closed term.

1. If M ⇓ V , then [[M]]ε = inl [[V]]valε.
2. If M e, then [[M]]ε = inr e.

We prove this by induction on ⇓ and .

Corollary 1. (Computational Adequacy) For any program M , we
have 〈〈M〉〉 = [[M]]ε.

Corollary 2. If Γ `M,M ′ : B and [[M]] = [[M ′]] then M 'M ′.

Proof. Suppose [[M]] = [[M ′]]. Firstly, for any term with a hole C[·],
we have

[[C[M]]] = [[C[M ′]]]

We prove this by induction on C[·], since [[−]] is defined composition-
ally. Now, for any program with a hole C[·] we have

〈〈C[M]〉〉 = [[C[M]]]ε

= [[C[M ′]]]ε

= 〈〈C[M ′]〉〉

Now we can use Corollary (2) to prove observational equivalences
in call-by-value λ-calculus.

