
λ-calculus, effects and call-by-push-value

Paul Blain Levy

University of Birmingham

April 2, 2023

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 1 / 128

Outline

1 Pure λ-calculus
Syntax
Denotational semantics
The βη-theory
Reversible rules
Operational semantics

2 Adding Effects
Outline
Errors and printing, operationally

3 Call-by-value with errors
Denotational semantics
Substitution and values
Fine-grain call-by-value

4 Call-by-name with errors

5 Call-by-push-value

6 Stacks

7 State

8 Control

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 2 / 128

Types

We’re going to look at simply typed λ-calculus with arithmetic,

including not just function types, but also sum and product types.

Here is the syntax of types:

A ::= bool | nat | A→ A | 1 | A×A | 0 | A+A

|
∑

i∈NAi |
∏
i∈NAi (optional extra)

Why no brackets?

You might expect A ::= · · · | (A).

But our definition is abstract syntax.

This means a type—or a term—is a tree of symbols, not a string of
symbols.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 3 / 128

Types

We’re going to look at simply typed λ-calculus with arithmetic,

including not just function types, but also sum and product types.

Here is the syntax of types:

A ::= bool | nat | A→ A | 1 | A×A | 0 | A+A

|
∑

i∈NAi |
∏
i∈NAi (optional extra)

Why no brackets?

You might expect A ::= · · · | (A).

But our definition is abstract syntax.

This means a type—or a term—is a tree of symbols, not a string of
symbols.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 3 / 128

Typing Judgement

Example

x : nat, y : nat ` λznat→nat. z (x + x) : (nat→ nat)→ nat

In English:

Given declarations of x : nat and y : nat,

λznat→nat. z (x + x) is a term of type (nat→ nat)→ nat.

The typing judgement takes the form Γ `M : A.

Γ is a typing context, a list of typed distinct identifiers.

M is a term.

A is a type.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 4 / 128

Identifiers

The most basic typing rules, not associated with any particular type.

Free identifier

(x : A) ∈ Γ
Γ ` x : A

Multiple local declaration, e.g. of two identifiers

Γ `M : A Γ `M ′ : B Γ, x : A, y : B ` N : C

Γ ` let (x be M, y be M ′). N : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 5 / 128

Typing rules for A→ B

Introduction rule
Γ, x : A `M : B

Γ ` λxA.M : A→ B

Elimination rule
Γ `M : A→ B Γ ` N : A

Γ `M N : B

Type annotations in terms

For Γ and M , there’s at most one A such that Γ `M : A

and at most one derivation of Γ `M : A.

This is because of our type annotations.

Some formulations omit some or all of these.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 6 / 128

Typing rules for bool

Two introduction rules:

Γ ` true : bool Γ ` false : bool

Elimination rule

Γ `M : bool Γ ` N : B Γ ` N ′ : B

Γ ` match M as {true. N, false. N ′} : B

It’s a pretentious notation for if M then N else N ′.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 7 / 128

Typing rules for arithmetic

These are ad hoc rules.

Γ ` 17 : nat

Γ `M : nat Γ `M ′ : nat

Γ `M +M ′ : nat

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 8 / 128

Typing rules for A+B

Two introduction rules

Γ `M : A

Γ ` inlA,B M : A+B

Γ `M : B

Γ ` inrA,B M : A+B

Elimination rule

Γ `M : A+B Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` match M as {inl x. N, inr y. N ′} : C

Likewise for
∑

i∈NAi.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 9 / 128

Typing rules for A+B

Two introduction rules

Γ `M : A

Γ ` inlA,B M : A+B

Γ `M : B

Γ ` inrA,B M : A+B

Elimination rule

Γ `M : A+B Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` match M as {inl x. N, inr y. N ′} : C

Likewise for
∑

i∈NAi.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 9 / 128

Typing rules for 0

Zero introduction rules

Elimination rule
Γ `M : 0

Γ ` match M as {}A : A

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 10 / 128

Typing rules for A×B

Introduction rule
Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B

Two options for elimination

Pattern-matching product. Elimination rule

Γ `M : A×B Γ, x : A, y : B ` N : C

Γ ` match M as 〈x, y〉. N : C

Projection product. Two elimination rules

Γ `M : A×B

Γ `M l : A

Γ `M : A×B

Γ `M r : B

∏
i∈NAi is a projection product.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 11 / 128

Typing rules for A×B

Introduction rule
Γ `M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B

Two options for elimination

Pattern-matching product. Elimination rule

Γ `M : A×B Γ, x : A, y : B ` N : C

Γ ` match M as 〈x, y〉. N : C

Projection product. Two elimination rules

Γ `M : A×B

Γ `M l : A

Γ `M : A×B

Γ `M r : B∏
i∈NAi is a projection product.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 11 / 128

Typing rules for 1

Introduction rule

Γ ` 〈 〉 : 1

Two options for elimination

Pattern-match unit. Elimination rule

Γ `M : 1 Γ ` N : C

Γ ` match M as 〈 〉. N : C

Projection unit. Zero elimination rules

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 12 / 128

Weakening is admissible

Theorem

If Γ `M : A and Γ ⊆ Γ′ then Γ′ `M : A.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 13 / 128

Binding diagrams (Quine, Bourbaki)

Example

The term (x + y) + let (y be 3). (x + y) has binding diagram

(x+y) + let (. (x +)be 3)

Terms are α-equivalent when they have the same binding diagram.

M ≡α N
def⇔ BD(M) = BD(N)

The collection of binding diagrams forms an initial algebra [FPT; AR].

We’ll skate over this issue. It’s not specific to λ-calculus.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 14 / 128

Substitution

Subsitution is an operation on binding diagrams, not on terms.

Multiple substitution, e.g. for two identifiers

If Γ `M : A and Γ `M ′ : B and Γ, x : A, y : B ` N : C,

we define Γ ` N [M/x,M ′/y] : C.

Example

M = λynat. y + 3

M ′ = 7

N = x (5 + y)

N [M/x,M ′/y] = (λznat. z + 3) (5 + 7)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 15 / 128

Substitution

Subsitution is an operation on binding diagrams, not on terms.

Multiple substitution, e.g. for two identifiers

If Γ `M : A and Γ `M ′ : B and Γ, x : A, y : B ` N : C,

we define Γ ` N [M/x,M ′/y] : C.

Example

M = λynat. y + 3

M ′ = 7

N = x (5 + y)

N [M/x,M ′/y] = (λznat. z + 3) (5 + 7)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 15 / 128

Types denote sets

Every type A denotes a set [[A]].

For example, [[nat→ nat]] is the set of functions N→ N.

[[A]] is a semantic domain for terms of type A.

This means: a closed term of type `M : A
denotes an element of [[A]].

For example, λxnat. x + 3 denotes λa ∈ N. a+ 3.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 16 / 128

Types denote sets

Every type A denotes a set [[A]].

For example, [[nat→ nat]] is the set of functions N→ N.

[[A]] is a semantic domain for terms of type A.

This means: a closed term of type `M : A
denotes an element of [[A]].

For example, λxnat. x + 3 denotes λa ∈ N. a+ 3.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 16 / 128

Types denote sets

Every type A denotes a set [[A]].

For example, [[nat→ nat]] is the set of functions N→ N.

[[A]] is a semantic domain for terms of type A.

This means: a closed term of type `M : A
denotes an element of [[A]].

For example, λxnat. x + 3 denotes λa ∈ N. a+ 3.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 16 / 128

Semantics of types

Notation

For sets X and Y ,

X → Y is the set of functions from X to Y .

X × Y is {〈x, y〉 | x ∈ X, y ∈ Y }.
X + Y is {inl x | x ∈ X} ∪ {inr y | y ∈ Y }.

[[bool]] = B = {true, false}
[[nat]] = N

[[A→ B]] = [[A]]→ [[B]]

[[1]] = 1 = {〈 〉}
[[A+B]] = [[A]] + [[B]]

[[A×B]] = [[A]]× [[B]]

[[0]] = ∅
Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 17 / 128

Semantic environments

Let Γ be a typing context.

A semantic environment ρ for Γ provides an element ρx ∈ [[A]]
for each (x : A) ∈ Γ.

[[Γ]] is the set of semantic environments for Γ.

[[Γ]]
def
=

∏
(x:A)∈Γ

[[A]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 18 / 128

Semantics of typing judgement

Given a typing judgement Γ `M : A,

we shall define [[M]], or more precisely [[Γ `M : A]].

It’s a function from [[Γ]] to [[A]].

Example

x : nat, y : nat ` λznat→nat. z(x + y) : (nat→ nat)→ nat

denotes the function

[[x : nat, y : nat]] −→ (N→ N)→ N
ρ 7−→ λz ∈ N→ N. z(ρx + ρy)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 19 / 128

Semantics of terms

Γ ` 17 : nat

[[17]] : ρ 7−→ 17

Γ `M : nat Γ `M ′ : nat

Γ `M +M ′ : nat

[[M +M ′]] : ρ 7−→ [[M]]ρ+ [[M ′]]ρ

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 20 / 128

More semantic equations

(x : A) ∈ Γ
Γ ` x : A

[[x]] : ρ 7−→ ρx

Γ, x : A `M : B

Γ ` λxA.M : A→ B

[[λxA.M]] : ρ 7−→ λa ∈ [[A]]. [[M]](ρ, x 7→ a)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 21 / 128

More semantic equations

Γ `M : A

Γ ` inlA,B M : A+B

[[inlA,B M]] : ρ 7−→ inl [[M]]ρ

Γ `M : A+B Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` match M as {inl x. N, inr y. N ′} : C

[[match M as {inl x. N, inr y. N ′}]] : ρ 7−→
match [[M]]ρ as {inl a. [[N]](ρ, x 7→ a), inr b. [[N ′]](ρ, y 7→ b)}

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 22 / 128

Basic properties

Semantic Coherence

If type annotations are omitted,

then Γ `M : A can have more than one derivation.

We must prove that [[Γ `M : A]] doesn’t depend on the derivation.

Weakening Lemma

If Γ `M : A and Γ ⊆ Γ′ then

[[Γ′ `M : A]]ρ = [[Γ `M]](ρ �Γ)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 23 / 128

Basic properties

Semantic Coherence

If type annotations are omitted,

then Γ `M : A can have more than one derivation.

We must prove that [[Γ `M : A]] doesn’t depend on the derivation.

Weakening Lemma

If Γ `M : A and Γ ⊆ Γ′ then

[[Γ′ `M : A]]ρ = [[Γ `M]](ρ �Γ)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 23 / 128

Substitution

Binding Diagrams

We can give denotational semantics of binding diagrams.

[[Γ `M : A]] = [[Γ ` BD(M) : A]]

So α-equivalent terms have the same denotation.

Substitution Lemma

For binding diagrams Γ `M : A and Γ `M ′ : B and Γ, x : A ` N : C,
we can recover [[N [M/x,M ′/y]]] from [[N]] and [[M]] and [[M ′]].

[[N [M/x,M ′/y]]] : ρ 7−→ [[N]](ρ, x 7→ [[M]]ρ, y 7→ [[M ′]]ρ)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 24 / 128

Substitution

Binding Diagrams

We can give denotational semantics of binding diagrams.

[[Γ `M : A]] = [[Γ ` BD(M) : A]]

So α-equivalent terms have the same denotation.

Substitution Lemma

For binding diagrams Γ `M : A and Γ `M ′ : B and Γ, x : A ` N : C,
we can recover [[N [M/x,M ′/y]]] from [[N]] and [[M]] and [[M ′]].

[[N [M/x,M ′/y]]] : ρ 7−→ [[N]](ρ, x 7→ [[M]]ρ, y 7→ [[M ′]]ρ)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 24 / 128

β-laws

The β-law for A→ B

Γ `M : A Γ, x : A ` N : B

Γ ` (λxA. N)M = N [M/x] : B

Introduction inside an elimination may be removed.

Two β-laws for projection product A×B

Γ `M : A Γ ` N : A′

Γ ` 〈M,N〉l = M : A

Zero β-laws for projection unit 1

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 25 / 128

β-laws

The β-law for A→ B

Γ `M : A Γ, x : A ` N : B

Γ ` (λxA. N)M = N [M/x] : B

Introduction inside an elimination may be removed.

Two β-laws for projection product A×B

Γ `M : A Γ ` N : A′

Γ ` 〈M,N〉l = M : A

Zero β-laws for projection unit 1

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 25 / 128

More β-laws

Two β-laws for bool

Γ ` N : C Γ ` N ′ : C

Γ ` match true as {true. N, false. N ′} = N : C

Two β-laws for A+B

Γ `M : A Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` match inlA,B M as {inl x. N, inr y. N ′} = N [M/x] : C

Zero β-laws for 0

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 26 / 128

More β-laws

Two β-laws for bool

Γ ` N : C Γ ` N ′ : C

Γ ` match true as {true. N, false. N ′} = N : C

Two β-laws for A+B

Γ `M : A Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` match inlA,B M as {inl x. N, inr y. N ′} = N [M/x] : C

Zero β-laws for 0

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 26 / 128

More β-laws

Two β-laws for bool

Γ ` N : C Γ ` N ′ : C

Γ ` match true as {true. N, false. N ′} = N : C

Two β-laws for A+B

Γ `M : A Γ, x : A ` N : C Γ, y : B ` N ′ : C

Γ ` match inlA,B M as {inl x. N, inr y. N ′} = N [M/x] : C

Zero β-laws for 0

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 26 / 128

β-law for local declaration

Γ `M : A Γ `M ′ : B Γ, x : A, y : B ` N : C

Γ ` let (x be M, y be M ′). N = N [M/x,M ′/y] : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 27 / 128

η-laws

η-law for A→ B, everything is λ

Γ `M : A→ B
x 6∈ Γ

Γ `M = λxA.M x : A→ B

Introduction outside an elimination may be inserted.

η-law for projection product A×B, everything is a tuple

Γ `M : A×B

Γ `M = 〈M l,M r〉 : A×B

η-law for projection unit 1, everything is a tuple

Γ `M : 1

Γ `M = 〈〉 : 1

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 28 / 128

η-laws

η-law for A→ B, everything is λ

Γ `M : A→ B
x 6∈ Γ

Γ `M = λxA.M x : A→ B

Introduction outside an elimination may be inserted.

η-law for projection product A×B, everything is a tuple

Γ `M : A×B

Γ `M = 〈M l,M r〉 : A×B

η-law for projection unit 1, everything is a tuple

Γ `M : 1

Γ `M = 〈〉 : 1

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 28 / 128

More η-laws

η-law for bool, everything is true or false

Γ `M : bool Γ, z : bool ` N : C
z 6∈ Γ

Γ ` N [M/z] =
match M as {true. N [true/z], false. N [false/z]} : C

η-law for A+B, everything is inl or inr

Γ `M : A+B Γ, z : A+B ` N : C
z 6∈ Γ

Γ ` N [M/z] =
match M as {inl x. N [inl x/z], inr y. N [inr y/z]} : C

η-law for 0, nothing exists

Γ `M : 0 Γ, z : 0 ` N : C
z 6∈ Γ

Γ ` N [M/z] = match M as { }C : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 29 / 128

More η-laws

η-law for bool, everything is true or false

Γ `M : bool Γ, z : bool ` N : C
z 6∈ Γ

Γ ` N [M/z] =
match M as {true. N [true/z], false. N [false/z]} : C

η-law for A+B, everything is inl or inr

Γ `M : A+B Γ, z : A+B ` N : C
z 6∈ Γ

Γ ` N [M/z] =
match M as {inl x. N [inl x/z], inr y. N [inr y/z]} : C

η-law for 0, nothing exists

Γ `M : 0 Γ, z : 0 ` N : C
z 6∈ Γ

Γ ` N [M/z] = match M as { }C : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 29 / 128

More η-laws

η-law for bool, everything is true or false

Γ `M : bool Γ, z : bool ` N : C
z 6∈ Γ

Γ ` N [M/z] =
match M as {true. N [true/z], false. N [false/z]} : C

η-law for A+B, everything is inl or inr

Γ `M : A+B Γ, z : A+B ` N : C
z 6∈ Γ

Γ ` N [M/z] =
match M as {inl x. N [inl x/z], inr y. N [inr y/z]} : C

η-law for 0, nothing exists

Γ `M : 0 Γ, z : 0 ` N : C
z 6∈ Γ

Γ ` N [M/z] = match M as { }C : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 29 / 128

The βη-theory

We define Γ `M =βη M
′ : A inductively as follows.

All the β- and η-laws are taken as axioms,

and it is a congruence i.e. an equivalence relation preserved by each term
constructor. For example:

Γ, x : A `M = M ′ : B

Γ ` λxA.M = λxA.M
′ : A→ B

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 30 / 128

Properties of =βη

Closure Theorems

=βη is closed under weakening. But not conversely, e.g.

z : 0 ` true =βη false : bool

but not ` true =βη false : bool

=βη is closed under substitution.

Soundness theorem

If Γ `M =βη M
′ : A then [[M]] = [[M ′]].

Follows from the weakening and substitution lemmas.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 31 / 128

Reversible rule for A→ B

The connective → is rightist: it has a reversible rule

Γ, x : A ` B
=========
Γ ` A→ B

natural in Γ—we’ll skate over naturality.

Downwards, a term Γ, x : A `M : B is sent to λxA.M .

Upwards, a term Γ ` N : A→ B is sent to N x.

These are inverse up to =βη.

A→ B appears on the right of ` in the conclusion.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 32 / 128

Reversible rule for A→ B

The connective → is rightist: it has a reversible rule

Γ, x : A ` B
=========
Γ ` A→ B

natural in Γ—we’ll skate over naturality.

Downwards, a term Γ, x : A `M : B is sent to λxA.M .

Upwards, a term Γ ` N : A→ B is sent to N x.

These are inverse up to =βη.

A→ B appears on the right of ` in the conclusion.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 32 / 128

Reversible rule for A→ B

The connective → is rightist: it has a reversible rule

Γ, x : A ` B
=========
Γ ` A→ B

natural in Γ—we’ll skate over naturality.

Downwards, a term Γ, x : A `M : B is sent to λxA.M .

Upwards, a term Γ ` N : A→ B is sent to N x.

These are inverse up to =βη.

A→ B appears on the right of ` in the conclusion.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 32 / 128

Reversible rule for bool

The (nullary) connective bool is leftist.
That means: it has a reversible rule

Γ ` C Γ ` C
============
Γ, z : bool ` C

natural in Γ and C—we’ll skate over naturality.

Downwards, a pair Γ `M : C and Γ `M ′ : C is sent to
match z as {true.M, false.M ′}.
Upwards, a term Γ, z : bool ` N : C is sent to
N [true/z] and N [false/z].

These are inverse up to =βη.

bool appears on the left of ` in the conclusion.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 33 / 128

Reversible rule for A+B

The connective + is leftist, having a reversible rule

Γ, x : A ` C Γ, y : B ` C
====================

Γ, z : A+B ` C

natural in Γ and C.

The (nullary) connective 0 is leftist, having a reversible rule

=========
Γ, z : 0 ` C

natural in Γ and C.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 34 / 128

Reversible rule for A+B

The connective + is leftist, having a reversible rule

Γ, x : A ` C Γ, y : B ` C
====================

Γ, z : A+B ` C

natural in Γ and C.

The (nullary) connective 0 is leftist, having a reversible rule

=========
Γ, z : 0 ` C

natural in Γ and C.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 34 / 128

Bipartisan connectives

The connective × has a reversible rule

Γ ` A Γ ` B
===========

Γ ` A×B

natural in Γ, so it’s rightist.

It also has a reversible rule

Γ, x : A, y : B ` C
==============
Γ, z : A×B ` C

natural in Γ and C, so it’s leftist.

In summary, the connective × is bipartisan.
Likewise the (nullary) connective 1.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 35 / 128

Bipartisan connectives

The connective × has a reversible rule

Γ ` A Γ ` B
===========

Γ ` A×B

natural in Γ, so it’s rightist.

It also has a reversible rule

Γ, x : A, y : B ` C
==============
Γ, z : A×B ` C

natural in Γ and C, so it’s leftist.

In summary, the connective × is bipartisan.
Likewise the (nullary) connective 1.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 35 / 128

Bipartisan connectives

The connective × has a reversible rule

Γ ` A Γ ` B
===========

Γ ` A×B

natural in Γ, so it’s rightist.

It also has a reversible rule

Γ, x : A, y : B ` C
==============
Γ, z : A×B ` C

natural in Γ and C, so it’s leftist.

In summary, the connective × is bipartisan.
Likewise the (nullary) connective 1.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 35 / 128

Bipartisan connectives

The connective × has a reversible rule

Γ ` A Γ ` B
===========

Γ ` A×B

natural in Γ, so it’s rightist.

It also has a reversible rule

Γ, x : A, y : B ` C
==============
Γ, z : A×B ` C

natural in Γ and C, so it’s leftist.

In summary, the connective × is bipartisan.
Likewise the (nullary) connective 1.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 35 / 128

Most general leftist connective

The variant tuple type
∑ {0A,A′; 1B,B′, B′′} denotes a sum of

products
([[A]]× [[A′]]) + ([[B]]× [[B′]]× [[B′′]])

This gives a leftist connective.

Γ, A,A′ ` C Γ, B,B′, B′′ ` C
=========================
Γ,

∑ {0A,A′; 1B,B′, B′′} ` C

Here is its term syntax:

in0(M,M ′)

in1(M,M ′,M ′′)

match M as {in0(x, x′). N, in1(y, y′, y′′). N ′}

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 36 / 128

Most general leftist connective

The variant tuple type
∑ {0A,A′; 1B,B′, B′′} denotes a sum of

products
([[A]]× [[A′]]) + ([[B]]× [[B′]]× [[B′′]])

This gives a leftist connective.

Γ, A,A′ ` C Γ, B,B′, B′′ ` C
=========================
Γ,

∑ {0A,A′; 1B,B′, B′′} ` C

Here is its term syntax:

in0(M,M ′)

in1(M,M ′,M ′′)

match M as {in0(x, x′). N, in1(y, y′, y′′). N ′}

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 36 / 128

Most general rightist connective

The variant function type
∏ {0A,A′ ` B; 1C,C ′, C ′ ` D} denotes a

product of multi-ary function types

(([[A]]× [[A′]])→ [[B]])× (([[C]]× [[C ′]]× [[C ′′]])→ [[D]])

This gives a rightist connective.

Γ, A,A′ ` B Γ, C, C ′, C ′′ ` D
=============================
Γ ` ∏ {0A,A′ ` B; 1C,C ′, C ′ ` D}

Here is its term syntax:

λ{0(x, x′).M,1 (y, y′, y′′).M ′}
M 0(N,N ′)

M 1(N,N ′, N ′′)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 37 / 128

Most general rightist connective

The variant function type
∏ {0A,A′ ` B; 1C,C ′, C ′ ` D} denotes a

product of multi-ary function types

(([[A]]× [[A′]])→ [[B]])× (([[C]]× [[C ′]]× [[C ′′]])→ [[D]])

This gives a rightist connective.

Γ, A,A′ ` B Γ, C, C ′, C ′′ ` D
=============================
Γ ` ∏ {0A,A′ ` B; 1C,C ′, C ′ ` D}

Here is its term syntax:

λ{0(x, x′).M,1 (y, y′, y′′).M ′}
M 0(N,N ′)

M 1(N,N ′, N ′′)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 37 / 128

Jumbo λ-calculus

Type syntax

A ::=
∑ {−→Ai}i<n | ∏ {−→Ai ` Bi}i<n (n ∈ N or n =∞)

Term syntax, with type annotations omitted

M ::= x | let (
−−−−−→
x be M). M

| ini(
−→
M)

| match M as {ini(−→x).Mi}i<n
| λ{i(−→x).Mi}i<n
| M i(

−→
M)

Includes both pattern-match product A×B
and projection product A Π B.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 38 / 128

Jumbo λ-calculus

Type syntax

A ::=
∑ {−→Ai}i<n | ∏ {−→Ai ` Bi}i<n (n ∈ N or n =∞)

Term syntax, with type annotations omitted

M ::= x | let (
−−−−−→
x be M). M

| ini(
−→
M)

| match M as {ini(−→x).Mi}i<n
| λ{i(−→x).Mi}i<n
| M i(

−→
M)

Includes both pattern-match product A×B
and projection product A Π B.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 38 / 128

Jumbo vs non-jumbo

Jumbo λ-calculus is the most expressive form of simply typed λ-calculus:

it contains all leftist and rightist connectives as primitives.

Modulo =βη it is no more expressive than the non-jumbo version.

But the β- and η-laws are not going to survive.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 39 / 128

Jumbo vs non-jumbo

Jumbo λ-calculus is the most expressive form of simply typed λ-calculus:

it contains all leftist and rightist connectives as primitives.

Modulo =βη it is no more expressive than the non-jumbo version.

But the β- and η-laws are not going to survive.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 39 / 128

Jumbo vs non-jumbo

Jumbo λ-calculus is the most expressive form of simply typed λ-calculus:

it contains all leftist and rightist connectives as primitives.

Modulo =βη it is no more expressive than the non-jumbo version.

But the β- and η-laws are not going to survive.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 39 / 128

Evaluating terms

We want to evaluate every closed term `M : A to a terminal term.

We want λxA.M to be terminal, since M is not closed.

But there are many options.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 40 / 128

Three decisions we must make

1 To evaluate let (x be M, y be M ′). N , do we

evaluate M to T and M ′ to T ′, then evaluate N [T/x, T ′/y]?
just evaluate N [M/x,M ′/y]?

2 To evaluate M N , we must evaluate M to λxA. P . Do we

evaluate N to T (before or after evaluating M), then evaluate P [T/x]?
just evaluate P [N/x]?

3 Any terminal term of type A+B must be inl M or inr M . Do we

deem inl T and inr T terminal only if T is terminal?
always deem inl M and inr M terminal?

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 41 / 128

Three decisions we must make

1 To evaluate let (x be M, y be M ′). N , do we

evaluate M to T and M ′ to T ′, then evaluate N [T/x, T ′/y]?
just evaluate N [M/x,M ′/y]?

2 To evaluate M N , we must evaluate M to λxA. P . Do we

evaluate N to T (before or after evaluating M), then evaluate P [T/x]?
just evaluate P [N/x]?

3 Any terminal term of type A+B must be inl M or inr M . Do we

deem inl T and inr T terminal only if T is terminal?
always deem inl M and inr M terminal?

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 41 / 128

Three decisions we must make

1 To evaluate let (x be M, y be M ′). N , do we

evaluate M to T and M ′ to T ′, then evaluate N [T/x, T ′/y]?
just evaluate N [M/x,M ′/y]?

2 To evaluate M N , we must evaluate M to λxA. P . Do we

evaluate N to T (before or after evaluating M), then evaluate P [T/x]?
just evaluate P [N/x]?

3 Any terminal term of type A+B must be inl M or inr M . Do we

deem inl T and inr T terminal only if T is terminal?
always deem inl M and inr M terminal?

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 41 / 128

One fundamental decision

Do we substitute terminal terms, or unevaluated terms?

Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.

Terminology: lazy and call-by-name

“Lazy” evaluation usually means call-by-need,
except in Abramsky’s “lazy λ-calculus”.

In the untyped literature, “call-by-name” evaluation
means reduction to head normal form.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 42 / 128

One fundamental decision

Do we substitute terminal terms, or unevaluated terms?

Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.

Terminology: lazy and call-by-name

“Lazy” evaluation usually means call-by-need,
except in Abramsky’s “lazy λ-calculus”.

In the untyped literature, “call-by-name” evaluation
means reduction to head normal form.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 42 / 128

One fundamental decision

Do we substitute terminal terms, or unevaluated terms?

Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.

Terminology: lazy and call-by-name

“Lazy” evaluation usually means call-by-need,
except in Abramsky’s “lazy λ-calculus”.

In the untyped literature, “call-by-name” evaluation
means reduction to head normal form.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 42 / 128

Evaluation order for let

To evaluate let (x be M, y be M ′). N , do we

evaluate M to T and M ′ to T ′, then evaluate N [T/x, T ′/y]?
Call-by-value

just evaluate N [M/x,M ′/y]? Call-by-name

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 43 / 128

Evaluation order for application

To evaluate M N , we must evaluate M to λxA. P . Do we

evaluate N to T (before or after evaluating M), then evaluate
P [T/x]? Call-by-value

just evaluate P [N/x]? Call-by-name

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 44 / 128

Terminal terms of type A+B

Any terminal term of type A+B must be inl M or inr M . Do we

deem inl T and inr T terminal only if T is terminal? Call-by-value

always deem inl M and inr M terminal? Call-by-name

Consider evaluation of match P as {inl x. N, inr y. N ′} to see this.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 45 / 128

Definitional interpreter for call-by-value

CBV terminals T ::= true | false | inl T | inr T | λx.M
To evaluate

true: return true.

M +N : evaluate M . If this returns m, evaluate N . If this returns n,
return m+ n.

λx.M : return λx.M .

inl M : evaluate M . If this returns T , return inl T .

let (x be M, y be M ′). N : evaluate M . If this returns T , evaluate
M ′. If this returns T ′, evaluate N [T/x, T ′/y].

match M as {true. N, false. N ′}: evaluate M . If this returns
true, evaluate N , but if it returns false, evaluate N ′.

match M as {inl x. N, inr x. N ′}: evaluate M . If this returns
inl T , evaluate N [T/x], but if it returns inr T , evaluate N ′[T/x].

MN : evaluate M . If this returns λx.P , evaluate N . If this returns T ,
evaluate P [T/x].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 46 / 128

Definitional interpreter for call-by-name

In CBN the terminals are true, false, inl M, inr M,λx.M
To evaluate

true: return true.

M +N : evaluate M . If this returns m, evaluate N . If this returns n,
return m+ n.

λx.M : return λx.M .

inl M : return inl M .

let (x be M, y be M ′). N : evaluate N [M/x,M ′/y].

match M as {true. N, false. N ′}: evaluate M . If this returns
true, evaluate N , but if it returns false, evaluate N ′.

match M as {inl x. N, inr x. N ′}: evaluate M . If this returns
inl P , evaluate N [P/x], but if it returns inr P , evaluate N ′[P/x].

MN : evaluate M . If this returns λx.P , evaluate P [N/x].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 47 / 128

Big-step semantics for call-by-value

We write M ⇓ T to mean that M evaluates to T .

This is defined inductively, for example

M ⇓ λxA. P N ⇓ T P [T/x] ⇓ T ′

M N ⇓ T ′

If `M : A then M ⇓ T for unique T .

Moreover ` T : A and [[M]] = [[T]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 48 / 128

Big-step semantics for call-by-value

We write M ⇓ T to mean that M evaluates to T .

This is defined inductively, for example

M ⇓ λxA. P N ⇓ T P [T/x] ⇓ T ′

M N ⇓ T ′

If `M : A then M ⇓ T for unique T .

Moreover ` T : A and [[M]] = [[T]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 48 / 128

Big-step semantics for call-by-name

We write M ⇓ T to mean that M evaluates to T .
This is defined inductively, for example

M ⇓ λxA. P P [N/x] ⇓ T

M N ⇓ T

If `M : A then M ⇓ T for unique T .

Moreover ` T : A and [[M]] = [[T]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 49 / 128

Big-step semantics for call-by-name

We write M ⇓ T to mean that M evaluates to T .
This is defined inductively, for example

M ⇓ λxA. P P [N/x] ⇓ T

M N ⇓ T

If `M : A then M ⇓ T for unique T .

Moreover ` T : A and [[M]] = [[T]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 49 / 128

Long story

The experiment

Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.

See what equations and isomorphisms survive.

Seek a denotational semantics for each language.

Analyzing CBV with a microscope

Look closely at the CBV models: there’s a pattern.

CBV contains particles of meaning, constituting fine-grain
call-by-value.

Increasing the magnification

Look very closely at the CBN and fine-grain CBV models: there’s a
pattern.

Both contain tiny particles of meaning, constituting
call-by-push-value.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 50 / 128

Long story

The experiment

Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.

See what equations and isomorphisms survive.

Seek a denotational semantics for each language.

Analyzing CBV with a microscope

Look closely at the CBV models: there’s a pattern.

CBV contains particles of meaning, constituting fine-grain
call-by-value.

Increasing the magnification

Look very closely at the CBN and fine-grain CBV models: there’s a
pattern.

Both contain tiny particles of meaning, constituting
call-by-push-value.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 50 / 128

Long story

The experiment

Add effects to (jumbo) λ-calculus, with CBV or CBN evaluation.

See what equations and isomorphisms survive.

Seek a denotational semantics for each language.

Analyzing CBV with a microscope

Look closely at the CBV models: there’s a pattern.

CBV contains particles of meaning, constituting fine-grain
call-by-value.

Increasing the magnification

Look very closely at the CBN and fine-grain CBV models: there’s a
pattern.

Both contain tiny particles of meaning, constituting
call-by-push-value.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 50 / 128

The big picture

Call-by-value
jumbo λ-calculus

��

Call-by-name
jumbo λ-calculus

��
Fine-grain call-by-value

jumbo λ-calculus
// Call-by-push-value

Both fine-grain call-by-value and call-by-push-value are obtained
empirically, by observing particles of meaning within a range of
denotational models.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 51 / 128

Where this story comes from

Plotkin: semantics of recursion for call-by-name (PCF)
and call-by-value (FPC)

Moggi: list of monads for denotational semantics

Moggi: monadic metalanguage

Power and Robinson: Freyd categories

Plotkin and Felleisen: call-by-value continuation semantics

Reynolds’ Idealized Algol, a call-by-name language with state

O’Hearn: semantics of type identifiers in such a language

Streicher and Reus: call-by-name continuation semantics

Filinski: Effect-PCF

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 52 / 128

Adding computational effects

Errors

Let E = {CRASH,BANG} be a set of “errors”. We add

e ∈ E
Γ ` errorB e : B

To evaluate errorB e: halt with error message e.

Printing

Let A = {a, b, c, d, e} be a set of “characters”. We add

Γ `M : B
c ∈ A

Γ ` print c. M : B

To evaluate print c. M : print c and then evaluate M .

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 53 / 128

Exercises

1 Evaluate
let (x be error CRASH). 5

in CBV and CBN.

2 Evaluate
(λx.(x + x))(print "hello". 4)

in CBV and CBN.

3 Evaluate

match (print "hello". inr error CRASH) as
{inl x. x + 1, inr y. 5}

in CBV and CBN.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 54 / 128

Big-step semantics for errors

For call-by-value, we inductively define two big-step relations:

M ⇓ T means M evaluates to T .

M e means M raises error e.

Here are the rules for application:

M e

M N e

M ⇓ λx. P N e

M N e

M ⇓ λx. P N ⇓ T P [T/x] e

M N e

M ⇓ λx. P N ⇓ T P [T/x] ⇓ T ′

M N ⇓ T ′

Likewise for call-by-name.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 55 / 128

Observational equivalence

A program is a closed term of type nat or bool.

Two terms Γ `M,M ′ : B are observationally equivalent

when C[M] and C[M ′] have the same behaviour

for every program with a hole C[·].

Same behaviour means: print the same string, raise the same error, return
the same boolean.

We write M 'CBV M ′ and M 'CBN M ′.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 56 / 128

The η-law for boolean type: has it survived?

η-law for bool

Any term Γ, z : bool `M : B can be expanded as

match z as {true. M [true/z], false. M [false/z]}

Anything of boolean type is a boolean.

This holds in CBV, because z can only be replaced by true or false.

But it’s broken in CBN, because z might raise an error. For example,

true 6'CBN match z as {true. true, false. true}

because we can apply the context

let (z be error CRASH). [·]

Similarly the η-law for sum types is valid in CBV but not in CBN.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 57 / 128

The η-law for functions: has it survived?

η-law for A→ B and A Π B

Any term Γ `M : A→ B can be expanded as λx.Mx.
Any term Γ `M : A Π B can be expanded as λ{l.M l, r.M r}.

Although these fail in CBV, they hold in CBN. Consequences:

error e 'CBN λx. error e

error e 'CBN λ{l. error e, r. error e}
print c. λx. M 'CBN λx. print c. M

print c. λ{l.M, r. N} 'CBN λ{l. print c. M, r. print c. N}

Yet the two sides have different operational behaviour! What’s going on?

In CBN, a function gets evaluated only by being applied.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 58 / 128

Summary

The pure λ-calculus satisfies all the β- and η-laws.

With computational effects,

CBV satisfies η for leftist connectives (tuple types), but not rightist
ones (function types)

CBN satisfies η for rightist connectives (function types), but not
leftist ones (tuple types).

Similarly for isomorphisms:

(A+B) + C ∼= A+ (B + C) survives in CBV but not CBN.

A×B ∼= A Π B survives in neither CBV nor CBN.

A→ (B → C) ∼= (A Π B)→ C survives in CBN but not CBV.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 59 / 128

Summary

The pure λ-calculus satisfies all the β- and η-laws.

With computational effects,

CBV satisfies η for leftist connectives (tuple types), but not rightist
ones (function types)

CBN satisfies η for rightist connectives (function types), but not
leftist ones (tuple types).

Similarly for isomorphisms:

(A+B) + C ∼= A+ (B + C) survives in CBV but not CBN.

A×B ∼= A Π B survives in neither CBV nor CBN.

A→ (B → C) ∼= (A Π B)→ C survives in CBN but not CBV.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 59 / 128

Naive CBV semantics

Our first attempt.

Each type A denotes a set, a semantic domain for terms.

[[bool]]∗ = B + E

[[bool + bool]]∗ = (B + B) + E

[[bool× bool]]∗ = (B× B) + E

Not easy to make this compositional, so we abandon it.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 60 / 128

Naive CBV semantics

Our first attempt.

Each type A denotes a set, a semantic domain for terms.

[[bool]]∗ = B + E

[[bool + bool]]∗ = (B + B) + E

[[bool× bool]]∗ = (B× B) + E

Not easy to make this compositional, so we abandon it.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 60 / 128

CBV denotational semantics

Each type denotes a set, a semantic domain for terminals.

[[bool]] = B
[[A+B]] = [[A]] + [[B]]

[[A→ B]] = [[A]]→ ([[B]] + E)

[[()→ B]] = [[B]] + E

[[Γ]] =
∏

(x:A)∈Γ

[[A]]

Each term Γ `M : B denotes a function [[M]] : [[Γ]] −→ ([[B]] + E).

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 61 / 128

CBV denotational semantics

Each type denotes a set, a semantic domain for terminals.

[[bool]] = B
[[A+B]] = [[A]] + [[B]]

[[A→ B]] = [[A]]→ ([[B]] + E)

[[()→ B]] = [[B]] + E

[[Γ]] =
∏

(x:A)∈Γ

[[A]]

Each term Γ `M : B denotes a function [[M]] : [[Γ]] −→ ([[B]] + E).

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 61 / 128

Semantics of term constructors

Γ, x : A `M : B

Γ ` λx ∈ A.M : A→ B

[[λxA.M]] : ρ 7−→ inl λa ∈ [[A]]. [[M]](ρ, x 7→ a)

Γ `M : A→ B Γ ` N : A

Γ `M N : B

[[M N]] : ρ 7−→ match [[M]]ρ as

 inl f. match [[N]]ρ as

{
inl x. f(x)
inr e. inr e

inr e. inr e

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 62 / 128

More term constructors

Γ `M : A

Γ ` inlA,B M : A+B

[[inlA,B M]] : ρ 7−→ match [[M]]ρ as

{
inl a. inl inl a
inr e. inr e

To prove the soundness of the denotational semantics, we need a
substitution lemma.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 63 / 128

More term constructors

Γ `M : A

Γ ` inlA,B M : A+B

[[inlA,B M]] : ρ 7−→ match [[M]]ρ as

{
inl a. inl inl a
inr e. inr e

To prove the soundness of the denotational semantics, we need a
substitution lemma.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 63 / 128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [[N [M/x]]] from [[M]] and [[N]]?

Not in CBV.

Example that rules out a general substitution lemma

Define `M : bool and x : bool ` N,N ′ : bool.

M
def
= error CRASH

N
def
= true

N ′
def
= match x as {true. true, false. true}

[[N]] = [[N ′]] because N =η bool N
′

[[N [M/x]]] 6= [[N ′[M/x]]]

But we can give a lemma for the substitution of values.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 64 / 128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [[N [M/x]]] from [[M]] and [[N]]? Not in CBV.

Example that rules out a general substitution lemma

Define `M : bool and x : bool ` N,N ′ : bool.

M
def
= error CRASH

N
def
= true

N ′
def
= match x as {true. true, false. true}

[[N]] = [[N ′]] because N =η bool N
′

[[N [M/x]]] 6= [[N ′[M/x]]]

But we can give a lemma for the substitution of values.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 64 / 128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [[N [M/x]]] from [[M]] and [[N]]? Not in CBV.

Example that rules out a general substitution lemma

Define `M : bool and x : bool ` N,N ′ : bool.

M
def
= error CRASH

N
def
= true

N ′
def
= match x as {true. true, false. true}

[[N]] = [[N ′]] because N =η bool N
′

[[N [M/x]]] 6= [[N ′[M/x]]]

But we can give a lemma for the substitution of values.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 64 / 128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [[N [M/x]]] from [[M]] and [[N]]? Not in CBV.

Example that rules out a general substitution lemma

Define `M : bool and x : bool ` N,N ′ : bool.

M
def
= error CRASH

N
def
= true

N ′
def
= match x as {true. true, false. true}

[[N]] = [[N ′]] because N =η bool N
′

[[N [M/x]]] 6= [[N ′[M/x]]]

But we can give a lemma for the substitution of values.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 64 / 128

Values

The following terms are called values.

V ::= true | false | inl V | inr V | λx.M | x

The closed values are just the terminals:
we don’t allow “complex values” such as

match true as {true. false, false. true}

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 65 / 128

Denotational semantics of values

Each value Γ ` V : A denotes a function [[V]]val : [[Γ]] −→ [[A]].

[[x]]val : ρ 7−→ ρx

[[true]]val : ρ 7−→ true

[[inl V]]val : ρ 7−→ inl [[V]]valρ

[[λxA.M]]val : ρ 7−→ λa ∈ [[A]]. [[M]](ρ, x 7→ [[a]])

We can recover [[V]] from [[V]]val.

[[V]] : ρ 7−→ inl [[V]]valρ

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 66 / 128

Substitution Lemma For Values

Given values Γ ` V : A and Γ `W : B and a term Γ, x : A, y : B `M : C

we can obtain [[M [V/x,W/y]]] from [[V]]val and [[W]]val and [[M]].

[[M [V/x,W/y]]] : ρ 7−→ [[M]](ρ, x 7→ [[V]]valρ, y 7→ [[W]]valρ)

Likewise for substitution of values into values.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 67 / 128

Soundness of CBV Denotational Semantics

If M ⇓ V then [[M]]ε = inl ([[V]]valε).

If M e then [[M]]ε = inr e.

Proof by induction, using the substitution lemma.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 68 / 128

Fine-Grain Call-By-Value

Fine-grain call-by-value has two judgements:

A value Γ `v V : A denotes a function [[V]] : [[Γ]] −→ [[A]].

A computation Γ `c M : A denotes a function
[[M]] : [[Γ]] −→ [[A]] + E.

Key typing rules

Γ `v V : A

Γ `c return V : A

Γ `c M : A Γ, x : A `c N : B

Γ `c M to x. N : B

Corresponds to Power and Robinson’s notion of a Freyd category.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 69 / 128

Semantics of returning and sequencing

Γ `v V : A

Γ `c return V : A

[[return V]] : ρ 7−→ inl [[V]]ρ

Γ `c M : A Γ, x : A `c N : B

Γ `c M to x. N : B

[[M to x. N]] : ρ 7−→ match [[M]]ρ as

{
inl a. [[N]](ρ, x 7→ a)
inr e. inr e

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 70 / 128

Syntax

For connectives bool,+,→ the syntax is as follows.

V ::= x | true | false
| inl V | inr V | λx.M

M ::= M to x. M | return V
| let (

−−−−→
x be V). M | V V

| match V as {true.M, false.M}
| match V as {inl x.M, inr x.M}
| error e

We don’t allow “complex values” such as

match true as {true. false, false. true}

These would complicate the operational semantics.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 71 / 128

Syntax

For connectives bool,+,→ the syntax is as follows.

V ::= x | true | false
| inl V | inr V | λx.M

M ::= M to x. M | return V
| let (

−−−−→
x be V). M | V V

| match V as {true.M, false.M}
| match V as {inl x.M, inr x.M}
| error e

We don’t allow “complex values” such as

match true as {true. false, false. true}

These would complicate the operational semantics.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 71 / 128

Definitional interpreter for fine-grain CBV

We evaluate a closed computation `c M : A to a closed value `v V : A.
To evaluate

return V : return V .

M to x. N , evaluate M . If this returns V , evaluate N [V/x].

let (x be V, y be W). M , evaluate M [V/x,W/y].

(λx.M)V , evaluate M [V/x].

match inl V as {inl x. N, inr x. N ′}: evaluate N [V/x].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 72 / 128

Equational theory

β-laws

match (inl V) as {true.M, false.M ′} = M [V/x]

(λx.M)V = M [V/x]

let (x be V, y be W). M = M [V/x,W/y]

η-laws

M [V/z] = match V as {inl x.M [inl x/z], inr y.M [inr x/z]}
V = λx. V x

Sequencing laws

(return V) to x. M = M [V/x]

M = M to x. return x

(M to x. N) to y. P = M to x. (N to y. P)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 73 / 128

CBV to fine-grain call-by-value

Term Γ `M : A to computation Γ `c M̂ : A.

x 7−→ return x

λx.M 7−→ return λx. M̂

inl M 7−→ M̂ to x. return inl x

M N 7−→ M̂ to x. N̂ to y. x y

let (x be M, y be M ′). N 7−→ M̂ to x. M̂ ′ to y. N̂

Value Γ ` V : A to value Γ `v V̌ : A.

x 7−→ x

λx.M 7−→ λx. M̂

inl V 7−→ inl V̌

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 74 / 128

Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and
call them thunks.

TA
def
= ()→ A [[TA]] = [[A]] + E

thunk M
def
= λ().M [[thunk M]] = [[M]]

force V
def
= V () [[force V]] = [[V]]

The type TA has a reversible rule
Γ `c A

=======
Γ `v TA

Fine-grain CBV (unlike the monadic metalanguage)
distinguishes computations from thunks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 75 / 128

Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and
call them thunks.

TA
def
= ()→ A [[TA]] = [[A]] + E

thunk M
def
= λ().M [[thunk M]] = [[M]]

force V
def
= V () [[force V]] = [[V]]

The type TA has a reversible rule
Γ `c A

=======
Γ `v TA

Fine-grain CBV (unlike the monadic metalanguage)
distinguishes computations from thunks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 75 / 128

Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and
call them thunks.

TA
def
= ()→ A [[TA]] = [[A]] + E

thunk M
def
= λ().M [[thunk M]] = [[M]]

force V
def
= V () [[force V]] = [[V]]

The type TA has a reversible rule
Γ `c A

=======
Γ `v TA

Fine-grain CBV (unlike the monadic metalanguage)
distinguishes computations from thunks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 75 / 128

Naive CBN semantics of errors

Each type denotes a set, a semantic domain for terms. For example:

[[bool→ (bool→ bool)]]∗ = (B + E)→ ((B + E)→ (B + E))

[[bool + bool]]∗ = ((B + E) + (B + E)) + E

[[bool Π bool]]∗ = (B + E)× (B + E)

Thus we define

[[bool]]∗ = B + E

[[A+B]]∗ = ([[A]]∗ + [[B]]∗) + E

[[A→ B]]∗ = [[A]]∗ → [[B]]∗

[[A Π B]]∗ = [[A]]∗ × [[B]]∗

[[Γ]] =
∏

(x:A)∈Γ

[[A]]∗

Each term Γ `M : B should denote a function [[M]] : [[Γ]] −→ [[B]]∗.
Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 76 / 128

Naive semantics: what goes wrong

Γ ` error CRASH : B
denotes ρ 7−→ ?

Example:

suppose B = bool→ (bool→ bool)

then B denotes (B + E)→ ((B + E)→ (B + E))

and error CRASH 'CBN λx. λy. error CRASH

so the answer should be λx. λy. inr CRASH.

Intuition: go down through the function types until we hit a tuple type.
A similar problem arises with match.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 77 / 128

Naive semantics: what goes wrong

Γ ` error CRASH : B
denotes ρ 7−→ ?

Example:

suppose B = bool→ (bool→ bool)

then B denotes (B + E)→ ((B + E)→ (B + E))

and error CRASH 'CBN λx. λy. error CRASH

so the answer should be λx. λy. inr CRASH.

Intuition: go down through the function types until we hit a tuple type.

A similar problem arises with match.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 77 / 128

Naive semantics: what goes wrong

Γ ` error CRASH : B
denotes ρ 7−→ ?

Example:

suppose B = bool→ (bool→ bool)

then B denotes (B + E)→ ((B + E)→ (B + E))

and error CRASH 'CBN λx. λy. error CRASH

so the answer should be λx. λy. inr CRASH.

Intuition: go down through the function types until we hit a tuple type.
A similar problem arises with match.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 77 / 128

Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements c, b ∈ X.

A type should denote an E-pointed set, a semantic domain for terms.

Examples:

[[bool→ (bool→ bool)]] = ((B + E)→ ((B + E)→ (B + E)),

λx.λy.inr CRASH,

λx.λy.inr BANG)

[[bool + bool]] = (((B + E) + (B + E)) + E,

inr CRASH,

inr BANG)

[[bool Π bool]] = ((B + E)× (B + E),

(inr CRASH, inr CRASH),

(inr BANG, inr BANG))

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 78 / 128

Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements c, b ∈ X.

A type should denote an E-pointed set, a semantic domain for terms.
Examples:

[[bool→ (bool→ bool)]] = ((B + E)→ ((B + E)→ (B + E)),

λx.λy.inr CRASH,

λx.λy.inr BANG)

[[bool + bool]] = (((B + E) + (B + E)) + E,

inr CRASH,

inr BANG)

[[bool Π bool]] = ((B + E)× (B + E),

(inr CRASH, inr CRASH),

(inr BANG, inr BANG))

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 78 / 128

CBN semantics of errors

[[bool]] = (B + E, inr CRASH, inr BANG)

If [[A]] = (X, c, b) and [[B]] = (Y, c′, b′)

then [[A+B]] = ((X + Y) + E, inr CRASH, inr BANG)

and [[A→ B]] = (X → Y, λx. c′, λx. b′)

and [[A Π B]] = (X × Y, (c, c′), (b, b′))

[[Γ]] =
∏

(x:A)∈Γ
[[A]]=(X,c,b)

X

A term Γ `M : B denotes a function [[M]] : [[Γ]] −→ [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 79 / 128

CBN semantics of errors

[[bool]] = (B + E, inr CRASH, inr BANG)

If [[A]] = (X, c, b) and [[B]] = (Y, c′, b′)

then [[A+B]] = ((X + Y) + E, inr CRASH, inr BANG)

and [[A→ B]] = (X → Y, λx. c′, λx. b′)

and [[A Π B]] = (X × Y, (c, c′), (b, b′))

[[Γ]] =
∏

(x:A)∈Γ
[[A]]=(X,c,b)

X

A term Γ `M : B denotes a function [[M]] : [[Γ]] −→ [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 79 / 128

Semantics of term constructors

Γ ` true : bool

[[true]] : ρ 7−→ inl true

Γ `M : bool Γ ` N : B Γ ` N ′ : B

Γ ` match M as {true. N, false. N ′} : B

[[match M as {true. N, false. N ′}]] : ρ 7−→

match [[M]]ρ as

inl true. [[N]]ρ
inl false. [[N ′]]ρ
inr CRASH. c
inr BANG. b

where [[B]] = (Y, c, b)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 80 / 128

More term constructors

[[λx.M]] : ρ 7−→ λa. [[M]](ρ, x 7→ a)

[[M N]] : ρ 7−→ [[M]] [[N]]

[[x]] : ρ 7−→ ρx

error CRASH : ρ 7−→ c

Soundness/adequacy

If M ⇓ T then [[M]]ε = [[T]]ε.

If M CRASH then [[M]]ε = c.

If M BANG then [[M]]ε = b.

Proved by induction, using the substitution lemma.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 81 / 128

Notation for E-pointed sets

Free E-pointed set on a set X.

FEX
def
= (X + E, inr CRASH, inr BANG)

Product of two E-pointed sets.

(X, c, b) Π (Y, c′, b′)
def
= (X × Y, (c, c′), (b, b′))

Unit E-pointed set. 1Π
def
= (1, (), ())

Product of a family of E-pointed sets.∏
i∈I

(Xi, ci, bi)
def
= (

∏
i∈I

Xi, λi. ci, λi. bi)

Exponential E-pointed set.

X → (Y, c, b)
def
=

∏
x∈X

(Y, c, b)

= (X → Y, λx. c, λx. b)

Carrier of an E-pointed set. UE(X, c, b)
def
= X

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 82 / 128

Summary of call-by-name semantics

A type denotes an E-pointed set.

[[bool]] = FE(1 + 1)

[[A+B]] = FE(UE [[A]] + UE [[B]])

[[A→ B]] = UE [[A]]→ [[B]]

[[A Π B]] = [[A]] Π [[B]]

A typing context denotes a set.

[[Γ]] =
∏

(x:A)∈Γ

UE [[A]]

A term Γ `M : B denotes a function [[Γ]] −→ [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 83 / 128

Summary of call-by-value semantics

A type denotes a set.

[[bool]] = 1 + 1

[[A+B]] = [[A]] + [[B]]

[[A→ B]] = UE([[A]]→ FE [[B]])

[[TB]] = UEFE [[B]]

A typing context denotes a set.

[[Γ]] =
∏

(x:A)∈Γ

[[A]]

A computation Γ `c M : B denotes a function [[Γ]] −→ FE [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 84 / 128

Call-By-Push-Value Types

Two kinds of type:

A value type denotes a set.

A computation type denotes an E-pointed set.

value type A ::= UB | 1 | A×A | 0 | A+A |
∑

i∈NAi

computation type B ::= FA | A→ B | 1Π | B Π B |
∏
i∈NBi

Strangely function types are computation types, and λx.M is a
computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 85 / 128

Call-By-Push-Value Types

Two kinds of type:

A value type denotes a set.

A computation type denotes an E-pointed set.

value type A ::= UB | 1 | A×A | 0 | A+A |
∑

i∈NAi

computation type B ::= FA | A→ B | 1Π | B Π B |
∏
i∈NBi

Strangely function types are computation types, and λx.M is a
computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 85 / 128

Call-By-Push-Value Types

Two kinds of type:

A value type denotes a set.

A computation type denotes an E-pointed set.

value type A ::= UB | 1 | A×A | 0 | A+A |
∑

i∈NAi

computation type B ::= FA | A→ B | 1Π | B Π B |
∏
i∈NBi

Strangely function types are computation types, and λx.M is a
computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 85 / 128

Judgements

An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

x0 : A0, . . . , xm−1 : Am−1

Two judgements:

A value Γ `v V : A denotes a function [[V]] : [[Γ]] −→ [[A]].

A computation Γ `c M : B denotes a function [[M]] : [[Γ]] −→ [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 86 / 128

Judgements

An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

x0 : A0, . . . , xm−1 : Am−1

Two judgements:

A value Γ `v V : A denotes a function [[V]] : [[Γ]] −→ [[A]].

A computation Γ `c M : B denotes a function [[M]] : [[Γ]] −→ [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 86 / 128

Judgements

An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

x0 : A0, . . . , xm−1 : Am−1

Two judgements:

A value Γ `v V : A denotes a function [[V]] : [[Γ]] −→ [[A]].

A computation Γ `c M : B denotes a function [[M]] : [[Γ]] −→ [[B]].

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 86 / 128

The type FA

A computation in FA aims to return a value in A.

Γ `v V : A

Γ `c return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

Sequencing in the style of Filinski’s “Effect-PCF”.

[[return V]] : ρ 7−→ inl [[V]]ρ

[[M to x. N]] : ρ 7−→

match [[M]]ρ as

inl a. [[N]](ρ, x 7→ a)

inr CRASH. c

inr BANG. b

where [[B]] = (Y, c, b)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 87 / 128

The type FA

A computation in FA aims to return a value in A.

Γ `v V : A

Γ `c return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

Sequencing in the style of Filinski’s “Effect-PCF”.

[[return V]] : ρ 7−→ inl [[V]]ρ

[[M to x. N]] : ρ 7−→

match [[M]]ρ as

inl a. [[N]](ρ, x 7→ a)

inr CRASH. c

inr BANG. b

where [[B]] = (Y, c, b)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 87 / 128

The type UB

A value in UB is a thunk of a computation in B.

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : UB

Γ `c force V : B

[[thunk M]] = [[M]]

[[force V]] = [[V]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 88 / 128

The type UB

A value in UB is a thunk of a computation in B.

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : UB

Γ `c force V : B

[[thunk M]] = [[M]]

[[force V]] = [[V]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 88 / 128

Identifiers

An identifier is a value.

(x : A) ∈ Γ
Γ `v x : A

Γ `v V : A Γ `v W : B Γ, x : A, y : B `c M : C

Γ `c let (x be V, y be W). M : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 89 / 128

Tuples

Γ `v V : A

Γ `v inl V : A+A′

Γ `v V : A′

Γ `v inr V : A+A′

Γ `v V : A+A′ Γ, x : A `c M : B Γ, y : A `c M ′ : B

Γ `c match V as {inl x.M, inr y.M ′} : B

Γ `v V : A Γ `v V ′ : A′

Γ `v 〈V, V ′〉 : A×A′

Γ `v V : A×A′ Γ, x : A, y : A′ `c M : B

Γ `c match V as 〈x, y〉.M : B

The rules for 1 are similar.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 90 / 128

Functions

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `c M : A→ B Γ `v V : A

Γ `c MV : B

Γ `c M : B Γ `c M ′ : B′

Γ `c λ{l.M, r.M ′} : B Π B′

Γ `c M : B Π B′

Γ `c M l : B

Γ `c M : B Π B′

Γ `c M r : B′

It is often convenient to write applications operand-first,
as V ‘M and l‘M and r‘M .

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 91 / 128

Functions

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `c M : A→ B Γ `v V : A

Γ `c MV : B

Γ `c M : B Γ `c M ′ : B′

Γ `c λ{l.M, r.M ′} : B Π B′

Γ `c M : B Π B′

Γ `c M l : B

Γ `c M : B Π B′

Γ `c M r : B′

It is often convenient to write applications operand-first,
as V ‘M and l‘M and r‘M .

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 91 / 128

Definitional interpreter for call-by-push-value

The terminals are computations: return V λx.M λ{l.M, r.M ′}

To evaluate

return V : return return V .

M to x. N : evaluate M . If this returns return V , then evaluate
N [V/x].

λx.N : return λx.N .

MV : evaluate M . If this returns λx.N , evaluate N [V/x].

λ{l.M, r.M ′}: return λ{l.M, r.M ′}.
M l: evaluate M . If this returns λ{l. N, r. N ′}, evaluate N .

let (x be V, y be W). M : evaluate M [V/x,W/y].

force thunk M : evaluate M .

match inl V as {inl x.M, inr y.M ′}: evaluate M [V/x].

match 〈V, V ′〉 as 〈x, y〉.M : evaluate M [V/x, V ′/y].

error e, print error message e and stop.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 92 / 128

Definitional interpreter for call-by-push-value

The terminals are computations: return V λx.M λ{l.M, r.M ′}
To evaluate

return V : return return V .

M to x. N : evaluate M . If this returns return V , then evaluate
N [V/x].

λx.N : return λx.N .

MV : evaluate M . If this returns λx.N , evaluate N [V/x].

λ{l.M, r.M ′}: return λ{l.M, r.M ′}.
M l: evaluate M . If this returns λ{l. N, r. N ′}, evaluate N .

let (x be V, y be W). M : evaluate M [V/x,W/y].

force thunk M : evaluate M .

match inl V as {inl x.M, inr y.M ′}: evaluate M [V/x].

match 〈V, V ′〉 as 〈x, y〉.M : evaluate M [V/x, V ′/y].

error e, print error message e and stop.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 92 / 128

Equational theory

β-laws

force thunk M = M

match (inl V) as {true.M, false.M ′} = M [V/x]

(λx.M)V = M [V/x]

let (x be V, y be W). M = M [V/x,W/y]

η-laws

V = thunk force V

M [V/z] = match V as {inl x.M [inl x/z], inr y.M [inr x/z]}
M = λx. Mx

Sequencing laws

(return V) to x. M = M [V/x]

M = M to x. return x

(M to x. N) to y. P = M to x. (N to y. P)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 93 / 128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A→ B 7−→ U(A→ FB)

TB 7−→ UFB

A fine-grain CBV computation x : A, y : B `c M : C
translates as x : A, y : B `c M : FC.

λx.M 7−→ thunk λx.M

V W 7−→ (force V)W

Therefore a CBV term x : A, y : B `M : C
translates as x : A, y : B `c M : FC

x 7−→ return x

λx. M 7−→ return thunk λx. M

M N 7−→ M to f. N to y. ((force f) y)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 94 / 128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A→ B 7−→ U(A→ FB)

TB 7−→ UFB

A fine-grain CBV computation x : A, y : B `c M : C
translates as x : A, y : B `c M : FC.

λx.M 7−→ thunk λx.M

V W 7−→ (force V)W

Therefore a CBV term x : A, y : B `M : C
translates as x : A, y : B `c M : FC

x 7−→ return x

λx. M 7−→ return thunk λx. M

M N 7−→ M to f. N to y. ((force f) y)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 94 / 128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A→ B 7−→ U(A→ FB)

TB 7−→ UFB

A fine-grain CBV computation x : A, y : B `c M : C
translates as x : A, y : B `c M : FC.

λx.M 7−→ thunk λx.M

V W 7−→ (force V)W

Therefore a CBV term x : A, y : B `M : C
translates as x : A, y : B `c M : FC

x 7−→ return x

λx. M 7−→ return thunk λx. M

M N 7−→ M to f. N to y. ((force f) y)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 94 / 128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A→ B 7−→ U(A→ FB)

TB 7−→ UFB

A fine-grain CBV computation x : A, y : B `c M : C
translates as x : A, y : B `c M : FC.

λx.M 7−→ thunk λx.M

V W 7−→ (force V)W

Therefore a CBV term x : A, y : B `M : C
translates as x : A, y : B `c M : FC

x 7−→ return x

λx. M 7−→ return thunk λx. M

M N 7−→ M to f. N to y. ((force f) y)

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 94 / 128

Decomposing CBN into CBPV

A CBN type translates into a computation type.

bool 7−→ F (1 + 1)

A+B 7−→ F (UA+ UB)

A→ B 7−→ UA→ B

A CBN term x : A, y : B `M : C translates as x : UA, y : UB `c M : C.

x 7−→ force x

let (x be M, y be M ′). N 7−→ let (x be thunk M, y be thunk M ′). N

λx. M 7−→ λx. M

M N 7−→ M (thunk N)

inl M 7−→ return inl thunk M

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 95 / 128

Decomposing CBN into CBPV

A CBN type translates into a computation type.

bool 7−→ F (1 + 1)

A+B 7−→ F (UA+ UB)

A→ B 7−→ UA→ B

A CBN term x : A, y : B `M : C translates as x : UA, y : UB `c M : C.

x 7−→ force x

let (x be M, y be M ′). N 7−→ let (x be thunk M, y be thunk M ′). N

λx. M 7−→ λx. M

M N 7−→ M (thunk N)

inl M 7−→ return inl thunk M

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 95 / 128

Summary

We’ve seen

the call-by-push-value calculus

its operational semantics

denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

our error semantics makes thunk and force invisible

we still don’t understand why a function is a computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 96 / 128

Summary

We’ve seen

the call-by-push-value calculus

its operational semantics

denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

our error semantics makes thunk and force invisible

we still don’t understand why a function is a computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 96 / 128

Summary

We’ve seen

the call-by-push-value calculus

its operational semantics

denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

our error semantics makes thunk and force invisible

we still don’t understand why a function is a computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 96 / 128

Summary

We’ve seen

the call-by-push-value calculus

its operational semantics

denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

our error semantics makes thunk and force invisible

we still don’t understand why a function is a computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 96 / 128

Summary

We’ve seen

the call-by-push-value calculus

its operational semantics

denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

our error semantics makes thunk and force invisible

we still don’t understand why a function is a computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 96 / 128

Summary

We’ve seen

the call-by-push-value calculus

its operational semantics

denotational semantics for errors.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

our error semantics makes thunk and force invisible

we still don’t understand why a function is a computation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 96 / 128

CK-machine

An operational semantics due to Felleisen and Friedman (1986).
And Landin, Krivine, Streicher and Reus, Bierman, Pitts, . . .

It is suitable for sequential languages whether CBV, CBN or CBPV.

At any time, there’s a computation (C) and a stack of contexts (K).

Initially, K is empty.

Some authors make K into a single context, called an “evaluation context”.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 97 / 128

Transitions for sequencing

To evaluate M to x. N : evaluate M . If this returns return V , then
evaluate N [V/x].

M to x. N K
M to x. N :: K

return V to x. N :: K
N [V/x] K

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 98 / 128

Transitions for application

To evaluate V ‘M : evaluate M . If this returns λx.N , evaluate N [V/x].

V ‘M K
M V :: K

λx.N V :: K
N [V/x] K

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 99 / 128

Those function rules again

V ‘M K
M V :: K

λx.N V :: K
N [V/x] K

We can read V ‘ as an instruction “push V ”.

We can read λx as an instruction “pop x”.

Revisiting some equations:

V ‘ λx. M = M [V/x]

M = λx. x ‘ M (x fresh)

error e = λx. error e

print c. λx.M = λx. print c. M

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 100 / 128

Those function rules again

V ‘M K
M V :: K

λx.N V :: K
N [V/x] K

We can read V ‘ as an instruction “push V ”.

We can read λx as an instruction “pop x”.

Revisiting some equations:

V ‘ λx. M = M [V/x]

M = λx. x ‘ M (x fresh)

error e = λx. error e

print c. λx.M = λx. print c. M

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 100 / 128

Those function rules again

V ‘M K
M V :: K

λx.N V :: K
N [V/x] K

We can read V ‘ as an instruction “push V ”.

We can read λx as an instruction “pop x”.

Revisiting some equations:

V ‘ λx. M = M [V/x]

M = λx. x ‘ M (x fresh)

error e = λx. error e

print c. λx.M = λx. print c. M

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 100 / 128

Values and Computations

A value is, a computation does.

A value of type UB is a thunk of a computation of type B.

A value of type A+A′ is a tagged value inl V or inr V .

A value of type A×A′ is a pair 〈V, V ′〉.

A computation of type FA aims to return a value of type A.

A computation of type A→ B aims
to pop a value of type A and then behave in B.

A computation of type B Π B′ aims
to pop the tag l and then behave in B
or pop the tag r and then behave in B′.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 101 / 128

What’s in a stack?

A stack consists of

arguments that are values

arguments that are tags

frames taking the form to x. N .

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 102 / 128

Example program of type F nat (with complex values)

print "hello0".

let (x be 3,

y be thunk (

print "hello1".

λz.
print "we just popped " + z.

return x + z

)).

print "hello2".

(print "hello3".

7‘
print "we just pushed 7".

force y

) to w.

print "w is bound to " + w.

return w + 5

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 103 / 128

Typing the CK-machine

Initial configuration to evaluate Γ `cP : C

Γ P C nil C

Transitions

Γ M to x. N B K C
Γ M FA to x. N :: K C

Γ return V FA to x. N :: K C
Γ N [V/x] B K C

Typically Γ would be empty and C = F bool.

We write Γ `k K : B =⇒ C to mean that K can accompany
a computation of type B during evaluation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 104 / 128

Typing the CK-machine

Initial configuration to evaluate Γ `cP : C

Γ P C nil C

Transitions

Γ M to x. N B K C
Γ M FA to x. N :: K C

Γ return V FA to x. N :: K C
Γ N [V/x] B K C

Typically Γ would be empty and C = F bool.

We write Γ `k K : B =⇒ C to mean that K can accompany
a computation of type B during evaluation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 104 / 128

Typing rules, read off from the CK-machine

Typing a stack

Γ `k nil : C =⇒ C

Γ, x : A `c M : B Γ `k K : B =⇒ C

Γ `k to x. M :: K : FA =⇒ C

Γ `k K : B =⇒ C

Γ `k l :: K : B Π B′ =⇒ C

Γ `v V : A Γ `k K : B =⇒ C

Γ `k V :: K : A→ B =⇒ C

Typing a CK-configuration

Γ `c M : B Γ `k K : B =⇒ C

Γ `ck (M,K) : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 105 / 128

Typing rules, read off from the CK-machine

Typing a stack

Γ `k nil : C =⇒ C

Γ, x : A `c M : B Γ `k K : B =⇒ C

Γ `k to x. M :: K : FA =⇒ C

Γ `k K : B =⇒ C

Γ `k l :: K : B Π B′ =⇒ C

Γ `v V : A Γ `k K : B =⇒ C

Γ `k V :: K : A→ B =⇒ C

Typing a CK-configuration

Γ `c M : B Γ `k K : B =⇒ C

Γ `ck (M,K) : C

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 105 / 128

Operations on Stacks

1 Given a stack Γ `k K : B =⇒ C, we can weaken it or substitute
values.

2 A stack Γ `k K : B =⇒ C can be dismantled onto a computation
Γ `c M : B, giving a computation Γ `c M •K : C.

3 Stacks Γ `k K : B =⇒ C and Γ `k L : C =⇒ D can be
concatenated to give Γ `k K++L : B =⇒ D.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 106 / 128

Operations on Stacks

1 Given a stack Γ `k K : B =⇒ C, we can weaken it or substitute
values.

2 A stack Γ `k K : B =⇒ C can be dismantled onto a computation
Γ `c M : B, giving a computation Γ `c M •K : C.

3 Stacks Γ `k K : B =⇒ C and Γ `k L : C =⇒ D can be
concatenated to give Γ `k K++L : B =⇒ D.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 106 / 128

Operations on Stacks

1 Given a stack Γ `k K : B =⇒ C, we can weaken it or substitute
values.

2 A stack Γ `k K : B =⇒ C can be dismantled onto a computation
Γ `c M : B, giving a computation Γ `c M •K : C.

3 Stacks Γ `k K : B =⇒ C and Γ `k L : C =⇒ D can be
concatenated to give Γ `k K++L : B =⇒ D.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 106 / 128

Special Stacks

Continuations

A continuation is a stack from an F type, e.g. to x. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is Γ `k nil : C =⇒ C.
The top-level type is C.

If C is Fbool (the usual situation),
then nil is the top-level continuation:
it receives a boolean and returns it to the user.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 107 / 128

Special Stacks

Continuations

A continuation is a stack from an F type, e.g. to x. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is Γ `k nil : C =⇒ C.
The top-level type is C.

If C is Fbool (the usual situation),
then nil is the top-level continuation:
it receives a boolean and returns it to the user.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 107 / 128

Special Stacks

Continuations

A continuation is a stack from an F type, e.g. to x. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is Γ `k nil : C =⇒ C.
The top-level type is C.

If C is Fbool (the usual situation),
then nil is the top-level continuation:
it receives a boolean and returns it to the user.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 107 / 128

Special Stacks

Continuations

A continuation is a stack from an F type, e.g. to x. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is Γ `k nil : C =⇒ C.
The top-level type is C.

If C is Fbool (the usual situation),
then nil is the top-level continuation:
it receives a boolean and returns it to the user.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 107 / 128

Stacks denote homomorphisms

Consider a stack Γ `k K : B =⇒ C

where [[B]] = (X, c, b) and [[C]] = (Y, c′, b′).

What should K denote?

It acts on computations by M 7−→M •K.

So we want [[K]] : [[Γ]]×X −→ Y .

This function should be homomorphic in its second argument:

[[K]](ρ, c) = c′

[[K]](ρ, b) = b′

because if M throws an error then so does M •K.

We assume there’s no exception handling.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 108 / 128

Stacks denote homomorphisms

Consider a stack Γ `k K : B =⇒ C

where [[B]] = (X, c, b) and [[C]] = (Y, c′, b′).

What should K denote?

It acts on computations by M 7−→M •K.

So we want [[K]] : [[Γ]]×X −→ Y .

This function should be homomorphic in its second argument:

[[K]](ρ, c) = c′

[[K]](ρ, b) = b′

because if M throws an error then so does M •K.

We assume there’s no exception handling.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 108 / 128

Stacks denote homomorphisms

Consider a stack Γ `k K : B =⇒ C

where [[B]] = (X, c, b) and [[C]] = (Y, c′, b′).

What should K denote?

It acts on computations by M 7−→M •K.

So we want [[K]] : [[Γ]]×X −→ Y .

This function should be homomorphic in its second argument:

[[K]](ρ, c) = c′

[[K]](ρ, b) = b′

because if M throws an error then so does M •K.

We assume there’s no exception handling.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 108 / 128

Stacks denote homomorphisms

Consider a stack Γ `k K : B =⇒ C

where [[B]] = (X, c, b) and [[C]] = (Y, c′, b′).

What should K denote?

It acts on computations by M 7−→M •K.

So we want [[K]] : [[Γ]]×X −→ Y .

This function should be homomorphic in its second argument:

[[K]](ρ, c) = c′

[[K]](ρ, b) = b′

because if M throws an error then so does M •K.

We assume there’s no exception handling.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 108 / 128

Operations on stacks

We define [[K]] by induction on K.

Then we prove

a weakening lemma

a substitution lemma

a dismantling lemma

a concatenation lemma

providing a semantic counterpart for each operation on stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 109 / 128

Soundness of CK-machine

What should a CK-configuration Γ `ck (M,K) : C denote?

[[(M,K)]] : [[Γ]] −→ [[C]]

ρ 7−→ [[K]](ρ, [[M]]ρ)

Properties:

1 If (M,K) (M ′,K ′) then [[(M,K)]] = [[(M ′,K ′)]].

2 [[(error CRASH,K)]]ρ = c′.

3 [[(error BANG,K)]]ρ = b′.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 110 / 128

Soundness of CK-machine

What should a CK-configuration Γ `ck (M,K) : C denote?

[[(M,K)]] : [[Γ]] −→ [[C]]

ρ 7−→ [[K]](ρ, [[M]]ρ)

Properties:

1 If (M,K) (M ′,K ′) then [[(M,K)]] = [[(M ′,K ′)]].

2 [[(error CRASH,K)]]ρ = c′.

3 [[(error BANG,K)]]ρ = b′.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 110 / 128

Adjunction between values and stacks

We have an adjunction between the category of values (sets and functions)
and the category of stacks (E-pointed sets and homomorphisms).

Set
FE

⊥
//
E/Set

UE
oo

This resolves the exception monad X 7−→ X + E on Set.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 111 / 128

State

Consider CBPV extended with two storage cells:
l stores a natural number, and l′ stores a boolean.

Γ `v V : nat Γ `c M : B

Γ `c l := V. M : B

Γ, x : nat `c M : B

Γ `c read l as x. M : B

A state is l 7→ n, l′ 7→ b.

The set of states is S ∼= N× B.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 112 / 128

State

Consider CBPV extended with two storage cells:
l stores a natural number, and l′ stores a boolean.

Γ `v V : nat Γ `c M : B

Γ `c l := V. M : B

Γ, x : nat `c M : B

Γ `c read l as x. M : B

A state is l 7→ n, l′ 7→ b.

The set of states is S ∼= N× B.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 112 / 128

State

Consider CBPV extended with two storage cells:
l stores a natural number, and l′ stores a boolean.

Γ `v V : nat Γ `c M : B

Γ `c l := V. M : B

Γ, x : nat `c M : B

Γ `c read l as x. M : B

A state is l 7→ n, l′ 7→ b.

The set of states is S ∼= N× B.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 112 / 128

Big-step semantics for state

The big-step semantics takes the form s,M ⇓ s′, T .

A pair (s,M) is called an SC-configuration.

We can type these using

Γ `c M : B
s ∈ S

Γ `sc (s,M) : B

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 113 / 128

Denotational semantics of state

How can we give a denotational semantics for call-by-push-value with
state?

Algebra semantics.

Intrinsic semantics.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 114 / 128

Algebra semantics for state (briefly)

Moggi’s monad for state is S → (S ×−).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set [[A]], a semantic domain for values.

A computation type B denotes an Eilenberg-Moore algebra [[B]]alg,
a semantic domain for computations.

We complete the story with an adequacy theorem:

If s,M ⇓ s′, T then [[s,M]]ε = [[s′, T]]ε

This requires an SC-configuration to have a denotation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 115 / 128

Algebra semantics for state (briefly)

Moggi’s monad for state is S → (S ×−).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set [[A]], a semantic domain for values.

A computation type B denotes an Eilenberg-Moore algebra [[B]]alg,
a semantic domain for computations.

We complete the story with an adequacy theorem:

If s,M ⇓ s′, T then [[s,M]]ε = [[s′, T]]ε

This requires an SC-configuration to have a denotation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 115 / 128

Algebra semantics for state (briefly)

Moggi’s monad for state is S → (S ×−).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set [[A]], a semantic domain for values.

A computation type B denotes an Eilenberg-Moore algebra [[B]]alg,
a semantic domain for computations.

We complete the story with an adequacy theorem:

If s,M ⇓ s′, T then [[s,M]]ε = [[s′, T]]ε

This requires an SC-configuration to have a denotation.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 115 / 128

Intrinsic semantics of state

A value type A denotes a set [[A]], a semantic domain for values.

A computation type B denotes a set [[B]],
a semantic domain for SC-configurations.

The behaviour of an SC-configuration Γ `sc (s,M) : B depends on the
environment:

[[(s,M)]] : [[Γ]] −→ [[B]]

The behaviour of a computation Γ `c M : B depends on the state and
environment:

[[M]] : S × [[Γ]] −→ [[B]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 116 / 128

Intrinsic semantics of state

A value type A denotes a set [[A]], a semantic domain for values.

A computation type B denotes a set [[B]],
a semantic domain for SC-configurations.

The behaviour of an SC-configuration Γ `sc (s,M) : B depends on the
environment:

[[(s,M)]] : [[Γ]] −→ [[B]]

The behaviour of a computation Γ `c M : B depends on the state and
environment:

[[M]] : S × [[Γ]] −→ [[B]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 116 / 128

Intrinsic semantics of state

A value type A denotes a set [[A]], a semantic domain for values.

A computation type B denotes a set [[B]],
a semantic domain for SC-configurations.

The behaviour of an SC-configuration Γ `sc (s,M) : B depends on the
environment:

[[(s,M)]] : [[Γ]] −→ [[B]]

The behaviour of a computation Γ `c M : B depends on the state and
environment:

[[M]] : S × [[Γ]] −→ [[B]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 116 / 128

State: semantics of types

An SC-configuration of type FA will terminate as s, return V .

[[FA]] = S × [[A]]

An SC-configuration of type A→ B will pop x : A and then behave in B.

[[A→ B]] = [[A]]→ [[B]]

An SC-configuration of type B Π B′ will pop l and then behave in B,
or pop r and then behave in B′.

[[B Π B′]] = [[B]]× [[B′]]

A value Γ `v V : UB can be forced in any state s, giving an
SC-configuration s, force V .

[[UB]] = S → [[B]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 117 / 128

State: the value/stack adjunction

Consider a stack Γ `k K : B =⇒ C

What should K denote?

It acts on SC-configurations by s,M 7−→ s,M •K.

So we want [[K]] : [[Γ]]× [[B]] −→ [[C]].

This gives an adjunction

Set
S×−
⊥

//
Set

S→−
oo

between values and stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 118 / 128

State: the value/stack adjunction

Consider a stack Γ `k K : B =⇒ C

What should K denote?

It acts on SC-configurations by s,M 7−→ s,M •K.

So we want [[K]] : [[Γ]]× [[B]] −→ [[C]].

This gives an adjunction

Set
S×−
⊥

//
Set

S→−
oo

between values and stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 118 / 128

State: the value/stack adjunction

Consider a stack Γ `k K : B =⇒ C

What should K denote?

It acts on SC-configurations by s,M 7−→ s,M •K.

So we want [[K]] : [[Γ]]× [[B]] −→ [[C]].

This gives an adjunction

Set
S×−
⊥

//
Set

S→−
oo

between values and stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 118 / 128

State in call-by-value and call-by-name

For call-by-value we recover

[[boolCBV]] = 1 + 1

[[A→CBV B]] = [[U(A→ FB)]]

= S → ([[A]]→ (S × [[B]]))

This is standard.

For call-by-name we recover

[[boolCBN]] = [[F (1 + 1)]]

= S × (1 + 1)

[[A→CBN B]] = [[UA→ B]]

= (S → [[A]])→ [[B]]

This is O’Hearn’s semantics of types for a stateful CBN language.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 119 / 128

State in call-by-value and call-by-name

For call-by-value we recover

[[boolCBV]] = 1 + 1

[[A→CBV B]] = [[U(A→ FB)]]

= S → ([[A]]→ (S × [[B]]))

This is standard.

For call-by-name we recover

[[boolCBN]] = [[F (1 + 1)]]

= S × (1 + 1)

[[A→CBN B]] = [[UA→ B]]

= (S → [[A]])→ [[B]]

This is O’Hearn’s semantics of types for a stateful CBN language.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 119 / 128

Naming and changing the current stack

Extend the language with two instructions:

letstk α means let α be the current stack.

changestk α means change the current stack to α.

Execution takes places in a bigger language.

Γ letstk α. M B K C | ∆
Γ M [K/α] B K C | ∆

Γ changestk K. M B′ L C | ∆
Γ M B K C | ∆

Similar to Crolard’s syntax. Numerous variations in the literature.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 120 / 128

Naming and changing the current stack

Extend the language with two instructions:

letstk α means let α be the current stack.

changestk α means change the current stack to α.

Execution takes places in a bigger language.

Γ letstk α. M B K C | ∆
Γ M [K/α] B K C | ∆

Γ changestk K. M B′ L C | ∆
Γ M B K C | ∆

Similar to Crolard’s syntax. Numerous variations in the literature.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 120 / 128

Typing judgements for control

We have typing judgements:

Γ `v V : A | ∆ Γ `c M : B | ∆

The stack context ∆ consists of declarations α : B,
meaning α is a stack from B.

Example typing rules

Γ `c M : B | ∆, α : B

Γ `c letstk α. M | ∆

Γ `c M : B | ∆
(α : B) ∈ ∆

Γ `c changestk α. M : B′ | ∆

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 121 / 128

Typing judgements for control

We have typing judgements:

Γ `v V : A | ∆ Γ `c M : B | ∆

The stack context ∆ consists of declarations α : B,
meaning α is a stack from B.

Example typing rules

Γ `c M : B | ∆, α : B

Γ `c letstk α. M | ∆

Γ `c M : B | ∆
(α : B) ∈ ∆

Γ `c changestk α. M : B′ | ∆

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 121 / 128

Typing judgements for execution language

During execution, the top-level type C must be indicated:

Γ `v V : A [C] ∆ Γ `c M : B [C] ∆

Γ `k K : B =⇒ C | ∆ Γ `ck (M,K) : C | ∆

Typically Γ and ∆ would be empty and C = F bool.

Example typing rules

(α : B) ∈ ∆
Γ `k α : B =⇒ C | ∆

Γ `k K : B =⇒ C | ∆ Γ `c M : B [C] ∆

Γ `c changestk K. M : B′ [C] ∆

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 122 / 128

Typing judgements for execution language

During execution, the top-level type C must be indicated:

Γ `v V : A [C] ∆ Γ `c M : B [C] ∆

Γ `k K : B =⇒ C | ∆ Γ `ck (M,K) : C | ∆

Typically Γ and ∆ would be empty and C = F bool.

Example typing rules

(α : B) ∈ ∆
Γ `k α : B =⇒ C | ∆

Γ `k K : B =⇒ C | ∆ Γ `c M : B [C] ∆

Γ `c changestk K. M : B′ [C] ∆

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 122 / 128

Algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration,
with no free identifiers and no nil,
would denote an element of R.

Moggi’s monad for control operators (“continuations”) is (− → R)→ R.

Maybe we can build a denotational semantics
where a computation type B denotes an Eilenberg-Moore algebra [[B]]alg,
a semantic domain for computations.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 123 / 128

Algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration,
with no free identifiers and no nil,
would denote an element of R.

Moggi’s monad for control operators (“continuations”) is (− → R)→ R.

Maybe we can build a denotational semantics
where a computation type B denotes an Eilenberg-Moore algebra [[B]]alg,
a semantic domain for computations.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 123 / 128

Algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration,
with no free identifiers and no nil,
would denote an element of R.

Moggi’s monad for control operators (“continuations”) is (− → R)→ R.

Maybe we can build a denotational semantics
where a computation type B denotes an Eilenberg-Moore algebra [[B]]alg,
a semantic domain for computations.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 123 / 128

Intrinsic semantics of control

The denotation of B is a semantic domain for stacks from B.

That means: a hypothetical extremely closed stack from B,
with no free identifiers and no nil,
would denote an element of [[B]].

The behaviour of a computation Γ `c M : B | ∆ depends on the
environment, current stack and stack environment:

[[M]] : [[Γ]]× [[B]]× [[∆]] −→ R

A value Γ `v V : A | ∆ denotes

[[V]] : [[Γ]]× [[∆]] −→ [[A]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 124 / 128

Intrinsic semantics of control

The denotation of B is a semantic domain for stacks from B.

That means: a hypothetical extremely closed stack from B,
with no free identifiers and no nil,
would denote an element of [[B]].

The behaviour of a computation Γ `c M : B | ∆ depends on the
environment, current stack and stack environment:

[[M]] : [[Γ]]× [[B]]× [[∆]] −→ R

A value Γ `v V : A | ∆ denotes

[[V]] : [[Γ]]× [[∆]] −→ [[A]]

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 124 / 128

Control: semantics of types

A stack from FA receives a value x : A and then behaves as a
configuration.

[[FA]] = [[A]]→ R

A stack from A→ B is a pair V :: K.

[[A→ B]] = [[A]]× [[B]]

A stack from B Π B′ is a tagged stack l :: K or r :: K.

[[B Π B′]] = [[B]] + [[B′]]

A value of type UB can be forced alongside any stack K, giving a
configuration.

[[UB]] = [[B]]→ R

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 125 / 128

Semantics of the execution language

The semantics of a term in the execution language
depends not only on the environment and the stack environment
but also on the top-level stack.

In particular, a stack Γ `k K : B =⇒ C | ∆ denotes

[[K]] : [[Γ]]×[[C]]×[[∆]] −→ [[B]]

That gives an adjunction

Set
−→R
⊥

//
Setop

−→R
oo

between values and stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 126 / 128

Semantics of the execution language

The semantics of a term in the execution language
depends not only on the environment and the stack environment
but also on the top-level stack.

In particular, a stack Γ `k K : B =⇒ C | ∆ denotes

[[K]] : [[Γ]]×[[C]]×[[∆]] −→ [[B]]

That gives an adjunction

Set
−→R
⊥

//
Setop

−→R
oo

between values and stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 126 / 128

Semantics of the execution language

The semantics of a term in the execution language
depends not only on the environment and the stack environment
but also on the top-level stack.

In particular, a stack Γ `k K : B =⇒ C | ∆ denotes

[[K]] : [[Γ]]×[[C]]×[[∆]] −→ [[B]]

That gives an adjunction

Set
−→R
⊥

//
Setop

−→R
oo

between values and stacks.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 126 / 128

Control in call-by-value and call-by-name

Abbreviate ¬X def
= X → R.

For call-by-value we recover

[[boolCBV]] = 1 + 1

[[A→CBV B]] = [[U(A→ FB)]]

= ¬([[A]]× ¬[[B]])

This is standard.

For call-by-name we recover

[[boolCBN]] = [[F (1 + 1)]]

= ¬(1 + 1)

[[A→CBN B]] = [[UA→ B]]

= ¬[[A]]× [[B]]

This is Streicher and Reus’ semantics
for a CBN language with control operators.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 127 / 128

Control in call-by-value and call-by-name

Abbreviate ¬X def
= X → R.

For call-by-value we recover

[[boolCBV]] = 1 + 1

[[A→CBV B]] = [[U(A→ FB)]]

= ¬([[A]]× ¬[[B]])

This is standard.

For call-by-name we recover

[[boolCBN]] = [[F (1 + 1)]]

= ¬(1 + 1)

[[A→CBN B]] = [[UA→ B]]

= ¬[[A]]× [[B]]

This is Streicher and Reus’ semantics
for a CBN language with control operators.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 127 / 128

Control in call-by-value and call-by-name

Abbreviate ¬X def
= X → R.

For call-by-value we recover

[[boolCBV]] = 1 + 1

[[A→CBV B]] = [[U(A→ FB)]]

= ¬([[A]]× ¬[[B]])

This is standard.

For call-by-name we recover

[[boolCBN]] = [[F (1 + 1)]]

= ¬(1 + 1)

[[A→CBN B]] = [[UA→ B]]

= ¬[[A]]× [[B]]

This is Streicher and Reus’ semantics
for a CBN language with control operators.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 127 / 128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set
FE

⊥
//
E/Set

UE
oo

models call-by-push-value with errors.

For a set S, the adjunction Set
S×−
⊥

//
Set

S→−
oo

models call-by-push-value with state.

For a set R, the adjunction Set
−→R
⊥

//
Setop

−→R
oo

models call-by-push-value with control.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 128 / 128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set
FE

⊥
//
E/Set

UE
oo

models call-by-push-value with errors.

For a set S, the adjunction Set
S×−
⊥

//
Set

S→−
oo

models call-by-push-value with state.

For a set R, the adjunction Set
−→R
⊥

//
Setop

−→R
oo

models call-by-push-value with control.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 128 / 128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set
FE

⊥
//
E/Set

UE
oo

models call-by-push-value with errors.

For a set S, the adjunction Set
S×−
⊥

//
Set

S→−
oo

models call-by-push-value with state.

For a set R, the adjunction Set
−→R
⊥

//
Setop

−→R
oo

models call-by-push-value with control.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 128 / 128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set
FE

⊥
//
E/Set

UE
oo

models call-by-push-value with errors.

For a set S, the adjunction Set
S×−
⊥

//
Set

S→−
oo

models call-by-push-value with state.

For a set R, the adjunction Set
−→R
⊥

//
Setop

−→R
oo

models call-by-push-value with control.

Paul Blain Levy (University of Birmingham) λ-calculus, effects and call-by-push-value April 2, 2023 128 / 128

	Pure -calculus
	Syntax
	Denotational semantics
	The -theory
	Reversible rules
	Operational semantics

	Adding Effects
	Outline
	Errors and printing, operationally

	Call-by-value with errors
	Denotational semantics
	Substitution and values
	Fine-grain call-by-value

	Call-by-name with errors
	Call-by-push-value
	Stacks
	State
	Control

