A-calculus, effects and call-by-push-value

Paul Blain Levy
University of Birmingham

April 2, 2023

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 1/128

a Pure A-calculus
@ Syntax
@ Denotational semantics
@ The [Bn-theory
@ Reversible rules
@ Operational semantics
© Adding Effects
@ Outline
@ Errors and printing, operationally
© Call-by-value with errors
@ Denotational semantics
@ Substitution and values
@ Fine-grain call-by-value
@ Call-by-name with errors
© Call-by-push-value
© stacks
@ state
e Control

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 2/128

We're going to look at simply typed A-calculus with arithmetic,
including not just function types, but also sum and product types.

Here is the syntax of types:

A == bool |nat | A A | 1| AxXxA|]O0O| A+A

| Y ienAi | [lienAi (optional extra)

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 3/128

We're going to look at simply typed A-calculus with arithmetic,
including not just function types, but also sum and product types.

Here is the syntax of types:

A bool |nat | A A |1 | AxA|0] A+ A

| Y ienAi | [lienAi (optional extra)

Why no brackets?

@ You might expect A := .- | (A).

@ But our definition is abstract syntax.

@ This means a type—or a term—is a tree of symbols, not a string of
symbols.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 3/128

Typing Judgement

x :nat, y:nat bk AZpatonat- 2 (x + x) : (nat — nat) — nat

In English:

Given declarations of x : nat and y : nat,

AZpat—snat- Z (X + x) is a term of type (nat — nat) — nat.

The typing judgement takes the form I' = M : A.
o [is a typing context, a list of typed distinct identifiers.
e M is a term.

o Ais a type.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Identifiers

The most basic typing rules, not associated with any particular type.

Free identifier

——(x:A4) el
'kFx: A

Multiple local declaration, e.g. of two identifiers
'-M:A T'FM :B TI,x:Ay:BFN:C
'k let (x be M, ybe M'). N:C

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 5/128

Typing rules for A — B

Introduction rule
I''x:A-M:B

'FXxq. M:A— B

Elimination rule
'FM:A—-B T'HFN:A

I'FMN:B

Type annotations in terms
For I and M, there's at most one A such that ' M : A
and at most one derivation of ' = M : A.

This is because of our type annotations.

Some formulations omit some or all of these.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Typing rules for bool

Two introduction rules:

I' F true : bool I'F false : bool

Elimination rule

I'M:bool THFN:B T'HN':B

['-match M as {true. N, false. N'} : B

It's a pretentious notation for if M then N else N'.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 7/128

Typing rules for arithmetic

These are ad hoc rules.
I'M:nat TF M’ :nat
I'F 17 : nat ' M+ M :nat

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 8/128

Typing rules for A+ B

Two introduction rules
'EM:A I'M:B
+in1*? M:A+B Ttrinr®™? M: A+ B

Elimination rule
'M:A+B I''x:A-N:C TI,y:BFN':C
I'Fmatch M as {inl x. N, inr y. N’} : C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 9/128

Typing rules for A+ B

Two introduction rules

r-M:A I'-M:B

F'Fin1*? M:A+B Trinr*® M: A+ B
Elimination rule

'M:A+B I''x:A-N:C TI,y:BFN':C

'+ match M as {inl x. N, inry. N'}: C

Likewise for 3, A;.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 9/128

Typing rules for 0

Zero introduction rules

Elimination rule
I'EM:0

I'Fmatch M as {}* : A

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 10 /128

Typing rules for A x B

Introduction rule
'-mM:A T'THN:B

T'H(M,N):Ax B

Two options for elimination

@ Pattern-matching product. Elimination rule

'FM:AxB I''x:Ajy:BFN:C
I' - match M as (x,y). N:C

@ Projection product. Two elimination rules

'M:AxB 'M:AxB
LM A '+ M*:B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 11 /128

Typing rules for A x B

Introduction rule
'-mM:A T'THN:B

T'H(M,N):Ax B

Two options for elimination

@ Pattern-matching product. Elimination rule

'FM:AxB I''x:Ajy:BFN:C
I' - match M as (x,y). N:C

@ Projection product. Two elimination rules

'M:AxB 'M:AxB
LM A '+ M*:B

[[;cnAi is a projection product.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 11 /128

Typing rules for 1

Introduction rule

r=():1

Two options for elimination

@ Pattern-match unit. Elimination rule
THFM:1 THFN:C
I' match M as (). N:C

@ Projection unit. Zero elimination rules

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 12 /128

Weakening is admissible

fT'-M:Aand T CT’ then I'" - M : A. I

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 13 /128

Binding diagrams (Quine, Bourbaki)

Example
The term (x+y) + let (y be 3). (x+y) has binding diagram

(x+y) + let ([] be 3). (x + ()

@ Terms are a-equivalent when they have the same binding diagram.

def
<~

M=, N BD(M) = BD(N)

@ The collection of binding diagrams forms an initial algebra [FPT; AR].

o We'll skate over this issue. It's not specific to A-calculus.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 14 /128

Substitution

Subsitution is an operation on binding diagrams, not on terms.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Substitution

Subsitution is an operation on binding diagrams, not on terms.

Multiple substitution, e.g. for two identifiers
fTHM:AandT'H M :BandT,x: A,;y: B-N:C,

we define ' - N[M /x, M'/y] : C.

v

M = Aypat-y+3

M =7
N = x(b+y)
N[M/x,M']y] = (AzZpas-z+3)(5+7)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Types denote sets

o Every type A denotes a set [A].

@ For example, [nat — nat] is the set of functions N — N.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 16 /128

Types denote sets

Every type A denotes a set [A].

For example, [nat — nat] is the set of functions N — N.

[A] is a semantic domain for terms of type A.

@ This means: a closed term of type - M : A
denotes an element of [A].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 16 /128

Types denote sets

Every type A denotes a set [A].

For example, [nat — nat] is the set of functions N — N.

[A] is a semantic domain for terms of type A.

@ This means: a closed term of type - M : A
denotes an element of [A].

For example, Axpat. x + 3 denotes Aa € N.a + 3.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 16 /128

Semantics of types

For sets X and Y,
@ X — Y is the set of functions from X to Y.

e X xYis{(z,y) |z e X,yeY}.
e X+Yis{inlz|ze X}U{inry|yeY}.

[pbool] = B = {true,false}
[nat] = N
[A— B] = [A] — [B]

[= 1={0}
[A+B] = [A]+[B]
[AxB] = [A]x[B]

[o] = 0

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 17 /128

Semantic environments

Let I' be a typing context.

e A semantic environment p for I' provides an element py € [A]
for each (x: A) e T

o [I'] is the set of semantic environments for T

rp= II 14

(x:A)el

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 18 /128

Semantics of typing judgement

Given a typing judgement I' - M : A,
we shall define [M], or more precisely [I" = M : A].
It's a function from [I'] to [A].

x :nat,y :nat b AZpat—snat- 2(x +y) : (nat — nat) — nat

denotes the function

[x :nat,y:nat] — (N—N)—>N

p — Az €N = N.z(pe + py)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023

19/128

Semantics of terms

I'+17 : nat
7] : pr— 17

I'M:nat TF M :nat
' M+ M :nat

[M+MT : pr— [M]p+[M]p

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 20/128

More semantic equations

— (x:A4) el
I'kx: A
[x] : p— px
I'x:A-M:B

I'Xxsq. M:A— B

[Axa. M] : pr— Aa € [A].[M](p,x — a)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 21/128

More semantic equations

T'-M:A
I'Fin1®? M : A+ B

[in14P M] : p+— inl [M]p

'M:A+B TI''x:A-N:C TI,y:BFN:C
['Fmatch M as {inl x. N,inry. N'}: C

[match M as {inl x. N,inr y. N'}] : p—
match [M]p as {inl a. [N](p,x — a),inr b.[N'](p,y — b)}

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 22 /128

Basic properties

Semantic Coherence

If type annotations are omitted,
then I' = M : A can have more than one derivation.

We must prove that [I' = M : A] doesn't depend on the derivation.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 23/128

Basic properties

Semantic Coherence
If type annotations are omitted,

then I' = M : A can have more than one derivation.

We must prove that [I' = M : A] doesn't depend on the derivation.

Weakening Lemma
IfT'HM:AandT CTI’then

[+ M: Alp=[I'+M](p Ir)

23/128

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Substitution

Binding Diagrams

@ We can give denotational semantics of binding diagrams.
o ['FM:A]=[IFBD(M): A]

@ So a-equivalent terms have the same denotation.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 24 /128

Substitution

Binding Diagrams

@ We can give denotational semantics of binding diagrams.
o ['FM:A]=[IFBD(M): A]

@ So a-equivalent terms have the same denotation.

Substitution Lemma

For binding diagrams ' M : Aand T M': Band T',x: AF N : C,
we can recover [N[M/x, M’ /y]] from [N] and [M] and [M'].

[N[M/x, M'/y]] : p— [N](p,x = [M]p,y — [M']p)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 24 /128

The B-law for A -+ B
'EM:A T''x:A-N:B
'+ (Axq. N)M = N[M/x]: B

Introduction inside an elimination may be removed.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 25/128

The B-law for A -+ B
'EM:A T''x:A-N:B
'+ (Axq. N)M = N[M/x]: B

Introduction inside an elimination may be removed.

Two B-laws for projection product A x B
'FM:A THFN:A
F-(M,N'=M:A

Zero [-laws for projection unit 1

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 25/128

Two B-laws for bool

'EN:C TEN:C
[- match true as {true. N, false. N'} =N :C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 26 /128

Two B-laws for bool

'EN:C TEN:C
[- match true as {true. N, false. N'} =N :C

Two B-laws for A + B
'-M:A TI'x:A-N:C T,y:BFN:C
I Fmatch in1? M as {inl x. N, inr y. N’} = N[M/x] : C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 26 /128

Two B-laws for bool

'EN:C TEN:C
[- match true as {true. N, false. N'} =N :C

Two B-laws for A + B

'-M:A TI'x:A-N:C T,y:BFN:C
I Fmatch in1? M as {inl x. N, inr y. N’} = N[M/x] : C

Zero (B-laws for 0

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 26 /128

[-law for local declaration

'-M:A M :B TI,x:Ay:BFN:C
I'let (xbe M, ybe M'). N=N[M/x,M'/y]:C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 27 /128

n-laws

n-law for A — B, everything is A

'-M:A—B
X
'FM=Xxsy.Mx:A—B

ZT

Introduction outside an elimination may be inserted.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 28 /128

n-laws

n-law for A — B, everything is A
'-M:A— B
X
I'EM=Xxs. Mx:A— B

ZT

Introduction outside an elimination may be inserted.
n-law for projection product A x B, everything is a tuple
I'HM:AxB
'-M=(M"M"):Ax B

n-law for projection unit 1, everything is a tuple
'eM:1
r-M=(:1

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 28 /128

More n-laws

n-law for bool, everything is true or false

I'FM:bool I',z:boolk N:C

T+ N[M/z] =
match M as {true. N[true/z|, false. N[false/z|}: C

)

zg&T

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 29 /128

More n-laws

n-law for bool, everything is true or false

I'FM:bool I',z:boolk N:C

zg&T
T+ N[M/z] =
match M as {true. N[true/z|, false. N[false/z|}: C
n-law for A + B, everything is inl or inr
'-M:A+B T';z: A+ BEN:C
z& D

T+ N[M/z] =
match M as {inl x. N[inl x/z], inr y. N[inr y/z]}: C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 29 /128

More n-laws

n-law for bool, everything is true or false

I'FM:bool I',z:boolk N:C

zg&T
T+ N[M/z] =
match M as {true. N[true/z|, false. N[false/z|}: C
n-law for A + B, everything is inl or inr
'-M:A+B T';z: A+ BEN:C
z& D

T+ N[M/z] =
match M as {inl x. N[inl x/z], inr y. N[inr y/z]}: C

n-law for 0, nothing exists
'EM:0 Iz:0FN:C
'+ N[M/z] =match M as {}¢:C

zgT

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 29 /128

The Bn-theory

We define I' = M =g,) M’ : A inductively as follows.
All the 8- and n-laws are taken as axioms,

and it is a congruence i.e. an equivalence relation preserved by each term
constructor. For example:

Ix:A-M=M':B
F'FAxa. M=Xx,. M :A— B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 30/128

Properties of

Closure Theorems

@ =g, is closed under weakening. But not conversely, e.g.

z:0 F true =py false : bool
but not k- true =g, false : bool

@ =g, is closed under substitution.

v

Soundness theorem

If T+ M =g, M’ : A then [M] = [M'].

Follows from the weakening and substitution lemmas.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 31/128

Reversible rule for A — B

The connective — is rightist: it has a reversible rule
I'x: A+ B
'-rA— B

natural in I'—we'll skate over naturality.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 32/128

Reversible rule for A — B

The connective — is rightist: it has a reversible rule
I'x: A+ B
'-rA— B
natural in I'—we'll skate over naturality.
@ Downwards, aterm I',x : A+ M : B is sent to A\x4. M.

o Upwards, aterm ' N : A — B is sent to N x.

@ These are inverse up to =g,,.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 32/128

Reversible rule for A — B

The connective — is rightist: it has a reversible rule
I'x: A+ B
'-rA— B
natural in I'—we'll skate over naturality.
@ Downwards, aterm I',x : A+ M : B is sent to A\x4. M.

o Upwards, aterm ' N : A — B is sent to N x.
@ These are inverse up to =g,,.

A — B appears on the right of - in the conclusion.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

32/128

Reversible rule for bool

The (nullary) connective bool is leftist.
That means: it has a reversible rule

r-c r+c
I'z:boolk C

natural in I" and C—we’'ll skate over naturality.

e Downwards, a pairI' M :C and '+ M’ : C is sent to
match z as {true. M, false. M'}.

@ Upwards, a term ',z : bool = N : C is sent to
N[true/z] and N[false/z].
@ These are inverse up to =g,.

bool appears on the left of - in the conclusion.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 33/128

Reversible rule for A + B

The connective + is leftist, having a reversible rule
x:AFC T,y:BFC
I'z: A+ BEC

natural in I" and C.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 34 /128

Reversible rule for A + B

The connective + is leftist, having a reversible rule

x:AFC T,y:BFC
I'z: A+ BEC

natural in I" and C.

The (nullary) connective 0 is leftist, having a reversible rule

I''z:0FC

natural in I" and C.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 34 /128

Bipartisan connectives

The connective x has a reversible rule
'rA T'FB
I'FAxB

natural in T, so it's rightist.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 35/128

Bipartisan connectives

The connective x has a reversible rule

'-rA I'kB
‘THAxB
natural in T, so it's rightist.
It also has a reversible rule
I''x:Ay:BFC
Iz:AxBEFC

natural in I and C, so it's leftist.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

35/128

Bipartisan connectives

The connective x has a reversible rule

'-rA I'kB
‘THAxB
natural in T, so it's rightist.
It also has a reversible rule
I''x:Ay:BFC
Iz:AxBEFC

natural in I and C, so it's leftist.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

35/128

Bipartisan connectives

The connective x has a reversible rule
'-rA I'kB
‘THAxB
natural in T, so it's rightist.
It also has a reversible rule
I''x:Ay:BFC
Iz:AxBEFC

natural in I and C, so it's leftist.

In summary, the connective X is bipartisan.
Likewise the (nullary) connective 1.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 35/128

Most general leftist connective

The variant tuple type {0 A A, 1 B, B, B"} denotes a sum of
products

([A] < [AD) + (IB] x [B] x [B"])
This gives a leftist connective.
A, A+C T,B,B,B"FC
0, X[{°A4,4; 'B,B'B"} - C

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 36 /128

Most general leftist connective

The variant tuple type {0 A A, 1 B, B, B"} denotes a sum of
products

([A] < [AD) + (IB] x [B] x [B"])
This gives a leftist connective.
A, A+C T,B,B,B"FC
0, X[{°A4,4; 'B,B'B"} - C

Here is its term syntax:

ino(M, M’)
ing (M, M', M")
match M as {ing(x,%'). N, ini(y,y’,y"). N}

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 36 /128

Most general rightist connective

The variant function type {0 A A" B; 1O,C",C" - D} denotes a
product of multi-ary function types

(([A] < [A']) = [B]) x (([C] = [C] x [C"]) — [D])
This gives a rightist connective.

I A, A+B T,C,C',C"+D
THI|{°A, A"+ B; 'C,C',C"+ D}

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023

Most general rightist connective

The variant function type {0 A A" B; 1O,C",C" - D} denotes a
product of multi-ary function types

(([A] < [A']) = [B]) x (([C] = [C] x [C"]) — [D])
This gives a rightist connective.

I A, A+B T,C,C',C"+D
THI|{°A, A"+ B; 'C,C',C"+ D}

Here is its term syntax:

MOx, %)M (y,y,y").M'}
MOY(N,N')
M 1(N, N/, N//)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 37/128

Jumbo \-calculus

Type syntax

— —
A = [Z|{AYien | [O[{AiF Bi}ich (n€Norn=c)
Term syntax, with type annotations omitted

M == x| let(xbe M). M
| in; (M)
| mapch M as {1n1(?)M2}1<n
| MUE). Mi}icn
| M)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 38/128

Jumbo \-calculus

Type syntax

— —
A o= [ZHAYicn | [O{AiF Bilicn (n€Norn=o)
Term syntax, with type annotations omitted

M == x| let(xbe M). M
| iny (M)
| mapch M as {1n1(?)M2}1<n
| MUE). Mi}icn
| M)

Includes both pattern-match product A x B
and projection product A1 B.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 38/128

Jumbo vs non-jumbo

Jumbo A-calculus is the most expressive form of simply typed A-calculus:

it contains all leftist and rightist connectives as primitives.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 39/128

Jumbo vs non-jumbo

Jumbo A-calculus is the most expressive form of simply typed A-calculus:
it contains all leftist and rightist connectives as primitives.

Modulo =g, it is no more expressive than the non-jumbo version.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 39/128

Jumbo vs non-jumbo

Jumbo A-calculus is the most expressive form of simply typed A-calculus:
it contains all leftist and rightist connectives as primitives.
Modulo =g, it is no more expressive than the non-jumbo version.

But the 8- and 7-laws are not going to survive.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 39/128

Evaluating terms

We want to evaluate every closed term - M : A to a terminal term.
We want Ax4. M to be terminal, since M is not closed.

But there are many options.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 40/128

Three decisions we must make

@ To evaluate let (x be M, y be M’). N, do we

o evaluate M to T and M’ to T”, then evaluate N[T/x,T"/y]?
e just evaluate N[M/x, M'/y]?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 41/128

Three decisions we must make

@ To evaluate let (x be M, y be M’). N, do we
o evaluate M to T and M’ to T”, then evaluate N[T/x,T"/y]?
e just evaluate N[M/x, M'/y]?

@ To evaluate M N, we must evaluate M to Axy. P. Do we

o evaluate N to T' (before or after evaluating M), then evaluate P[T/x]?
o just evaluate P[N/x]?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 41/128

Three decisions we must make

@ To evaluate let (x be M, y be M’). N, do we
o evaluate M to T and M’ to T”, then evaluate N[T/x,T"/y]?
o just evaluate N[M/x, M'/y]?
@ To evaluate M N, we must evaluate M to Axy. P. Do we
o evaluate N to T' (before or after evaluating M), then evaluate P[T/x]?
o just evaluate P[N/x]?
© Any terminal term of type A + B must be inl M or inr M. Do we

e deem inl 7" and inr T terminal only if T is terminal?
e always deem inl M and inr M terminal?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 41/128

One fundamental decision

Do we substitute terminal terms, or unevaluated terms?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 42/128

ne fundamental decision

Do we substitute terminal terms, or unevaluated terms?
Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 42/128

One fundamental decision

Do we substitute terminal terms, or unevaluated terms?
Substituting terminal terms gives call-by-value or eager evaluation.

Substituting unevaluated terms gives call-by-name.

Terminology: lazy and call-by-name

@ “Lazy" evaluation usually means call-by-need,
except in Abramsky’s “lazy A-calculus”.

@ In the untyped literature, “call-by-name” evaluation
means reduction to head normal form.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 42/128

Evaluation order for let

To evaluate let (x be M, y be M'). N, do we

@ evaluate M to T and M’ to T”, then evaluate N[T/x,T"/y]?
Call-by-value

@ just evaluate N[M/x, M'/y]? Call-by-name

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 43/128

Evaluation order for application

To evaluate M N, we must evaluate M to Ax4. P. Do we

@ evaluate N to T' (before or after evaluating M), then evaluate
P[T/x]? Call-by-value
@ just evaluate P[N/x|? Call-by-name

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 44 /128

Terminal terms of type A + B

Any terminal term of type A + B must be inl M or inr M. Do we
@ deem inl T and inr T terminal only if T" is terminal? Call-by-value
@ always deem inl M and inr M terminal? Call-by-name

Consider evaluation of match P as {inl x. N, inr y. N’} to see this.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 45/128

Definitional interpreter for call-by-value

CBV terminals T'::= true | false | inl T | inr T | Ax.M
To evaluate

@ true: return true.

@ M + N: evaluate M. If this returns m, evaluate N. If this returns n,
return 1m + n.

@ A\x.M: return \x. M.

@ inl M: evaluate M. If this returns 7', return inl 7.

@ let (x be M, y be M’). N: evaluate M. If this returns 7', evaluate
M'. If this returns 7", evaluate N[T'/x,T"/y].

e match M as {true. N, false. N'}: evaluate M. If this returns
true, evaluate N, but if it returns false, evaluate N'.

e match M as {inl x. N, inr x. N'}: evaluate M. If this returns
inl 7', evaluate N[T'/x], but if it returns inr 7', evaluate N'[T/x].

@ VM N: evaluate M. If this returns Ax.P, evaluate N. If this returns 7T,
evaluate P[T/x].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 46 /128

Definitional interpreter for call-by-name

In CBN the terminals are true, false,inl M, inr M, Ax.M
To evaluate

true: return true.

M + N: evaluate M. If this returns m, evaluate V. If this returns n,
return 1 + n.

Ax.M: return Ax. M.

inl M: return inl M.

let (x be M, y be M’). N: evaluate N[M/x, M'/y].

match M as {true. N, false. N'}: evaluate M. If this returns
true, evaluate N, but if it returns false, evaluate N'.

match M as {inl x. N, inr x. N'}: evaluate M. If this returns
inl P, evaluate N[P/x], but if it returns inr P, evaluate N'[P/x].

M N': evaluate M. If this returns Ax.P, evaluate P[N/x].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 47 /128

Big-step semantics for call-by-value

We write M || T to mean that M evaluates to T.
This is defined inductively, for example
M | dxa. P N YT PT/x] 4T
MN | T

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 48/128

Big-step semantics for call-by-value

We write M || T to mean that M evaluates to T.

This is defined inductively, for example

My xaP NUT PT/x] 4T
MN | T

If = M : Athen M | T for unique T.
Moreover - T': A and [M] = [T].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 48/128

Big-step semantics for call-by-name

We write M |} T to mean that M evaluates to T'.
This is defined inductively, for example

M | Xx4. P P[N/x] 4 T
MN{T

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 49 /128

Big-step semantics for call-by-name

We write M |} T to mean that M evaluates to T'.
This is defined inductively, for example

M | Xx4. P P[N/x] 4 T
MN{T

If = M : Athen M | T for unique T.
Moreover - T : A and [M] = [T].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023

49 /128

The experiment
o Add effects to (jumbo) A-calculus, with CBV or CBN evaluation.

@ See what equations and isomorphisms survive.

@ Seek a denotational semantics for each language.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 50 /128

The experiment
o Add effects to (jumbo) A-calculus, with CBV or CBN evaluation.

@ See what equations and isomorphisms survive.

@ Seek a denotational semantics for each language.

.

Analyzing CBV with a microscope

@ Look closely at the CBV models: there's a pattern.

@ CBV contains particles of meaning, constituting fine-grain
call-by-value.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 50/128

The experiment

o Add effects to (jumbo) A-calculus, with CBV or CBN evaluation.

@ See what equations and isomorphisms survive.

@ Seek a denotational semantics for each language.

v

Analyzing CBV with a microscope

@ Look closely at the CBV models: there's a pattern.

@ CBV contains particles of meaning, constituting fine-grain
call-by-value.

v

Increasing the magnification

@ Look very closely at the CBN and fine-grain CBV models: there's a
pattern.

@ Both contain tiny particles of meaning, constituting
call-by-push-value.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 50/128

The big picture

Call-by-value Call-by-name
jumbo A-calculus jumbo A-calculus

Fine-grain call-by-value l
jumbo A-calculus — Call-by-push-value

Both fine-grain call-by-value and call-by-push-value are obtained
empirically, by observing particles of meaning within a range of
denotational models.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 51/128

re this story comes from

@ Plotkin: semantics of recursion for call-by-name (PCF)
and call-by-value (FPC)

Moggi: list of monads for denotational semantics

Moggi: monadic metalanguage

Power and Robinson: Freyd categories

Plotkin and Felleisen: call-by-value continuation semantics
Reynolds’ Idealized Algol, a call-by-name language with state
O’Hearn: semantics of type identifiers in such a language
Streicher and Reus: call-by-name continuation semantics
Filinski: Effect-PCF

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 52 /128

Adding computational effects

Let £ = {CRASH,BANG} be a set of “errors”. We add

ec F

'k error® ¢: B

To evaluate error” e: halt with error message e.

Let A = {a,b,c,d, e} be a set of “characters”. We add

'-M:B
I'Fprintc. M : B

ce A

To evaluate print c. M: print ¢ and then evaluate M.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 53/128

Exercises

@ Evaluate
let (x be error CRASH). 5

in CBV and CBN.

@ Evaluate
(Ax.(x + x))(print "hello". 4)

in CBV and CBN.
© Evaluate

match (print "hello". inr error CRASH) as
{inl x. x + 1, inr y. 5}

in CBV and CBN.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 54 /128

Big-step semantics for errors

For call-by-value, we inductively define two big-step relations:
o M || T means M evaluates to T
@ M 4/ e means M raises error e.
Here are the rules for application:
Mije M| x.P Nise
MNje MN je

My x.P NUT P[T/x4e
MNje

My xx.P NUT P[T/x]4T
MN | T

Likewise for call-by-name.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 55/128

Observational equivalence

A program is a closed term of type nat or bool.

Two terms I' = M, M’ : B are observationally equivalent
when C[M] and C[M’] have the same behaviour

for every program with a hole C[-].

Same behaviour means: print the same string, raise the same error, return
the same boolean.

We write M ~cgv M’ and M ~cn M.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 56 /128

The n-law for boolean type: has it survived?

n-law for bool
Any term I',z : bool = M : B can be expanded as

match z as {true. M[true/z|, false. M|[false/z]}

Anything of boolean type is a boolean.

This holds in CBV, because z can only be replaced by true or false.

But it's broken in CBN, because z might raise an error. For example,

true #cBN match z as {true. true, false. true}

because we can apply the context
let (z be error CRASH). []

Similarly the n-law for sum types is valid in CBV but not in CBN.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 57 /128

The n-law for functions: has it survived?

n-law for A — B

Any term I' = M : A — B can be expanded as Ax.Mx.
Any term I' = M : A1t B can be expanded as A\{*. M, * M~}

Although these fail in CBV, they hold in CBN. Consequences:

error € =~CBN
error € =CBN
print c. Ax. M ~cBN

print c. \{*. M, *. N} ~cBN

AX. error e

M. error e, *.error e}

Ax. print c¢. M

M. print ¢. M, *.print c¢. N}

Yet the two sides have different operational behaviour! What's going on?

In CBN, a function gets evaluated only by being applied.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023

58 /128

The pure A-calculus satisfies all the - and 7-laws.

With computational effects,

o CBYV satisfies 7 for leftist connectives (tuple types), but not rightist
ones (function types)

o CBN satisfies 7 for rightist connectives (function types), but not
leftist ones (tuple types).

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 59 /128

The pure A-calculus satisfies all the - and 7-laws.

With computational effects,

o CBYV satisfies 7 for leftist connectives (tuple types), but not rightist
ones (function types)

o CBN satisfies 7 for rightist connectives (function types), but not
leftist ones (tuple types).

Similarly for isomorphisms:
o (A+B)+C= A+ (B+C) survives in CBV but not CBN.
e A Xx B= An B survives in neither CBV nor CBN.
e A— (B— ()= (AuB) — C survives in CBN but not CBV.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 59 /128

Naive CBV semantics

Our first attempt.
Each type A denotes a set, a semantic domain for terms.
[bool], = B+ FE

[bool + bool]. (B+B)+ E
[bool x bool], (BxB)+E

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 60 /128

Naive CBV semantics

Our first attempt.

Each type A denotes a set, a semantic domain for terms.

[bool], = B+ FE
[oool +bool], = (B+B)+FE
[bool X bool], = (BxB)+ FE

Not easy to make this compositional, so we abandon it.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 60 /128

CBV denotational semantics

Each type denotes a set, a semantic domain for terminals.

[oool] = B
[A+B] = [A]+[B]
[A—B] = [[A]]—>([[[+ E)
[0 —B] = [B]+
= 11 [[A]]
(x:A)el

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 61 /128

CBV denotational semantics

Each type denotes a set, a semantic domain for terminals.

[oool] = B
[A+B] = [A]+[B]
[A—B] = [[A]]—>([[[+ E)
[0 —B] = [B]+
= 11 [[A]]
(x:A)el

Each term T' = M : B denotes a function [M] : [I'] — ([B] + E).

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 61 /128

Semantics of term constructors

I''x:A-M:B
I'FXxeAM:A— B

[Axa. M] : p—inl Xa € [A]. [M](p,x — a)

'rM:A—-B T'FN:A

I'-MN:B
. inl z. f(z)
[M NJ] : p+—— match [M]p as inl f. match [N]p as { inre. inre
inre. inre

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 62 /128

More term constructors

'FM:A
I'Fin1®? M : A+ B

inl a. inlinla

. 1AB .
[in1" M] : p — match [M]p as { inr e inre

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 63 /128

More term constructors

'FM:A
I'Fin1®? M : A+ B

inl a. inlinla

. 1AB .
[in1" M] : p — match [M]p as { inr e inre

To prove the soundness of the denotational semantics, we need a
substitution lemma.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 63 /128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [N[M/x]] from [M] and [N]?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 64 /128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [N[M/x]] from [M] and [N]? Not in CBV.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 64 /128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [N[M/x]] from [M] and [N]? Not in CBV.

Example that rules out a general substitution lemma

Define = M : bool and x : bool = N, N’ : bool.

M =
N ¥
N &
[N] =
[N[M/x]] #

error CRASH

true

match x as {true.true, false.true}
[N'] because N = po01 IV
[N'[M/x]]

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value April 2, 2023

64 /128

CBV Substitution Lemma: What Doesn’t Work

Can we obtain [N[M/x]] from [M] and [N]? Not in CBV.

Example that rules out a general substitution lemma

Define = M : bool and x : bool = N, N’ : bool.

M = error CRASH
N € true
N’ = match x as {true.true, false.true}
[N] = [N] because N = po01 IV
[N[M/x]] # [N'[M/x]

But we can give a lemma for the substitution of values.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 64 /128

The following terms are called values.

V = true | false | inl V | inr V | Ax.M | x

The closed values are just the terminals:
we don't allow “complex values” such as

match true as {true.false, false.true}

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023

65 /128

Denotational semantics of values

Each value T'- V : A denotes a function [V]*? : [I'] — [A].

Hxﬂval p = px

[true]*® p +—— true

[in1 Vv p — inl [V]'p

[Axa. MV p +— Aa € [A].[M](p,x — [a])

We can recover [V] from [V]v2!.

[V] : pr—inl [V]¥¥)p

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 66 /128

Substitution Lemma For Values

GivenvaluesT’HV:AandTHW :BandatermI')x: Ajy: BEM : C
we can obtain [M[V/x, W/y]] from [V]'3 and [W]*3 and [M].

[M[V/x, W/l « pr— [M](p,x — [V]*'p,y = [W]*p)

Likewise for substitution of values into values.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 67 /128

Soundness of CBV Denotational Semantics

o If M || V then [M]e = inl ([V]*?e).
o If M 4 e then [M]e =inr e.

Proof by induction, using the substitution lemma.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 68 /128

Fine-Grain Call-By-Value

Fine-grain call-by-value has two judgements:
o Avalue I' HY V : A denotes a function [V] : [I'] — [A].
@ A computation I' =¢ M : A denotes a function

[M] : [T] — [A] + E.
Key typing rules
r=Yv:A rk“mM:A T')x:AF*N:B
I'FreturnV: A I'k"M tox. N:B

Corresponds to Power and Robinson's notion of a Freyd category.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Semantics of returning and sequencing

'Yv:A
T return V: A

[return V] : p+—inl [V]p

'k*M:A TI''x:AF“N:B
I'F*M tox. N:B

inl a. [N](p,x — a)

[M to x. N] : p+— match [M]p as { e inre

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 70/128

For connectives bool, +, — the syntax is as follows.

V u= x| true | false
| inlV | inr V | Ax. M
M = Mtox. M | return V

—
| let (xbe V). M | VV
| match V as {true. M, false. M}
| match V as {inl x. M, inr x. M}

| error e

71/128

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

For connectives bool, +, — the syntax is as follows.

V u= x| true | false
| inlV | inr V | Ax. M
M = Mtox. M | return V

—
| let (xbe V). M | VV
| match V as {true. M, false. M}
| match V as {inl x. M, inr x. M}

| error e

We don’t allow “complex values” such as

match true as {true.false, false.true}

These would complicate the operational semantics.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 71/128

Definitional interpreter for fine-grain CBV

We evaluate a closed computation ¢ M : A to a closed value FV V : A.
To evaluate

return V: return 1.

M to x. N, evaluate M. If this returns V, evaluate N[V/x].
let (x be V, y be W). M, evaluate M[V/x, W/yl].

(Ax. M)V, evaluate M[V/x].

match inl V as {inl x. N, inr x. N'}: evaluate N[V/x].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 72 /128

Equational theory

B-laws

match (inl V) as {true. M, false. M'} = M][V/x]
(Ax. M)V = MI[V/3]
let (xbeV, ybe W). M = M[V/x,W/y]

n-laws

M[V/z] = matchV as {inl x. M[inl x/z|, inr y. M[inr x/z|}
V = Xx Vx

Sequencing laws

(return V) tox. M = M|[V/x]
M = M tox. returnx
(M tox. N)toy.P = M tox. (N toy.P)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 73/128

CBV to fine-grain call-by-value

Term ' M : A to computation I' H¢ A7 : A.

X +—> returnx
Mx.M +— return \x. M
inl M +— M to x. return inl x
MN +— Mtox.Ntoy.xy
let (xbe M, ybe M'). N +— M tox. M'toy. N

ValueTHV : AtovalueTHY V : A.

X —— X
Ax. M — Mx. M
inlV +— inlV

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 74 /128

Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and

call them thunks.

TA
thunk M
force V

@
£y

Paul Blain Levy (University of Birmingham)

[TA]
[thunk M]
[force V]

= [A]+E
= [M]
[Vl

A-calculus, effects and call-by-push-value

April 2, 2023 75/128

Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and
call them thunks.

TA € ()= A [TA] = [A]+E
thunk M &< X).M [thunk M] = [M]
force V. ¥ V() [force V] = [V]

) <A
The type T'A has a reversible rule ———
r=YTA

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 75/128

Nullary functions

Call-by-value programmers use nullary functions to delay evaluation, and
call them thunks.

TA € ()= A [TA] = [A]+E
thunk M = X).M [thunk M] = [M]

force V. ¥ V() [force V] = [V]
) <A
The type T'A has a reversible rule ———
r=YTA

Fine-grain CBV (unlike the monadic metalanguage)
distinguishes computations from thunks.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 75/128

Naive CBN semantics of errors

Each type denotes a set, a semantic domain for terms. For example:

[bool — (bool — bool)], = (B+E)— (B+E)— (B+E))
[pool +bool]., = ((B+E)+(B+E))+E
[boolnbool], = (B+E)x (B+E)

Thus we define

[bool], = B+ FE
[A+B]. = ([Al«+[B])+E
[A— B]. = [A]«— [B]-«
[AnB]. = [A]«x [B]«
1 = I Ak
(x:A)el

Each term I' = M : B should denote a function [M] : [I'] — [B]x.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 76 /128

Naive semantics: what goes wrong

denotes p — 7

I' - error CRASH : B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 77/128

Naive semantics: what goes wrong

denotes p — 7

I' - error CRASH : B

Example:
@ suppose B = bool — (bool — bool)
o then B denotes (B+ F) — (B+ E) — (B+ E))
@ and error CRASH ~cpn Ax. Ay. error CRASH
@ so the answer should be Az. Ay. inr CRASH.
Intuition: go down through the function types until we hit a tuple type.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 77/128

Naive semantics: what goes wrong

denotes p — 7

I' - error CRASH : B

Example:
@ suppose B = bool — (bool — bool)
@ then B denotes (B+ E) — (B+ E) — (B+ E))
@ and error CRASH ~cpn Ax. Ay. error CRASH
@ so the answer should be Az. Ay. inr CRASH.

Intuition: go down through the function types until we hit a tuple type.
A similar problem arises with match.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 77/128

Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements ¢, b € X.

A type should denote an E-pointed set, a semantic domain for terms.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 78 /128

Solution: E-pointed sets

Definition

An E-pointed set is a set X with two distinguished elements ¢, b € X.

A type should denote an E-pointed set, a semantic domain for terms.

Examples:

[pbool — (bool — bool)] =

[bool + bool] =

[boolmbool] =

(B+E)—((B+FE)— (B+E)),
Ax.Ay.inr CRASH,

Ax.Ay.inr BANG)
((B+E)+B+E))+E,

inr CRASH,

inr BANG)

(B+E) x (B + E),

(inr CRASH, inr CRASH),

(inr BANG, inr BANG))

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 78 /128

CBN semantics of errors

[oool] = (B+ E,inr CRASH,inr BANG)

If [A] = (X,¢,b) and [B] = (Y,d,V)

then [A+B] = ((X+Y)+ E,inr CRASH,inr BANG)
and [A—B] = (X =Y x.d, \z.b)

and [AnB] = (X xY,(,),(b0)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 79/128

CBN semantics of errors

[oool] = (B+ E,inr CRASH,inr BANG)

If [A] = (X,¢,b) and [B] = (Y,d,V)

then [A+B] = ((X+Y)+ E,inr CRASH,inr BANG)
and [A—B] = (X =Y x.d, \z.b)

and [AnB] = (X xY,(,),(b0)

m o= [x

(x:A)el
[Al= (X c,b)

A term I' = M : B denotes a function [M] : [I'] — [B].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 79/128

Semantics of term constructors

I'F true : bool

[true] : p — inl true

'M:bool THFN:B T'HFN':B

['+match M as {true. N, false. N'} : B

[match M as {true. N, false. N'}] : p +—

inl true. INlp
inl false. IN]p B

match [M]p as inr CRASH. ¢ where [B] = (Y, ¢,b)
inr BANG. b

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 80 /128

More term constructors

[Ax.M] p — Aa.[M](p,x+— a)
[M N] p — [M][N]

[x] p > px

error CRASH p — c

Soundness/adequacy
o If M | T then [M]e = [TT]e.
o If M 4 CRASH then [M]e = c.
o If M 4 BANG then [M]e =b.

Proved by induction, using the substitution lemma.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 81 /128

Notation for E-pointed sets

@ Free E-pointed set on a set X.

FEX ¥ (X + E,inr CRASH, inr BANG)
@ Product of two F-pointed sets.

(X,e,b)n (V,d,b) = (X xY,(c,c), (b))

e Unit E-pointed set. I < 1,0,0)
@ Product of a family of E-pointed sets.

TI(Xicibs) = ([X M iy M.)
iel iel
o Exponential E-pointed set.
X = (Yeb) = J[(Vied)
zeX
= (X =Y \x.c,\z.b)

o Carrier of an E-pointed set. UF(X,¢,b) & X

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Summary of call-by-name semantics

A type denotes an E-pointed set.

] = FF(1+1)

] = FEUPIAl+U"[B])
[A— B] = UF[A] - [B]

I = [Alu[B]

A term I' = M : B denotes a function [I'] — [B].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 83 /128

Summary of call-by-value semantics

A type denotes a set.

[bool] = 1+1

[A+B] = [Al+[B]

[A— Bl = U™([A] - F[B])
[TB] = UPF¥[B]

A typing context denotes a set.

A computation T' ¢ M : B denotes a function [I'] — FF[B].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 84 /128

Call-By-Push-Value Types

Two kinds of type:
@ A value type denotes a set.

@ A computation type denotes an E-pointed set.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 85/128

Call-By-Push-Value Types

Two kinds of type:
@ A value type denotes a set.

@ A computation type denotes an E-pointed set.

value type Auw= UB | 1| AxXA|0 | A+A [> cnA

computation type B = FA | A—=B |1y | BuB | [[;cnB;

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 85/128

Call-By-Push-Value Types

Two kinds of type:
@ A value type denotes a set.
@ A computation type denotes an E-pointed set.
value type Auw= UB|1[|AxA |0 | A+A | > A

computation type B = FA | A—=B |1y | BuB | [[;cnB;

Strangely function types are computation types, and Ax.M is a
computation.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 85/128

Judgements

An identifier gets bound to a value, so it has value type.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 86 /128

An identifier gets bound to a value, so it has value type.

A context I' is a finite set of identifiers with associated value type

Xp - Ao,...,Xm,1 . Am,1

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 86 /128

An identifier gets bound to a value, so it has value type.

A context I' is a finite set of identifiers with associated value type
Xp - Ao, ey Xm—1 ¢ Am,1

Two judgements:

@ Avalue ' Y V : A denotes a function [V] : [I'] — [A].
@ A computation I' ¢ M : B denotes a function [M] : [I'] — [B].

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 86 /128

The type FA

A computation in F'A aims to return a value in A.
rYv:A 'kM:FA T'x:AF*N:B
I'Fereturn V : FA I'F*M tox. N:B

Sequencing in the style of Filinski's “Effect-PCF".

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 87 /128

The type FA

A computation in F'A aims to return a value in A.
rYv:A 'kM:FA T'x:AF*N:B
I'Fereturn V : FA I'F*M tox. N:B

Sequencing in the style of Filinski's “Effect-PCF".

[return V] : p +—— inl [V]p
[Mtox.N] : p
il a. [NJ(p,x -+ a)
match [M]p as ¢ inr CRASH. ¢
inr BANG. b

where [B] = (Y, ¢, b)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 87 /128

The type UB

A value in UB is a thunk of a computation in B.
'kM:B '=Yv:UB
' thunk M : UB I'F¢ force V:B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 88 /128

The type UB

A value in UB is a thunk of a computation in B.

T'“M:B '=Yv:UB
' thunk M : UB I'F¢ force V:B
[thunk M] = [M]

[force V] = [V]

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 88 /128

Identifiers

An identifier is a value.

——(x:A) el
T'HFYx: A

r=Yv:A T+YwW:B Ix:Ay:BF"M:C
I'“let (xbe V,ybe W). M :C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 89 /128

'=v:A r=v:A

F'HF inl V:A+ A ' inr V:A+ A

FrVvV:A+A Ix:AFM:B T,y:AFM' :B

' match V as {inl x. M,inr y. M’} : B

rVv:A THV A FrEV:AxA T,x:Ay: A M:B

(Vv :Ax A I+ match V as (x,y).M : B

The rules for 1 are similar.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 90/

Functions

I'x:AF*M: B 'tM:A—-B THV:A
' Xx.M:A— B I'+"MV:B

rkM:B THM:B
PN M, M} :BuB

M :BuB M :BuB
r+cmM*':B e M*: B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 91/

Functions

I'x:AF*M: B 'tM:A—-B THV:A
' Xx.M:A— B I'+"MV:B

rkM:B THM:B
PN M, M} :BuB

M :BuB M :BuB
r+cmM*':B e M*: B

It is often convenient to write applications operand-first,
as VM and **M and M.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 91/

Definitional interpreter for call-by-push-value

The terminals are computations: return V. Ax.M A M, *. M’}

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 92 /128

Definitional interpreter for call-by-push-value

The terminals are computations: return V. Ax.M A M, *. M’}
To evaluate

return V: return return V.

M to x. N: evaluate M. If this returns return V, then evaluate
N[V/x].

Ax.N: return Ax. V.

MYV evaluate M. If this returns Ax.N, evaluate N[V/x].
MM, = M} return AP0 TN

M*: evaluate M. If this returns \{*. N, *. N'}, evaluate N.
let (x be V, y be W). M: evaluate M[V/x, W/y].

force thunk M: evaluate M.

match inl V as {inl x. M, inr y. M'}: evaluate M[V/x].
match (V, V') as (x,y).M: evaluate M[V/x,V'/y].

error e, print error message e and stop.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

92/128

Equational theory

B-laws

force thunk M = M
match (inl V) as {true. M, false. M'} = M][V/x]
Ax. M)V = MI[V/%]
let (xbeV, ybe W). M = M[V/x,W/y]
n-laws

V= thunk force V
M[V/z] = match V as {inl x. M[inl x/z|, inr y. M[inr x/z]|}
M = Xx. Mx
Sequencing laws
(return V) tox. M = M[V/%]
M = M tox. returnx
(M tox. N)toy. P = M tox. (Ntoy.P)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 93 /128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A—B +— U(A— FB)
TB ~— UFB

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 94 /128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A—B +— U(A— FB)
TB ~— UFB

A fine-grain CBV computationx: A;y: BF*M : C
translatesas x : A,y: B+ M : FC.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 94 /128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A—B +— U(A— FB)
TB ~— UFB

A fine-grain CBV computationx: A;y: BF*M : C
translatesas x : A,y: B+ M : FC.

Ax.M +— thunk Ax. M
VW +— (force V)W

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 94 /128

Decomposing CBV into CBPV

A CBV type translates into a value type.

A—B +— U(A— FB)
TB ~— UFB

A fine-grain CBV computationx: A;y: BF*M : C
translatesas x : A,y: B+ M : FC.
Ax. M +—— thunk \x. M
VW +— (force V)W
Therefore a CBV termx: A,y : B M : C
translates as x: A,y: BF°M : FC
X +—— returnx
Ax. M +—— return thunk Ax. M
M N +—— M tof. N toy. ((force £f) y)

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

Decomposing CBN into CBPV

A CBN type translates into a computation type.

bool +— F(1+1)
A+B +—— FUA+UB)
A—-B — UA—B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 95/128

Decomposing CBN into CBPV

A CBN type translates into a computation type.

bool +— F(1+1)
A+B +—— FUA+UB)
A—-B — UA—B

ACBNtermx: Ajy: BF M :C translatesasx: UA,y: UBF* M : C.

x +—— forcex
let (x be M, ybe M').N +— 1let(x be thunk M, y be thunk M'). N
XXM — Xx. M
M N +~—— M (thunk N)
inl M +— return inl thunk M

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 95/128

Summary

We've seen
@ the call-by-push-value calculus
@ its operational semantics

@ denotational semantics for errors.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 96 /128

Summary

We've seen
@ the call-by-push-value calculus
@ its operational semantics
@ denotational semantics for errors.
The translations from CBV and CBN into CBPV preserve these semantics.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 96 /128

Summary

We've seen

@ the call-by-push-value calculus

@ its operational semantics

@ denotational semantics for errors.
The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 96 /128

We've seen
@ the call-by-push-value calculus
@ its operational semantics
@ denotational semantics for errors.
The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.
But

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 96 /128

We've seen
@ the call-by-push-value calculus
@ its operational semantics
@ denotational semantics for errors.
The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.
But

@ our error semantics makes thunk and force invisible

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 96 /128

We've seen
@ the call-by-push-value calculus
@ its operational semantics
@ denotational semantics for errors.
The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.
But
@ our error semantics makes thunk and force invisible

@ we still don't understand why a function is a computation.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 96 /128

An operational semantics due to Felleisen and Friedman (1986).
And Landin, Krivine, Streicher and Reus, Bierman, Pitts, . ..

It is suitable for sequential languages whether CBV, CBN or CBPV.
At any time, there's a computation (C) and a stack of contexts (K).
Initially, K is empty.

Some authors make K into a single context, called an “evaluation context”.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 97 /128

Transitions for sequencing

To evaluate M to x. IN: evaluate M. If this returns return V/, then
evaluate N[V/x].

M tox. N K ~
M tox. N K
return V. tox. N K ~>
N[V/x] K

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 98 /128

Transitions for application

To evaluate V‘M: evaluate M. If this returns Ax.N, evaluate N[V/x].

VM K s
M Vo

K
Ax.N Vi oK s
N[V/x] K

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 99 /128

Those function rules again

VM K s
M Vi oK
Ax.N Vi oK s
N[V/x] K

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 100 /128

Those function rules again

VM
M Vo

od

N[V/x]

K
K
Ax.N Vi oK s
K
V.

We can read V¢ as an instruction “push

We can read Ax as an instruction “pop x".

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 100 /128

Those function rules again

VM K ~s
M Vi K
Ax.N Vi K ~
N[V/x] K
We can read V¢ as an instruction “push V"
We can read Ax as an instruction “pop x"
Revisiting some equations:
Vidxx. M = M[V/x]
M = x.x'M (x fresh)
error e = \X.error e

print c. Ax. M

Ax. print c¢. M

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 100/128

Values and Computations

A value is, a computation does.
@ A value of type UB is a thunk of a computation of type B.
@ A value of type A + A’ is a tagged value inl V or inr V.
@ A value of type A x A" is a pair (V, V).

A computation of type F'A aims to return a value of type A.

A computation of type A — B aims

to pop a value of type A and then behave in B.
A computation of type B 11 B’ aims

to pop the tag 1 and then behave in B

or pop the tag r and then behave in B’.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 101 /128

What's in a stack?

A stack consists of
@ arguments that are values
@ arguments that are tags

o frames taking the form to x. V.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 102 /128

Example program of type F'nat (with complex values)

print "helloO".
let (x be 3,
y be thunk (
print "hellol".
Az.
print "we just popped " + z.
return x+z
)).
print "hello2".
(print "hello3".
7(
print "we just pushed 7".
force y
) to w.
print "w is bound to " + w.
return w+ 5

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 103 /128

Typing the CK-machine

Initial configuration to evaluate I' F<P: C'

I P C nil C
Transitions

I' Mtox. N B K C ~
I M FA tox. N K C

I' returnV FA tox. N K C ~
' N[V/x] B K cC

Typically I" would be empty and C' = F' bool.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 104 /128

Typing the CK-machine

Initial configuration to evaluate I' F<P: C'

I P C nil C
Transitions

I' Mtox. N B K C ~
I M FA tox. N K C

I' returnV FA tox. N K C ~
' N[V/x] B K cC

Typically I" would be empty and C' = F' bool.

We write I' FK K : B = C to mean that K can accompany
a computation of type B during evaluation.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 104 /128

Typing rules, read off from the CK-machine

Typing a stack

[x:AF*M:B THK:B=(C

[+Xnil:C = C 't“tox. M= K:FA=—C
'+*K:B=C r-Yv:A TI+HK:B=~C
r+ktK:BuB = C r“v:K:A-5B=—C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 105 /128

Typing rules, read off from the CK-machine

Typing a stack

[x:AF*M:B THK:B=(C

[+Xnil:C = C 't“tox. M= K:FA=—C
'+*K:B=C r-Yv:A TI+HK:B=~C
r+ktK:BuB = C r“v:K:A-5B=—C

Typing a CK-configuration
TFM:B THFEK:B=—C

Ik (M, K):C

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 105 /128

Operations on Stacks

@ Given a stack T'HF* K : B = C, we can weaken it or substitute
values.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 106 /128

Operations on Stacks

@ Given a stack T'HF* K : B = C, we can weaken it or substitute
values.

@ A stack 'F* K : B = C can be dismantled onto a computation
' M : B, giving a computation I' - M e K : C.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 106 /128

Operations on Stacks

@ Given a stack T'HF* K : B = C, we can weaken it or substitute
values.

@ A stack 'F* K : B = C can be dismantled onto a computation
' M : B, giving a computation I' - M e K : C.

@ Stacks 'FK K : B=—= C and T F* L : C = D can be
concatenated to give ' FK K 4L : B = D.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 106 /128

Special Stacks

Continuations

A continuation is a stack from an F' type, e.g. tox. M :: K.
It describes everything that will happen once a value is supplied.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 107 /128

Special Stacks

Continuations

A continuation is a stack from an F' type, e.g. tox. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F' type, so all stacks are continuations.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 107 /128

Special Stacks

Continuations

A continuation is a stack from an F' type, e.g. tox. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F' type, so all stacks are continuations.

Top-Level Stack

The top-level stack is I' ¥ nil : C = C.
The top-level type is C.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 107 /128

Special Stacks

Continuations

A continuation is a stack from an F' type, e.g. tox. M :: K.
It describes everything that will happen once a value is supplied.

In CBV, all computations have F' type, so all stacks are continuations.

Top-Level Stack

The top-level stack is I' ¥ nil : C = C.
The top-level type is C.

If C'is Fbool (the usual situation),
then nil is the top-level continuation:
it receives a boolean and returns it to the user.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 107 /128

Stacks denote homomorphisms

Consider astack T K : B=— C
where [B] = (X, ¢,b) and [C] = (Y, V).
What should K denote?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 108 /128

Stacks denote homomorphisms

Consider astack T K : B=— C

where [B] = (X, ¢,b) and [C] = (Y, V).
What should K denote?

It acts on computations by M —— M e K.
So we want [K] : [T]x X —Y.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 108 /128

Stacks denote homomorphisms

Consider astack T K : B=— C

where [B] = (X, ¢,b) and [C] = (Y, V).

What should K denote?

It acts on computations by M —— M e K.

So we want [K] : [T]x X —Y.

This function should be homomorphic in its second argument:

[K](p.c) = ¢
[K]1(p,0) =V

because if M throws an error then so does M o K.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 108 /128

Stacks denote homomorphisms

Consider astack T K : B=— C

where [B] = (X, ¢,b) and [C] = (Y, V).
What should K denote?

It acts on computations by M —— M e K.
So we want [K] : [T]x X —Y.

This function should be homomorphic in its second argument:
[K](p.c) = ¢
[K1(p,b) = ¥

because if M throws an error then so does M o K.

We assume there's no exception handling.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 108 /128

Operations on stacks

We define [KT] by induction on K.

Then we prove
@ a weakening lemma
@ a substitution lemma
@ a dismantling lemma
@ a concatenation lemma

providing a semantic counterpart for each operation on stacks.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 109 /128

Soundness of CK-machine

What should a CK-configuration T' = (M, K) : C denote?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 110 /128

Soundness of CK-machine

What should a CK-configuration T' = (M, K) : C denote?

[(MK)] - [T — [C]
p — [Kl(p,[M]p)
Properties:
Q If (M,K)~ (M ,K') then [(M,K)] = [(M', K")].
@ [(error CRASH, K)]p=¢.
@ [(error BANG,K)]p =1V

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 110 /128

Adjunction between values and stacks

We have an adjunction between the category of values (sets and functions)
and the category of stacks (FE-pointed sets and homomorphisms).

FE
Set N E/Set
UE

This resolves the exception monad X —— X 4+ F on Set.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 111 /128

Consider CBPV extended with two storage cells:
1 stores a natural number, and 1’ stores a boolean.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 112 /128

Consider CBPV extended with two storage cells:
1 stores a natural number, and 1’ stores a boolean.

' V:nat TF*M:B I''x:nat "M : B
'k1:=V.M:B I'“readlasx. M : B

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 112 /128

Consider CBPV extended with two storage cells:
1 stores a natural number, and 1’ stores a boolean.

' V:nat TF*M:B I''x:nat "M : B
'k1:=V.M:B I'“readlasx. M : B

A state is 1 +— n, 1’ +— b.

The set of states is S = N x B.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 112 /128

Big-step semantics for state

The big-step semantics takes the form s, M || s',T.
A pair (s, M) is called an SC-configuration.
We can type these using
'“mM:B
I+ (s,M): B

se S

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

113 /128

Denotational semantics of state

How can we give a denotational semantics for call-by-push-value with
state?

@ Algebra semantics.

@ Intrinsic semantics.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 114 /128

Algebra semantics for state (briefly)

Moggi's monad for state is S — (S x —).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 115 /128

Algebra semantics for state (briefly)

Moggi's monad for state is S — (S x —).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set [A], a semantic domain for values.

A computation type B denotes an Eilenberg-Moore algebra [B].g,
a semantic domain for computations.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 115 /128

Algebra semantics for state (briefly)

Moggi's monad for state is S — (S x —).
Its Eilenberg-Moore algebras were characterized by Plotkin and Power.

A value type A denotes a set [A], a semantic domain for values.

A computation type B denotes an Eilenberg-Moore algebra [B].g,
a semantic domain for computations.

We complete the story with an adequacy theorem:
If s, M || ', T then [s, M]e = [¢',T]e

This requires an SC-configuration to have a denotation.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 115 /128

Intrinsic semantics of state

A value type A denotes a set [A], a semantic domain for values.

A computation type B denotes a set [B],
a semantic domain for SC-configurations.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023

116 /128

Intrinsic semantics of state

A value type A denotes a set [A], a semantic domain for values.

A computation type B denotes a set [B],
a semantic domain for SC-configurations.

The behaviour of an SC-configuration I' ¢ (s, M) : B depends on the
environment:

[(s, M)] = [T — [B]

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 116 /128

Intrinsic semantics of state

A value type A denotes a set [A], a semantic domain for values.

A computation type B denotes a set [B],
a semantic domain for SC-configurations.

The behaviour of an SC-configuration I' ¢ (s, M) : B depends on the
environment:
[(s,M)] : [T] —> [B]

The behaviour of a computation I' = M : B depends on the state and
environment:

[M] -S> [I] — [B]

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 116 /128

State: semantics of types

An SC-configuration of type F'A will terminate as s, return V.
[FA] =S x [A]
An SC-configuration of type A — B will pop x: A and then behave in B.
[A— B] = [A] = [B]

An SC-configuration of type B 11 B’ will pop 1 and then behave in B,
or pop r and then behave in B’.

[BnB] = [B] x [B]

A value I' Y V : UB can be forced in any state s, giving an
SC-configuration s, force V.

[UB] =5 — [B]

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 117 /128

State: the value/stack adjunction

Consider astack T K : B=—C
What should K denote?

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 118 /128

State: the value/stack adjunction

Consider astack 'HFK K : B = C

What should K denote?

It acts on SC-configurations by s, M — s, M e K.
So we want [K] : [T] x [B] — [C].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 118 /128

State: the value/stack adjunction

Consider astack 'HFK K : B = C

What should K denote?

It acts on SC-configurations by s, M — s, M e K.
So we want [K] : [T] x [B] — [C].

This gives an adjunction

Sx—
_— >

Set 1 Set

- L
S——

between values and stacks.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 118 /128

State in call-by-value and call-by-name

For call-by-value we recover

[[bOOlCBv]] = 141
[[A —CBV B]] = [[U(A — FB)]]
S = ([A] = (S x [B]))

This is standard.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 119 /128

State in call-by-value and call-by-name

For call-by-value we recover

[[bOOlCBvﬂ = 141
[[A —CBV B]] = [[U(A — FB)]]
S = ([A] = (S x [B]))
This is standard.

For call-by-name we recover

[[bOO]_CBN]] = [[F(l -+ 1)]]
= Sx(1+1)
[A—cBNB] = [UA— BJ

= (5= 1[4]) = [B]

This is O'Hearn's semantics of types for a stateful CBN language.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 119 /128

Naming and changing the current stack

Extend the language with two instructions:
@ letstk o means let a be the current stack.

@ changestk a means change the current stack to a.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 120 /128

Naming and changing the current stack

Extend the language with two instructions:
@ letstk o means let a be the current stack.

@ changestk a means change the current stack to a.

Execution takes places in a bigger language.

I'" letstka. M B K C|A ~s
I M[K/al 5 K ClA
I' changestk K. M B’ L ClA ~
r oM B K cla

Similar to Crolard’s syntax. Numerous variations in the literature.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 120 /128

Typing judgements for control

We have typing judgements:
F'F'V:A|lA r"M:B|A

The stack context A consists of declarations « : B,
meaning « is a stack from B.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value April 2, 2023

121/128

Typing judgements for control

We have typing judgements:
F'F'V:A|lA r"M:B|A
The stack context A consists of declarations « : B,
meaning « is a stack from B.
Example typing rules
'k"M:B |Aa:B
FCletstk . M | A

T M:B | A
[+° changestk a. M : B’ | A

(:B) e A

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023 121 /128

Typing judgements for execution language

During execution, the top-level type C must be indicated:

TFV:A[C]A LHM:BI[C] A
r“K:B=—C|A Ik (M,K):C| A

Typically I' and A would be empty and C' = F bool.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 122 /128

Typing judgements for execution language

During execution, the top-level type C must be indicated:

TFV:A[C]A LHM:BI[C] A
r“K:B=—C|A Ik (M,K):C| A

Typically I' and A would be empty and C' = F bool.

Example typing rules

a:B)eA

'+“a:B=C |A(

I'‘*K:B=C |A T+ M:B[C]A
I' - changestk K. M : B' [C] A

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 122 /128

Algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration,
with no free identifiers and no nil,
would denote an element of R.

April 2, 2023 123 /128

A-calculus, effects and call-by-push-value

Paul Blain Levy (University of Birmingham)

Algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration,
with no free identifiers and no nil,
would denote an element of R.

Moggi's monad for control operators (“continuations”) is (— — R) — R.

April 2, 2023 123/

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

Algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

That means: a hypothetical extremely closed CK-configuration,
with no free identifiers and no nil,
would denote an element of R.

Moggi's monad for control operators (“continuations”) is (— — R) — R.

Maybe we can build a denotational semantics
where a computation type B denotes an Eilenberg-Moore algebra [B],g,
a semantic domain for computations.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 123 /128

Intrinsic semantics of control

The denotation of B is a semantic domain for stacks from B.

That means: a hypothetical extremely closed stack from B,
with no free identifiers and no nil,
would denote an element of [B].

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 124 /128

Intrinsic semantics of control

The denotation of B is a semantic domain for stacks from B.

That means: a hypothetical extremely closed stack from B,
with no free identifiers and no nil,
would denote an element of [B].

The behaviour of a computation I' =¢ M : B | A depends on the
environment, current stack and stack environment:

[M] : [T] x [B] x [A] — R
AvalueI'FY V : A | A denotes

V1 : Il < [A] — [A]

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 124 /128

Control: semantics of types

A stack from F'A receives a value x : A and then behaves as a
configuration.

[FA] =[A] — R
A stack from A — Bis a pair V :: K.
[A— B] = [A] x [B]
A stack from B11 B is a tagged stack ' :: K or ¥ :: K.
[BuB']=[B] +[B]

A value of type UB can be forced alongside any stack K, giving a
configuration.

[UB] =[B] + R

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 125 /128

Semantics of the execution language

The semantics of a term in the execution language

depends not only on the environment and the stack environment
but also on the top-level stack.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 126 /128

Semantics of the execution language

The semantics of a term in the execution language

depends not only on the environment and the stack environment
but also on the top-level stack.

In particular, a stack I' < K : B = C' | A denotes

[KT : [PI<[C]<[A] — [B]

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 126 /128

Semantics of the execution language

The semantics of a term in the execution language

depends not only on the environment and the stack environment
but also on the top-level stack.

In particular, a stack I' < K : B = C' | A denotes

[KT : [PI<[C]<[A] — [B]

That gives an adjunction

——R
Set 1 Set°P

——R

between values and stacks.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value

April 2, 2023 126 /128

Control in call-by-value and call-by-name

Abbreviate =X & X — R.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 127 /128

Control in call-by-value and call-by-name

Abbreviate =X & X — R.
For call-by-value we recover
[boolcpy] = 1+1
[A —cBv BJ [U(A — FB)]
= ~([A] x =[B])

This is standard.

Paul Blain Levy (University of Birmingham)

A-calculus, effects and call-by-push-value April 2, 2023 127 /128

Control in call-by-value and call-by-name

Abbreviate =X & X — R.

For call-by-value we recover

HbOOICBv]] = 1+1
|IA —CBV B]] = [[U(A — FB)]]
= ([Al x=[BD)

This is standard.

For call-by-name we recover

[[bOOlCBN]] = [[F(l + 1)]]
_ (1+1)

[A—cBN B] = [UA— B]

= -[A] x [B]

This is Streicher and Reus’ semantics
for a CBN language with control operators.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value

April 2, 2023

127 /128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set I E/Set
UE
models call-by-push-value with errors.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 128 /128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set I E/Set
UE

models call-by-push-value with errors.
Sx—

Set

For a set S, the adjunction Set 1

S——
models call-by-push-value with state.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 128 /128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set I E/Set
UE

models call-by-push-value with errors.
Sx—

For a set S, the adjunction Set 1 Set
S——

models call-by-push-value with state.

——R
For a set R, the adjunction Set 1 Set°P

-~

——R
models call-by-push-value with control.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 128 /128

Summary: adjunctions between values and stacks

For a set E, the adjunction Set I E/Set
UE

models call-by-push-value with errors.
Sx—

For a set S, the adjunction Set 1 Set
S——

models call-by-push-value with state.

——R
For a set R, the adjunction Set 1 Set°P

-~

——R
models call-by-push-value with control.

Paul Blain Levy (University of Birmingham) A-calculus, effects and call-by-push-value April 2, 2023 128 /128

	Pure -calculus
	Syntax
	Denotational semantics
	The -theory
	Reversible rules
	Operational semantics

	Adding Effects
	Outline
	Errors and printing, operationally

	Call-by-value with errors
	Denotational semantics
	Substitution and values
	Fine-grain call-by-value

	Call-by-name with errors
	Call-by-push-value
	Stacks
	State
	Control

