
Typed Normal Form Bisimulation

Soren B. Lassen1 and Paul Blain Levy2

1 Google, Inc.
soren@google.com

2 University of Birmingham, U.K.
pbl@cs.bham.ac.uk

Abstract. Normal form bisimulation is a powerful theory of program
equivalence, originally developed to characterize Lévy-Longo tree equiv-
alence and Boehm tree equivalence. It has been adapted to a range of un-
typed, higher-order calculi, but types have presented a difficulty. In this
paper, we present an account of normal form bisimulation for types, in-
cluding recursive types. We develop our theory for a continuation-passing
style calculus, Jump-With-Argument (JWA), where normal form bisimi-
larity takes a very simple form. We give a novel congruence proof, based
on insights from game semantics. A notable feature is the seamless treat-
ment of eta-expansion. We demonstrate the normal form bisimulation
proof principle by using it to establish a syntactic minimal invariance
result and the uniqueness of the fixed point operator at each type.

1 Introduction

1.1 Background

Normal form bisimulation—also known as open (applicative) bisimulation—
originated as a coinductive way of describing Lévy-Longo tree equivalence for
the lazy λ-calculus [1], and has subsequently been extended to call-by-name,
call-by-value, nondeterminism, aspects, storage, and control [2–7].

Suppose we have two functions V, V ′ : A→ B. When should they be deemed
equivalent? Here are two answers:

– when VW and V ′W behave the same for every closed W : A
– when V y and V ′y behave the same for fresh y : A.

The first answer leads to the theory of applicative bisimulation [8, 9], the second
to that of normal form bisimulation. The first answer requires us to run closed
terms only, the second to run non-closed terms.

To illustrate the difference3, let G(p, q) be the following function

λx.if (x p) then x q else not(x q)

and let V be G(true, false) and V ′ be G(false, true), both of type (bool→
bool) → bool. Assuming the language is free of effects besides divergence,
3 This example works in both call-by-value and call-by-name.

they cannot be distinguished by applying to closed arguments. But let us ap-
ply them to a fresh identifier y and evaluate the resulting open terms, sym-
bolically. Then the first begins by applying y to true with the continuation
if − then x false else not(x true). The second applies y to false with the
continuation if − then x true else not(x false).

Normal form bisimilarity requires that two (nondivergent) programs end up
either applying the same identifier to equivalent arguments with equivalent con-
tinuations, or returning equivalent values. In our example, the arguments are
different (true and false respectively) and so are the continuations. Therefore
V and V ′ are not normal form bisimilar.

This is a situation where normal form bisimulation gives an equivalence that
is finer than contextual equivalence, in contrast with applicative bisimulation.
However, the addition of state and suitable control effects makes normal form
bisimulation coincide with contextual equivalence [2, 7].

Compared to applicative bisimulation, the absence of the universal quan-
tification over closed arguments to functions in the definition of normal form
bisimulation makes certain program equivalence proofs possible that have not
been accomplished using applicative bisimulation. An example is our proof of
syntactic minimal invariance in Section 4. See also the examples in [2, 4, 7].

But all the results on normal form bisimulation are in untyped settings only.
The adaptation to typed calculi has presented difficulties. For example, in call-
by-value, if A is an empty type, such as µX.(bool×X), then all functions of type
A → B should be equivalent—without appealing to the absence of any closed
arguments, as we would for applicative bisimulation.

Another problem that has slowed progress on normal form bisimulation is
that the congruence proofs given in the literature (especially [7]) are complicated:
they establish congruence for η-long terms, and separately prove the validity of
the η-law.

1.2 Contributions

This paper makes three important contributions to the development of normal
form bisimulation. First, we extend normal form bisimulation to types, inclusive
product, sum, and higher-order types, empty types and recursive types. Second,
we give a new, lucid congruence proof that highlights connections with game
semantics. Third, we present a seamless treatment of η-expansion—we do not
need to mention it in our definitions or proofs.

To illustrate the power of our theory, we use it to prove

– uniqueness of the fixpoint operator at each type
– syntactic minimal invariance.

It is not known how to prove the latter using applicative bisimulation, so this
shows a definite advantage of normal form bisimulation as an operational rea-
soning technique.

Our work is part of a larger programme to explore the scope of normal form
bisimulation, both (1) as a syntactic proof principle for reasoning about program

equivalence and (2) as an operational account of pointer game semantics. Space
constraints prevent us from giving a formal account of the second point but we
mention some connections in our discussion of related work below and in the
technical exposition of our theory we give some hints to the benefit of readers
familiar with game semantics.

For simplicity, we develop our theory in a continuation-passing style calculus,
called Jump-With-Argument (JWA), where it takes a very simple form. It is then
trivial to adapt it to a direct-style calculus (with or without control operators),
by applying the appropriate CPS transform. The pointer game semantics for
JWA, and the relationship with direct-style programs, is given in [10, 11]; but
here we do not assume familiarity with pointer games.

In this paper, we look at JWA without storage. In game terminology, the
strategies we are studying are innocent. It is clear from the game literature that,
when we extend JWA with storage, normal form bisimilarity will coincide with
contextual equivalence, but we leave such an analysis to future work.

1.3 Related Work

In Section 1.1 we descibed the origins of and previous work on normal form
bisimulation.

We refer the reader to [7] for a survey of other syntactic theories for reason-
ing about program equivalence: equational theories, context lemmas, applicative
bisimulation, environmental bisimulation, and syntactic logical relations. Given
that our calculus, JWA, is a CPS calculus, note that applicative bisimulation
has been studied recently in a CPS setting by Merro and Biasi [12].

On the other hand, let us discuss some relevant literature on game semantics,
because its relationship with normal form bisimulation has not been surveyed
before.

Pointer game semantics is a form of denotational model in which a term
denotes a strategy for a game with pointers between moves. It was introduced
in [13], and has been used to model typed and untyped languages, call-by-name,
call-by-value, recursion, storage, control operators and much more [14–19]. In
general, denotational equality is finer than contextual equivalence, but in the
presence of storage and control, they coincide [20]. The simplest models, for
terms without local state, use innocent strategies, which correspond to Böhm
trees [21], or variants thereof such as PCF trees, Nakajima trees and Lévy-Longo
trees.

Pointer games are analyzed operationally in [22, 10], relating a term’s deno-
tation to its behaviour in an abstract machine. But these abstract machines are
complex to describe and reason about. Moreover, the only terms studied in these
accounts are η-long: thus [22] states “in the sequel, we will consider terms up to
η-equality”. This is a limitation, especially in the presence of recursive types at
which terms cannot be fully η-expanded.

In [23], Sect. 1–2, a quite different operational account of a game model is
given, without abstract machines or η-expansion—albeit in the limited setting of

a first-order language. It is defined in terms of an operational semantics for open
terms (unlike traditional operational semantics, defined on closed terms only).

Clearly there are many similarities between normal form bisimulation and
pointer game semantics: the connection with Böhm trees and Lévy-Longo trees,
the completeness in the presence of storage and control, the use of operational
semantics for open terms. Readers familiar with game semantics will immediately
see that V and V ′ in the example in Section 1.1 denote different strategies.

An immediate precursor for our definition of typed normal form bisimulation
is the labelled transition system and pointer game semantics in [24]. This work
also describes an extension to mutable references, which is something we plan
to explore in future work. Recently and independently, Laird [25] developed a
very similar labelled transition system semantics for a typed functional language
with mutable references.

The representation of strategies as π-calculus processes by Hyland, Ong,
Fiore, and Honda [26, 27] leads to a bisimulation approach to equality of strate-
gies that is analogous to normal form bisimulation. However, because of the de-
tour via π-calculus encodings, the resulting π-calculus-based bisimulation proof
principles for program equivalence are not as direct as normal form bisimulation,
for proving specific program equivalences between terms.

2 Jump-With-Argument

2.1 Syntax and Semantics

Jump-With-Argument is a continuation-passing style calculus, extending the
CPS calculus in [28]. Its types are given (including recursive types) by

A ::= ¬A |
∑
i∈IAi | 1 | A×A | X | µX.A

where I is any finite set. The type ¬A is the type of functions that take an
argument of type A and do not return. JWA has two judgements: values written
Γ `v V and nonreturning commands written Γ `n M . The syntax4 is shown in
Fig. 1. We write pm as an abbreviation for “pattern-match”, and write let to
make a binding. We omit typing rules, etc., for 1, since 1 is analogous to ×.

From the cpo viewpoint, a JWA type denotes an (unpointed) cpo. In partic-
ular, ¬A denotes [[A]]→ R, where R is a chosen pointed cpo.
Operational semantics To evaluate a command Γ `n M , simply apply the
transitions (β-reductions) in Fig. 2 until a terminal command is reached. Every
command M is either a redex or terminal; by determinism, either M ∗ T
for unique terminal T , or else M ∞. This operational semantics is called the
C-machine.

We define a fixed point combinator Y as follows

Y
def= Φ(fold λ〈x, 〈u, f〉〉.f〈u, λv.Φ(x)〈v, f〉〉)

Φ(x) def= λz.pm x as fold y.y〈fold y, z〉
4 In earlier works e.g. [10], γx.M was written for λx.M and W ↗ V for VW .

(x : A) ∈ Γ
Γ `v

x : A

Γ `v V : A Γ, x : A `n M

Γ `n
let V be x. M

ı̂ ∈ I Γ `v V : Aı̂

Γ `v 〈̂ı, V 〉 :
P

i∈IAi

Γ `v V :
P

i∈IAi

Γ, xi : Ai `n Mi (∀i ∈ I)

Γ `n
pm V as {〈i, xi〉.Mi}i∈I

Γ `v V : A Γ `v V ′ : A′

Γ `v 〈V, V ′〉 : A×A′

Γ `v V : A×A′
Γ, x : A, y : A′ `n M

Γ `n
pm V as 〈x, y〉.M

Γ, x : A `n M

Γ `v λx.M : ¬A

Γ `v V : ¬A Γ `v W : A

Γ `n VW

Γ `v V : A[µX.A/X]

Γ `v
fold V : µX.A

Γ `v V : µX.A
Γ, x : A[µX.A/X] `n M

Γ `n
pm V as fold x. M

Fig. 1. Syntax of JWA, with type recursion

Transitions Terminal Commands

pm 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I Mı̂[V/x] pm z as {〈i, x〉. Mi}i∈I

pm 〈V, V ′〉 as 〈x, y〉.M M [V/x, V ′/y] pm z as 〈x, y〉. M
(λx.M)V M [V/x] zV
pm fold V as fold x. M M [V/x] pm z as fold x. M
let V be x.M M [V/x]

Fig. 2. C-machine

where notation λ〈x, 〈u, f〉〉.M is short for λt.pm t as 〈x, p〉.pm p as 〈u, f〉.M .
Using type recursion, we assign type ¬(A×¬(A×¬A)) to Y , for every type

A, by giving the argument to Φ type µX.¬(X× (A× ¬A)).
Let V = λ〈x, 〈u, f〉〉.f〈u, λv.Φ(x)〈v, f〉〉, then we calculate:

Y 〈u, f〉 pm fold V as fold y.y〈fold y, 〈u, f〉〉
 V 〈fold V, 〈u, f〉〉
 3 f〈u, λv.Φ(fold V)〈v, f〉〉
= f〈u, λv.Y 〈v, f〉〉

That is, Y is a solution to the fixed point equation

`v Y =β λ〈u, f〉.f〈u, λv.Y 〈v, f〉〉 : ¬(A× ¬(A× ¬A))

2.2 Ultimate Pattern Matching

To describe normal form bisimulation, we need to decompose a value into an
ultimate pattern (the tags) and a value sequence (the rest). Take, for example,
the value

〈i0, 〈〈〈λw.M, x〉, y〉, 〈i1, x〉〉〉

Provided x and y have ¬ type, we can decompose this as the ultimate pattern

〈i0, 〈〈〈−¬A,−¬B〉,−¬C〉, 〈i1,−¬B〉〉〉

(for appropriate types A, B, C), where the holes are filled with the value sequence

λw.M, x, y, x

As this example shows, an ultimate pattern is built up out of tags and holes;
the holes are to be filled by values of ¬ type. For each type A, we define the set
ultv(A) of ultimate patterns of type A, by mutual induction:

– −¬A ∈ ultv(¬A)
– if p ∈ ultv(A) and p′ ∈ ultv(A′) then 〈p, p′〉 ∈ ultv(A×A′)
– if ı̂ ∈ I and p ∈ ultv(Aı̂) then 〈̂ı, p〉 ∈ ultv(

∑
i∈IAi)

– if p ∈ ultv(A[µX.A/X]) then fold p ∈ ultv(µX.A).

For p ∈ ultv(A), we write H(p) for the list of types (all ¬ types) of holes of p.
Given a value sequence Γ `v −→V : H(p), we obtain a value Γ `v p(

−→
V) : A by

filling the holes of p with
−→
V . We can now state our decomposition theorem.

Proposition 1. Let
−−−−→
x : ¬A ` V : B be a value. Then there is a unique ultimate

pattern p ∈ ultv(B) and value sequence
−−−−→
x : ¬A `v −→W : H(p) such that V = p(

−→
W).

Proof. Induction on V .

3 Normal Form Bisimulation

In this section, we define normal form bisimulation. Some readers may like to
see this as a way of characterizing when two terms have the same Böhm tree5, or
(equivalently) denote the same innocent strategy, but neither of these concepts
will be used in the paper.

5 The Böhm trees for JWA are given by the following classes of commands and values,
defined coinductively:

M ::= diverge | xip(
−→
V)

V ::= λ{p(−→y).Mp}p∈ultv(A)

These trees are not actually (infinite) JWA terms, because ultimate pattern matching
is not part of the syntax of JWA.

Notation For any n ∈ N, we write $n for the set {0, . . . , n− 1}. For a sequence
−→a , we write |−→a | for its length.

Any terminal command
−−−−→
x : ¬A `n M must be of the form xip(

−→
V). The core

of our definition is that we regard (i, p) as an observable action, so we write

M ip
−−−−→
x : ¬A `v −→V : H(p)

(This action is called a “Proponent move”. Interchangeably, we write it as xip
when it is more convenient to name the identifier than its index.) Thus, for any
command

−−→
x : A ` N , we have either

N ∗ ip
−→
V

for unique i, p,
−→
V , or else N ∞.

Suppose we are given a value sequence
−−−−→
x : ¬A `v −−−−→V : ¬B. For each j ∈ $|

−→
¬B|

and q ∈ ultv(Bj), we define (
−−−−→
V : ¬B) : jq to be the command

−−−−→
x : ¬A,−→y : H(q) `n Vjq(−→y)

where −→y are fresh. (We call this operation an “Opponent move”.)

Definition 1. Let R be a set of pairs of commands
−−−−→
x : ¬A `n M,M ′.

1. Let
−−−−→
x : ¬A `v −→V ,

−→
V ′ :
−→
¬B be two value sequences. We say

−→
V Rv

−→
V ′ when for

any j ∈ $|
−→
¬B| and q ∈ ultv(Bj), we have (

−→
V : jq)R (

−→
V ′ : jq).

2. R is a normal form bisimulation when
−−−−→
x : ¬A `n N RN ′ implies either

– N ∞ and N ′ ∞, or
– N ∗ ip

−→
V and N ′ ∗ ip

−→
V ′ and

−→
V Rv

−→
V ′.

We write h for normal form bisimilarity, i.e. the greatest normal form bisimu-
lation.

A renaming Γ
θ // ∆ maps each identifier x : A ∈ Γ to an identifier

θ(x) : A ∈ ∆. This induces a map M 7→ Mθ from terms in context Γ to terms
in context ∆.

Proposition 2. (preservation under renaming)

For any renaming −−−−→x : ¬A
θ // −−−−→y : ¬B , we have

−−−−→
x : ¬A ` M h M ′ implies

Mθ h M ′θ, and
−−−−→
x : ¬A `v −→V hv

−→
V ′ :
−→
¬C implies

−→
V θ hv

−−→
V ′θ.

Proof. Let R be the set of pairs (Mθ,M ′θ) where
−−−−→
x : ¬A ` M h M ′ and

−−−−→
x : ¬A

θ // −−−−→y : ¬B is a renaming. Then
−→
V θRv

−−→
V ′θ whenever

−−−−→
x : ¬A `v −→V hv

−→
V ′ :
−→
¬C. It is easy to show R is a normal form bisimulation.

Proposition 3. (preservation under substitution)
Suppose

−−−−→
y : ¬B `v −→W hv

−→
W ′ :

−→
¬A. Then

−−−−→
x : ¬A `n M h M ′ implies M [

−−→
W/x] h

M ′[
−−−→
W ′/x] and

−−−−→
x : ¬A `v −→V hv

−→
V ′ :
−→
¬C implies

−−−−−→
V [
−−→
W/x] hv

−−−−−−→
V ′[
−−−→
W ′/x].

This is proved in the next section.
Next we have to extend normal form bisimilarity to arbitrary commands and

values (conceptually following the categorical construction in [14]).

Definition 2. – Given commands
−−→
x : A `n M,M ′, we say M h M ′ when for

each
−−−−−−−→
p ∈ ultv(A) we have

−−−−−−→−→y : H(p) `n M [
−−−−−→
p(−→y)/x] h M ′[

−−−−−→
p(−→y)/x]

– Given values
−−→
x : A `v V, V ′ : B, we say V h V ′ when for each

−−−−−−−→
p ∈ ultv(A),

decomposing V [
−−−−−→
p(−→y)/x] as q(

−→
W) and V ′[

−−−−−→
p(−→y)/x] as q′(

−→
W ′), we have q = q′

and −−−−−−→−→y : H(p) `v −→W hv
−→
W ′ : H(q)

It is easy to see that normal form bisimilarity for JWA is an equivalence relation
and validates all the β and η laws [10].

Proposition 4. h is a substitutive congruence.

Proof. Substitutivity follows from Prop. 3. For each term constructor, we prove
it preserves h using substitutivity, as in [7].

As a corollary, we get that normal form bisimilar terms are contextually
equivalent, for any reasonable definition of contextual equivalence. The opposite
is not true. For example, this equation holds for contextual equivalence:

x : ¬¬1, y : ¬1 `n x y ∼=ctx x (λz.x y) (1)

The intuition is that either x ignores its argument, and then the equivalence
holds trivially, or else x invokes its argument at some point, and from that
point onward x (λz.x y) emulates x y from the beginning.6 But x y and x (λz.x y)

are not normal form bisimilar: x y
x(−¬1)
 y and x (λz.x y)

x(−¬1)
 λz.x y but y

and λz.x y are clearly not bisimilar since, given an argument z, the labelled

transitions y z
y(−1)
 z and (λz.x y) z

x(−¬1)
 y mismatch.

6 We omit both the definition of contextual equivalence and the proof of (1) but the
reasoning is analogous to Thielecke’s proof of Filinski’s equation M ∼=ctx M ;M in a
direct-style calculus with exception and continuations but without state [29]. Indeed,
(1) is essentially derived from Filinski and Thielecke’s example by a CPS transform.

3.1 Alternating Substitution

To prove Prop. 3, it turns out to be easier to show preservation by a more general
operation on terms, alternating substitution, which is applied to an alternating
table of terms. They are defined in Fig. 3. A table provides the following infor-
mation:

– the context of each term is the identifiers to the left of it
– the type of each identifier, and of each term, is given in the top row.

For example, the table

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0

−→
¬A1

−→
¬B1 `n

−→x out
−→
V 0

−→x 0
−→
V 1

−→x 1 M
−→z out

−→z 0
−→
W 0

−→z 1
−→
W 1

consists of the following value-sequences and commands:

−→x out :
−→
¬Aout `v −→V 0 :

−→
¬A0

−→z out :
−→
¬Bout,

−→z 0 :
−→
¬A0 `v −→W 0 :

−→
¬B0

−→x out :
−→
¬Aout,

−→x 0 :
−→
¬B0 `v −→V 1 :

−→
¬A1

−→z out :
−→
¬Bout,

−→z 0 :
−→
¬A0,

−→z 1 :
−→
¬A1 `v −→W 1 :

−→
¬B1

−→x out :
−→
¬Aout,

−→x 0 :
−→
¬B0,

−→x 1 :
−→
¬B1 `n M

We define transitions between tables in Fig. 4. The key result is the following:

Proposition 5. 1. There is no infinite chain of consecutive switching transi-
tions T0 switch T1 switch T2 switch · · ·

2. If T0 inner T1, then subst T0 subst T1.
3. If T0 switch T1, then subst T0 = subst T1.
4. If T0

ip T1 then subst T0
ip subst T1.

5. Let R be a value-sequence table of type
−→
¬C (in the rightmost column), and

let j ∈ $|
−→
¬C| and q ∈ ultv(Cj). Then subst (R : jq) = (subst R) : jq.

Proof. (1) In a command-table T that is inner-terminal (i.e. the command is
terminal), the command will be of the form xp(

−→
U), where x is declared in some

column of T . We call this column col(T). If T0 switch T1, and T1 is itself inner-
terminal, then col(T1) must be to the left of col(T0). To see this, suppose that T0

is of the form (2). Then the command of T0 is xm,ip(
−→
V n), and the command of

T1 is Wm,ip(−→z n). Since T1 is inner-terminal, Wm,i must be an identifier, declared
in the context of Wm,i i.e. somewhere to the left of column col(T0). Similarly if
T0 is of the form (3).

Hence, if there are N columns to the left of col(T0) (counting the two “outer”
columns as one) then there are at most N switching transitions from T0.

(2)–(5) are trivial.

A command table T is a collection of terms, either

of the form

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1 `n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1 M
−→z out

−→z 0
−→
W 0 · · · −→z n−1

−→
Wn−1

(2)

or of the form

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1

−→
¬An `n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
V n

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

−→z n M

(3)

We define the command −→x out :
−→
¬Aout,

−→z out :
−→
¬Bout `n subst T to be

M [−→x n−1\
−→
Wn−1][−→z n−1\

−→
V n−1] · · · [−→x 0\

−→
W 0][−→z 0\

−→
V 0] in case (2)

M [−→z n\
−→
V n][−→x n−1\

−→
Wn−1][−→z n−1\

−→
V n−1] · · · [−→x 0\

−→
W 0][−→z 0\

−→
V 0] in case (3)

A value-sequence table R is a collection of terms, either

of the form

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1 `v −→¬C

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
U

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

(4)

or of the form

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1

−→
¬An `v −→¬C

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
V n

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

−→z n
−→
U

(5)

We define the value-sequence −→x out :
−→
¬Aout,

−→z out :
−→
¬Bout `v subst R :

−→
¬C just as

for command tables.

Fig. 3. Alternating tables and substitution

We say that two tables are componentwise bisimilar when they have the same
types and identifiers, the corresponding value sequences are related by hv, and
the commands (if they are command tables) are related by h.

Proposition 6. If T, T ′ are command tables that are componentwise bisimilar,
then subst T h subst T ′. If R,R′ are value-sequence tables that are component-
wise bisimilar, then subst R hv subst R′.

Proof. Let R be the set of pairs (subst T, subst T ′), where T, T ′ are command
tables that are componentwise bisimilar. Then (subst R, subst R′) ∈ Rv when-
ever R,R′ are value-sequence tables that are componentwise bisimilar. We wish
to show that R is a normal form bisimulation.

We show, by induction on n, that if subst T n ip U , then T (inner

∪ switch)∗ ip R where subst R = U . For this, Prop. 5 gives us T ∗switch

T1 6 switch with subst T = subst T1 and the rest is straightforward.

Let T be of the form (2). There are 3 possibilities for M :

– If M M ′, we have an inner transition

T inner

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1 `n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1 M ′

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

– If M = xm,ip(
−→
U), we have a switching transition

T switch

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1 H(p) `n

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
U

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

−→z n Wm,ip(
−→z n)

– If M = xout,ip(
−→
U), we have an outer Proponent move

T
ip

−→
¬Aout

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1 `v H(p)

−→x out
−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1
−→
U

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

The case where T is of the form (3) is similar, with T
ip

replaced by T
(|−→x |+ i)p

.

Let R be of the form (4). For j ∈ $|
−→
¬C| and q ∈ ultv(Ej), we define

R : jq
def
=

−→
¬Aout, H(q)

−→
¬Bout

−→
¬A0

−→
¬B0 · · ·

−→
¬An−1

−→
¬Bn−1 `n

−→x out,
−→y

−→
V 0

−→x 0 · · ·
−→
V n−1

−→x n−1 Ujq(
−→y)

−→z out
−→z 0

−→
W 0 · · · −→z n−1

−→
Wn−1

where −→y is fresh (this is called an outer Opponent move). The case where R is of
the form (5) is similar.

Fig. 4. Transitions between alternating tables

We next show, by induction on n, that if (subst T, subst T ′) ∈ R and
T (∗inner switch)n ∗inner

ip R then T ′(∗inner switch)n ∗inner
ip R′ for

some R′ componentwise bisimilar to R; and hence subst T ′ ∗ ip subst R′.
The inductive step uses Prop. 2.

These two facts give us the required property of R.

The first part of Prop. 3 is now given by

M [
−−→
W/x] = subst

ε
−→
¬B
−→
¬A `n

−→x M
−→y
−→
W

h subst
ε
−→
¬B
−→
¬A `n

−→x M ′

−→y
−→
W ′

= M ′[
−−−→
W ′/x]

and the second part is similar.

4 Examples

4.1 Fixed point combinators are unique

To illustrate the use of normal form bisimulation, we now prove that at each
type, there is a unique fixpoint combinator up to normal form bisimilarity. The
proof is similar to the classical result that all λ-calculus fixed point combinators
have the same Böhm tree [30].

Theorem 1. All solutions `v U : ¬(A×¬(A×¬A)) to the fixed point equation

`v U hv λ〈u, f〉.f〈u, λv.U〈v, f〉〉 : ¬(A× ¬(A× ¬A))

are normal form bisimilar.

Proof. Suppose U1 and U2 are both solutions. We show they are bisimilar

`v U1 hv U2 : ¬(A× ¬(A× ¬A)) (6)

by exhibiting a bisimulation relation that relates
−→y : H(q) `n U1q(−→y), U2q(−→y) (7)

for all q ∈ ultv(A× ¬(A× ¬A)), that is, all q = 〈p,−¬(A×¬A)〉 where p ∈ ultv(A).
We define R to be the relation between all commands Γ `n M1,M2 where

Γ `n Mi h Ui〈p(−→x), f〉, for i ∈ {1, 2},

and p ∈ ultv(A) and Γ = −→x : H(p), f : ¬(A × ¬A),
−−−−→
y : ¬B. Then R ∪ h is a

normal form bisimulation. To see this, let p′ = 〈p,−¬A〉 and observe that since
Γ `n Mi h Ui〈p(−→y), f〉 and Ui is a fixed point, there exist

−→
Wi, Vi such that

Mi
∗ f〈p(

−→
Wi), Vi〉 = fp′(

−→
Wi, Vi)

fp′ −→
Wi, Vi

Γ `v −→Wi hv −→x : H(p)
Γ `v Vi hv λv.Ui〈v, f〉 : ¬A

for i ∈ {1, 2}. Hence Γ `v −→W1 hv −→W2 : H(p) and Γ `v V1 Rv V2 : ¬A. We
conclude that R∪h is a bisimulation and thus (6), since R relates (7).

4.2 Syntactic minimal invariance

Finally, we prove a syntactic version of the domain-theoretic minimal invariance
property [31] for JWA. Our proof is greatly facilitated by the normal form bisim-
ulation proof principle and is simpler than other syntactic minimal invariance
proofs in the literature for typed and untyped calculi [32, 33].

For every closed type A, we define the type A† def= A×¬A and we will define
a closed term `v h(A) : ¬A†. More generally, to deal with recursive types, we
define in Figure 4.2, by structural induction on A, open terms:

Γ `v h(Γ ` A) : ¬A[Γ]†,

where

– Γ =
−−−−−→
X : ¬B† (we take the liberty to use

−→
X as term identifiers in Γ and

h(Γ ` A) and as type identifiers in A),
– the types in

−→
B are closed,

– A is an open type:
−→
X ` A type, and

– [Γ] denotes the type substitution [
−−→
B/X].

When A is closed, h(A) def= h(` A).

h(Γ ` ¬A0) = λ〈x, k〉.kλx0.h(Γ ` A0)〈x0, x〉
h(Γ `

P
i∈IAi) = λ〈x, k〉.pm x as {〈i, xi〉.h(Γ ` Ai)〈xi, λyi.k〈i, yi〉〉}i∈I

h(Γ ` 1) = λ〈x, k〉.k x
h(Γ ` A1 ×A2) = λ〈x, k〉.pm x as 〈x1, x2〉.

h(Γ ` A1)〈x1, λy1.h(Γ ` A2)〈x2, λy2.k〈y1, y2〉〉〉
h(Γ ` X) = X

h(Γ ` µX.A) = λu.Y 〈u, λ〈v, X〉.
pm v as 〈x, k〉.
pm x as fold x0.

h(Γ, X : ¬(µX.A)† ` A)〈x0, λy0.k(fold y0)〉〉

Fig. 5. Definition of h(Γ ` A)

Proposition 7. h(A[Γ]) = h(Γ ` A)[
−−−−→
h(B)/X], if Γ =

−−−−−→
X : ¬B†.

Proof. By structural induction on A.

In particular, if µX.A is closed,

h(A[µX.A/X]) = h(X : ¬(µX.A)† ` A)[h(µX.A)/X] (8)

Lemma 1. Let g(V : ¬A) = λy.h(A)〈y, V 〉 and, by extension, let g(
−−−−→
V : ¬A) be

the value sequence where g(
−−−−→
V : ¬A)i = g(Vi : ¬Ai). Then, for all closed A and

p ∈ ultv(A), h(A)〈p(
−→
V), k〉 ∗ k(p(g(

−−−−−−→
V : H(p)))).

Proof. By structural induction on p. For illustration, we show the induction step
for the case when A = µX.A0 and p = fold p0. Let K = λy0.k(fold y0).

h(A)〈p(
−→
V), k〉 ∗ h(X : ¬A† ` A0)[h(A)/X]〈p0(

−→
V),K〉

= h(A0[h(A)/X])〈p0(
−→
V),K〉, by (8)

 ∗ K(p0(
−−−−−−→
V : H(p0))), by the induction hypothesis

 k(fold p0(
−−−−−−→
V : H(p0))) = k(p(

−−−−−−→
V : H(p)))

Theorem 2 (Syntactic minimal invariance). For all closed types A,
`v h(A) hv λ〈x, k〉.k x : ¬A†.

Proof. We need to show, for all p ∈ ultv(A),

k : ¬A,
−−−−−→
x : H(p) `n h(Γ ` A)〈p(−→x), k〉 h (λ〈x, k〉.k x)〈p(−→x), k〉

By Lemma 1, the left hand side β-reduces to k(p(g(
−−−−−→
x : H(p)))) and the right

hand side β-reduces to k(p(−→x)). It remains to show that

k : ¬A,
−−−−−→
x : H(p) `v g(

−−−−−→
x : H(p)) hv −→x : H(p)

This follows because the relation that relates, for all closed A and p ∈ ultv(A),

−−−−→
z : ¬B, x : ¬A,

−−−−−→
y : H(p) `n g(x : ¬A)(p(−→y)), x(p(−→y))

is a bisimulation, which is immediate from the calculation (using Lemma 1)

g(x : ¬A)(p(−→y)) h(A)〈p(−→y), x〉 ∗ x(p(g(
−−−−−→
y : H(p))))

Acknowledgements We thank Radha Jagadeesan and Corin Pitcher for their
comments on an earlier version of the paper and we thank the anonymous re-
viewers for pointing out some errors.

References

1. Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. Information
and Computation 111(1) (1994) 120–153

2. Jagadeesan, R., Pitcher, C., Riely, J.: Open bisimulation for aspects. In: Intl. Conf.
on Aspect-Oriented Software Development, ACM (2007) 209–224

3. Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimula-
tion up to context. In: MFPS XV. Volume 20 of ENTCS., Elsevier (1999) 346–374

4. Lassen, S.B.: Eager normal form bisimulation. In: 20th LICS, IEEE (2005) 345–354
5. Lassen, S.B.: Normal form simulation for McCarty’s amb. In: MFPS XXI. Volume

155 of ENTCS., Elsevier (2005) 445–465
6. Lassen, S.B.: Head normal form bisimulation for pairs and the λµ-calculus (ex-

tended abstract). In: 21st LICS, IEEE (2006) 297–306
7. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential

control and state. In: 34th POPL, ACM (2007) 63–74
8. Abramsky, S.: The lazy λ-calculus. In Turner, D., ed.: Research Topics in Func-

tional Programming. Addison-Wesley (1990) 65–116
9. Gordon, A.D.: Functional Programming and Input/Output. CUP (1994)

10. Levy, P.B.: Call-By-Push-Value. A Functional/Imperative Synthesis. Semantic
Struct. in Computation. Springer (2004)

11. Levy, P.B.: Adjunction models for call-by-push-value with stacks. Theory and
Applications of Categories 14(5) (2005) 75–110

12. Merro, M., Biasi, C.: On the observational theory of the CPS calculus. In: MFPS
XXII. Volume 158 of ENTCS., Elsevier (2006) 307–330

13. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Informa-
tion and Computation 163(2) (2000) 285–408

14. Abramsky, S., McCusker, G.: Call-by-value games. In: 11th CSL. Volume 1414 of
LNCS., Springer (1997) 1–17

15. Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for
general references. In: 13th LICS, IEEE (1998) 334–344

16. Laird, J.: Full abstraction for functional languages with control. In: 12th LICS,
IEEE (1997) 58–67

17. Ker, A.D., Nickau, H., Ong, C.H.L.: Innocent game models of untyped lambda-
calculus. Theoretical Computer Science 272(1-2) (2002) 247–292

18. Ker, A.D., Nickau, H., Ong, C.H.L.: Adapting innocent game models for the Böhm
tree λ-theory. Theoretical Computer Science 308(1-3) (2003) 333–366

19. Ong, C.H.L., Gianantonio, P.D.: Games characterizing Lévy-Longo trees. Theo-
retical Computer Science 312(1) (2004) 121–142

20. Laird, J.: A categorical semantics of higher-order store. In: 9th Conference on
Category Theory and Computer Science. Volume 69 of ENTCS., Elsevier (2003)

21. Curien, P.L., Herbelin, H.: Computing with abstract Böhm trees. In: Fuji Inter-
national Symposium on Functional and Logic Programming. (1998) 20–39

22. Danos, V., Herbelin, H., Regnier, L.: Game semantics and abstract machines. In:
11th LICS, IEEE (1996) 394–405

23. Levy, P.B.: Infinite trace equivalence. In: MFPS XXI. Number 155 in ENTCS,
Elsevier (2006) 467–496

24. Levy, P.B.: Game semantics using function inventories. Talk given at Geometry of
Computation 2006, Marseille, 2006

25. Laird, J.: A fully abstract trace semantics for general references. In: 34th ICALP.
Volume 4596 of LNCS., Springer (2007)

26. Hyland, J.M.E., Ong, C.H.L.: Pi-calculus, dialogue games and PCF. In: 7th FPCA,
ACM (1995) 96–107

27. Fiore, M.P., Honda, K.: Recursive types in games: Axiomatics and process repre-
sentation. In: 13th LICS, IEEE (1998) 345–356

28. Thielecke, H.: Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh (1997)

29. Thielecke, H.: Contrasting exceptions and continuations. Unpublished (October
2001)

30. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Revised edn.
North-Holland (1984)

31. Pitts, A.M.: Relational properties of domains. Information and Computation 127
(1996) 66–90

32. Birkedal, L., Harper, R.: Operational interpretations of recursive types in an op-
erational setting (summary). In: TACS. Volume 1281 of LNCS., Springer (1997)

33. Lassen, S.B.: Relational reasoning about contexts. In Gordon, A.D., Pitts, A.M.,
eds.: Higher Order Operational Techniques in Semantics. CUP (1998) 91–135

