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Abstract

McCarthy’s amb operator has no known denotational semantics, and its basic operational properties - the
context lemma, the compatibility of refinement similarity and convex bisimilarity - have long been open.
In this paper, we give a single example program that demonstrates the failure of each of these properties.
This shows that there cannot be any well-pointed denotational semantics.
However, we show that, if amb is given at ground type only, then all of these operational properties do hold.
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1 Introduction

1.1 The Questions

McCarthy’s amb [14] is a kind of fair nondeterminism: M amb M ′ can return

any value that M or M ′ can return, and can diverge only if both M and M ′

can diverge. This differs from ordinary (erratic) nondeterminism M or M ′, which

can diverge if either M or M ′ can diverge. Despite its apparent simplicity, amb

has been something of an embarrassment for semantics research. It has resisted

both denotational modelling and a satisfactory operational treatment, leading to

two substantial open problems [6].

The first problem arises from the notion of applicative bisimulation, introduced

in [1] in the untyped setting and later studied in the typed setting [3]. Applicative

bisimilarity was shown to be a congruence by an ingenious method [5]. This method

works in both the deterministic and the erratically nondeterministic setting, but as

explained in [8], it does not work in the presence of amb. So it has remained open

whether applicative bisimilarity, in the presence of amb, is a congruence.

A second problem is contextual equivalence, where we treat both convergence

and divergence as observable. In the nondeterministic setting, this is known to be
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coarser than applicative bisimulation. The context lemma states that two terms

M and M ′ that are contextually equivalent in any environment (i.e. under any

closing substitution) must be contextually equivalent. This was shown in [5,6] in

the erratically nondeterministic setting, but whether it holds in the presence of amb

has remained open.

In this paper, we give a single example that simultaneously answers these

questions—and some variants using preorders rather than equivalence relations—in

the negative. We give two programs M and M ′ that in any environment must be re-

garded as equivalent, even when we use the finer relation of applicative bisimilarity.

On the other hand, there is a context C[·] such that C[M ] may diverge and C[M ′]

cannot. This shows that, in the setting of amb, it is impossible to regard a term

as being a function from environments to behaviours. No denotational semantics

founded on such a principle can work.

In order to formulate this example, we need to make use of amb at non-ground

type. In a calculus that provides amb with ground type only, we shall show that

the open questions can be answered affirmatively.

The structure of the paper is as follows. In Sect. 2, we describe our results

using a small call-by-name (CBN) calculus, without function types. This makes

the example program easy to understand. Then, in Sect. 3–4, to prove our positive

results, we move to a call-by-value (CBV) calculus with function types and recursive

types.

Remark 1.1 Our example program works for typed calculi (which may include

recursive types). This is by contrast with [7], where the untyped lazy λ-calculus with

amb is studied. For that calculus, our example does not work (unless sequencing is

added), and the open questions remain open.

2 Small Call-By-Name Calculus

2.1 The Questions

In this section, we consider a call-by-name calculus with ground types and unary

sum types, as shown in Fig. 1–2. We write L for the unary sum type constructor,

and pm as an abbreviation for “pattern-match”. We write diverge for rec x. x.

The operational semantics as displayed in Fig. 2 follows the formulation of [16].

For each type A, we define a set [A] as follows:

[bool] =P{true, false,⊥}

[1] =P{⊤,⊥}

[LA] =P({up B | B ∈ [A]} ∪ {⊥})

(We could choose to exclude the empty set from the powersets, but this does not

substantially affect our argument.) For each closed term M : A we define its oper-

ational meaning [M ] ∈ [A] by induction on A:

• if M : bool then [M ]
def

= {true | M ⇓ true} ∪ {false | M ⇓ false} ∪ {⊥ | M ⇑}

• if M : 1 then [M ]
def

= {top | M ⇓ top} ∪ {⊥ | M ⇑}

• if M : LA then [M ]
def

= {up [N ] | M ⇓ up N} ∪ {⊥ | M ⇑}.
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Types A ::= bool | 1 | LA

Terms

(x : A) ∈ Γ
Γ ⊢ x : A

Γ, x : A ⊢ M : A

Γ ⊢ rec x.M : A

Γ ⊢ M : A Γ ⊢ M ′ : A

Γ ⊢ M or M ′ : A

Γ ⊢ M : A Γ ⊢ M ′ : A

Γ ⊢ M amb M ′ : A

Γ ⊢ top : 1

Γ ⊢ M : 1 Γ ⊢ N : B

Γ ⊢ M ; N : B

Γ ⊢ M : A

Γ ⊢ up M : LA

Γ ⊢ M : LA Γ, x : A ⊢ N : B

Γ ⊢ pm M as up x. N : B

Fig. 1. Syntax of Call-By-Name Language

We say two terms M, M ′ : A are convex bisimilar when [M ] = [M ′]. If A is a ground

type, we say they are behaviourally equivalent.

Convex bisimilarity is robust, because of the following result, whose proof we

defer to Sect. 3.

Proposition 2.1 If closed terms ⊢ M, M ′ : A are convex bisimilar then C[M ] and

C[M ′] are convex bisimilar for any context C[·] of any type, with hole of type A.

Suppose we wish to identify closed ground terms precisely when they are be-

haviourally equivalent. As explained in [9], domain semantics, in which diverge 6

true, cannot be used. For then

true or diverge 6 true or true = true

but, if amb is monotone, we also have

true= if (false amb diverge) then diverge else true

6 if (false amb true) then diverge else true

= true or diverge

Hence true or diverge = true, contradicting behavioural equivalence. So in

any domain semantics of nondeterminism, either true or diverge and true are

identified (as in Hoare’s powerdomain theory), or amb is not monotone (as in the

powerdomain theories of Smyth and Plotkin). In fact, no denotational model of

ground behavioural equivalence for this calculus is known.

We say that two open terms Γ ⊢ M, M ′ : B are

(i) convex applicatively bisimilar when M [
−−→
N/x] and M ′[

−−→
N/x] are bisimilar for

every Γ-environment
−−→
N/x

(ii) contextually equivalent when C[M ] and C[M ′] are behaviourally equivalent for

every ground context C[·] with hole inhabiting Γ ⊢ B

3



Levy

The following closed terms are terminal

T ::= true | false | top | up M

Convergence Relation M ⇓ T—Inductive Definition

M ⇓ T

M or M ′ ⇓ T

M ′ ⇓ T

M or M ′ ⇓ T

M [rec x.M/x] ⇓ T

rec x.M ⇓ T

M ⇓ T

M amb M ′ ⇓ T

M ′ ⇓ T

M amb M ′ ⇓ T

M ⇓ true N ⇓ T

if M then N else N ′ ⇓ T

true ⇓ true false ⇓ false

M ⇓ false N ′ ⇓ T

if M then N else N ′ ⇓ T

top ⇓ top

M ⇓ top N ⇓ T

M ; N ⇓ T

up M ⇓ up M

M ⇓ up P N [P/x] ⇓ T

pm M as up x. N ⇓ T

Divergence Predicate M ⇑—Coinductive Definition

M ⇑

M or M ′ ⇑

M ′ ⇑

M or M ′ ⇑

M ⇑

if M then N else N ′ ⇑

M [rec x.M/x] ⇑

rec x.M ⇑

M ⇑ M ′ ⇑

M amb M ′ ⇑

M ⇓ true N ⇑

if M then N else N ′ ⇑

M ⇑

M ; N ⇑

M ⇓ top N ⇑

M ; N ⇑

M ⇓ false N ′ ⇑

if M then N else N ′ ⇑

M ⇑

pm M as up x. N ⇑

M ⇓ up P N [P/x] ⇑

pm M as up x. N ⇑

Fig. 2. Big-Step Semantics For A Call-By-Name Calculus

(iii) CI equivalent (CI stands for “closed instantiation”) when M [
−−→
N/x] and M ′[

−−→
N/x]

are observationally equivalent for every Γ-environment
−−→
N/x.

The two open problems of [6], stated there in a rich setting with function types

and recursive types, are as follows.
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(i) Is convex applicative bisimilarity a congruence?

(ii) Does CI equivalence imply contextual equivalence? (Such a result is called a

context lemma or a CI theorem.)

There are also variants of these questions using preorders rather than equivalence

relations. In the setting of erratic choice, all of these questions have been affirma-

tively answered [5,6,12]. But it did not seem possible to adapt these techniques to

amb [8]. So the questions have remained open.

2.2 The Counterexample

We will now give a single example that answers both these questions (and the

preorder variants) negatively. Define the terms x : L1 ⊢ M, M ′ : L1 as follows.

M
def

= (up top) amb (pm x as up z.up (top or z))

M ′ def

= up (top or pm (up top amb x) as up y.y)

M ′′ def

= M or M ′

For any closed term ⊢ N : L1, the terms M [N/x] and M ′′[N/x] are behaviourally

equivalent. (This is true even if we introduce a constant at each type representing

the empty set.)

• Neither is able to diverge.

• Both are able to return up P , for some P such that P ⇓ top but P 6⇑.

• Neither is able to return up P , for some P such that P 6⇓ top.

• Both are able to return up P , for some P such that P ⇓ top and P ⇑, precisely

if N is able to return up Q for some Q such that Q ⇑.

Thus M and M ′′ are convex applicative bisimilar. Hence, by Prop. 2.1, they are

also CI equivalent. But they are not contextually equivalent; for example, they can

be distinguished by the context

C[·]
def

= pm (up top amb (rec x.[·])) as up y. y : 1

We first observe that

(i) if rec x.M ⇓ up N , then, by induction on the evaluation, we have N =

(top or )n top, and so N cannot diverge

(ii) rec x.M ′′ ⇓ up (top or C[M ′′]) by taking the right-hand choice.

(i) gives us C[M ] 6⇑. To show C[M ′] ⇑, we consistently take the right-hand choice.

Formally, we have

{CM ′′, top or CM ′′} ⊑⇑

by simple coinduction, using (ii).

This example rules out any denotational semantics that is well-pointed, i.e.

in which the semantics of a term is a function from environments. Opera-

tionally, M and M ′′ describe the same endofunction f on [L1], mapping C to

{up {⊤}, up {⊤,⊥}} if ∃D ∈ [1]. (⊥ ∈ D ∧ up D ∈ C), and to {up {⊤}} other-

wise. But f has two fixpoints, viz. {up {⊤}} and {up {⊤}, up {⊤,⊥}}. And the
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operational argument shows us that [rec x.M ] is the former, and [rec x.M ′′] the

latter. So there is no right way of computing the recursive fixpoint. (Cf. the fixpoint

example in [13].)

2.3 Uses

A use is a special kind of ground context that can be applied to a closed term.

• A use of bool is a ground context if [·] then N else N ′.

• A use of 1 is a ground context [·];N .

• A use of LA is a ground context pm [·] as up x. N .

Two closed terms ⊢ M, M ′ : A are uses equivalent when C[M ] and C[M ′] are be-

haviourally equivalent for every use C[·] of A. More generally, two open terms

Γ ⊢ M, M ′ : A are CIU equivalent when C[M [
−−→
V/x]] and C[M ′[

−−→
V/x]] are behaviourally

equivalent for every Γ-environment
−−→
V/x and every use C[·] of A.

A uses theorem states that uses equivalence implies contextual equivalence. A

CIU theorem is the conjunction of a CI theorem and a uses theorem, stating that

CIU equivalence implies contextual equivalence. This theorem (and preorder vari-

ants) is known to hold in the deterministic [18] and erratically nondeterministic [6]

settings.

Like the CI theorem, the uses theorem fails in the presence of amb. To see this,

define terms ⊢ M, M ′ : L1 as follows:

M
def

= diverge or up top

M ′ def

= M or up (top or diverge)

Now for any ground term x : 1 ⊢ N : C, the terms pm M as up x. N and

pm M ′ as up x. N both may diverge. Moreover, they may converge to the same

things, because M and M ′ are “may contextually equivalent” (see e.g. [6]). So M

and M ′ are uses equivalent. But they are not contextually equivalent; for example,

they can be distinguished by

C[·] = pm ([·] amb up top) as x. x : 1

C[M ′] may diverge, whereas C[M ] cannot.

2.4 Ground Amb

In the examples in Sect. 1.1–2.3, crucial use was made of amb at the non-ground

type L1. If we allow amb at ground type only, then all the questions can be

answered affirmatively. We prove this in Sect. 4.

2.5 Strong and Weak Divergence

As suggested in [17], if we are concerned with branching-time behaviour, it might

be reasonable to distinguish different kinds of divergence. When a term diverges,

either

• convergence remains possible throughout, or
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• it is eventually the case that only divergence is possible.

These two kinds of divergence are called weak and strong respectively. For example,

C[M ′′] from Sect. 2.2 may weakly diverge, but cannot strongly diverge.

Our claim in Sect. 2.2 that M [N/x] and M ′′[N/x] have the same range of be-

haviours for any N continues to hold even if we distinguish these kinds of divergence.

And it seems likely that Prop. 2.1 could be adapted to a finer notion of bisimulation

that makes this distinction. So the distinction does not destroy our example.

In order to encode λ-calculus with amb into the π-calculus, [2] takes this a step

further: not merely distinguishing strong from weak divergence, but disregarding

weak divergence entirely. Our example is not then applicable, because C[M ′′] cannot

strongly diverge.

3 A Call-By-Value Calculus

For the operational techniques in this paper, it is easiest to work with call-by-value.

They can be adapted to call-by-push-value, and hence to call-by-name, but at the

cost of some complication. The types of our calculus are as follows:

coinductive definition A ::=
∑

i∈IAi | 1 | A × A | A → A

where I ranges over countable sets. We make the type syntax coinductive so that

we get equirecursive types (i.e. equality µx.A = A[µX.A/X] rather than mere iso-

morphism). We define the ground types coinductively by

C ::=
∑

i∈ICi | 1 | C × C

We omit rules for 1 as they are analogous to those for ×.

We use a fine-grain call-by-value calculus 2 that explicitly distinguishes values

from ordinary terms. So there are two judgements: Γ ⊢ M : B means that M is a

term of type B, and Γ ⊢v V : B means that V is a value of type B. The syntax is

defined inductively in Fig. 3.

The operational semantics is given in Fig. 4. Instead of defining ⇑ coinductively,

we define its complement ⇓2 inductively. That is clearly equivalent, but makes

reasoning easier.

Remark 3.1 We can treat the CBN calculus of Sect. 2 in precisely the same way

as our CBV calculus. Indeed, the former is a fragment of the latter via the standard

thunking transformation [4], translating LA as 1 → A. But this only works because

the CBN calculus lacks function types.

If we wished to include CBN function types, or, more generally, to work with

call-by-push-value [10], we would require other techniques. As this is not specific to

amb, we do not treat it in this paper.

Definition 3.2 (i) A closed relation R associates to each type A a binary relation

on the closed terms inhabiting it, and a binary relation on the closed values

inhabiting it.

2 For comparison with similar calculi such as Moggi’s monadic metalanguage [15], see [11].
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Γ, x : A, Γ′ ⊢v x : A

Γ ⊢v V : A Γ, x : A ⊢ M : B

Γ ⊢ let V be x. M : B

Γ ⊢v V : A

Γ ⊢ return V : A

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ M to x. N : B

Γ ⊢v V : A Γ ⊢v V ′ : A′

Γ ⊢v 〈V, V ′〉 : A × A′

Γ ⊢v V : A × A′ Γ, x : A, y : A′ ⊢ M : B

Γ ⊢ pm V as 〈x, y〉. M : B

Γ ⊢v V : Aı̂
ı̂ ∈ I

Γ ⊢v 〈̂ı, V 〉 :
∑

i∈IAi

Γ ⊢v V :
∑

i∈IAi Γ, x : Ai ⊢ Mi : B (∀i ∈ I)

Γ ⊢ pm V as {〈i, x〉.Mi}i∈I : B

Γ, f : A → B, x : A ⊢ M : B

Γ ⊢v rec fλx.M : A → B

Γ ⊢v V : A → B Γ ⊢v W : A

Γ ⊢ V W : B

Γ ⊢ Mi : B (∀i ∈ I)

Γ ⊢ choose i∈I .Mi : B

Γ ⊢ Mi : B (∀i ∈ I)

Γ ⊢ amb i∈I .Mi : B

Fig. 3. Syntax Of Fine-Grain CBV With Countable Nondeterminism

(ii) An open relation R associates to each sequent Γ ⊢ A a binary relation on

the terms inhabiting it, and to each value sequent Γ ⊢v A a binary relation

on the values inhabiting it, such that if Γ ⊢ M RM ′ : B and Γ ⊆ Γ′ then

Γ′ ⊢ M RM ′ : B, and similarly for values.

(iii) We write id for the identity relation on terms and values, and idf for the identity

relation restricted to identifiers.

(iv) We write E for the universal relation on terms and values (relating everything

to everything).

(v) We write ; for relational composition, in diagrammatic order.

(vi) We write R∗ for the reflexive transitive closure of R.

(vii) If R is an open relation, we write R0 for the restriction of R to closed terms

and closed values.

(viii) Let R be a closed relation. We define R◦ (the open extension of R) to be the

open relation that relates two terms Γ ⊢ M, N : B when M [
−−→
V/x] R N [

−−→
V/x] for

any substitution
−−→
V/x from Γ to the empty context.

(ix) Let R be a closed relation. We define Rw (the weakening extension of R) to

be the open relation that relates two terms Γ ⊢ M, N : B when M and N are

both closed and M R N .

Definition 3.3 (i) Let R and S be open relations. We define R[S] (the substi-

tution of S into R) to be the open relation consisting of the pairs of terms
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May Convergence (inductive definition)

M [W/x] ⇓ V

let W be x. M ⇓ V

M [rec fλx.M/f, W/x] ⇓ V

(rec fλx.M)W ⇓ V

return V ⇓ V

M ⇓ W N [W/x] ⇓ V

M to x. N ⇓ V

Mı̂[W/x] ⇓ V
ı̂ ∈ I

pm 〈̂ı, W 〉 as {〈i, x〉.Mi}i∈I ⇓ V

M [W/x, W ′/y] ⇓ V

pm 〈W, W ′〉 as 〈x, y〉. M ⇓ V

Mı̂ ⇓ V
ı̂ ∈ I

choosei∈IMi ⇓ V

Mı̂ ⇓ V
ı̂ ∈ I

ambi∈IMi ⇓ V

Must convergence (inductive definition)

return V ⇓2

M ⇓2 ∀W (M ⇓ W ⇒ N [W/x] ⇓2)

M to x. N ⇓2

M [W/x] ⇓2

let W be x. M ⇓2

M [rec fλx.M/f, W/x] ⇓2

(rec fλx.M)W ⇓2

Mı̂[W/x] ⇓2

ı̂ ∈ I
pm 〈̂ı, W 〉 as {〈i, x〉.Mi}i∈I ⇓2

M [W/x, W ′/y] ⇓2

pm 〈W, W ′〉 as 〈x, y〉. M ⇓2

Mı̂ ⇓2 (∀i ∈ I)

choosei∈IMi ⇓2

Mi ⇓2

ı̂ ∈ I
ambi∈IMi ⇓2

Fig. 4. Big-Step Semantics For Fine-Grain CBV

∆ ⊢ M [
−−→
V/x], N [

−−→
W/x] : B for every pair of terms Γ ⊢ M, N : B and pair of

substitutions Γ

−−→
V/x

// ∆ and Γ

−−→
W/x

// ∆ such that M RN and Vx S Wx for each

(x : A) ∈ Γ.

(ii) An open relation S is substitutive when idf ⊆ S and S[S] ⊆ S.

Definition 3.4 Let R be an open relation.

(i) We define R̂ (the compatible refinement of R) to be the open relation that

relates two terms θ{Mi}i∈I and φ{Nj}j∈J when θ = φ (hence I = J), and

Mi RNi for each i ∈ I.

(ii) S is compatible when Ŝ ⊆ S.

(iii) We define RSC (the substitutive compatible closure of R) to be the least sub-

stitutive compatible relation containing R.
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Lemma 3.5 Let R be a closed relation. Then RwSC ⊆ Rw ∪ ̂RwSC. Hence RwSC
0 ⊆

R ∪ ̂RwSC
0.

Proof.

RwSC = Rw[RwSC] ∪ ̂RwSC ⊆ Rw[E ] ∪ ̂RwSC ⊆ Rw ∪ ̂RwSC

2

For reasoning about operational semantics, the following variant of −̂ is useful.

Definition 3.6 If R is an open relation, we define R̀ to be the closed relation that

relates

• let V be x.M to let V ′ be x. M ′, where V RV ′ and M RM ′

• return V to return V ′, where V RV ′

• M0 to x. M1 to M ′
0 to x. M ′

1, where M0 RM ′
0 and M1 RM ′

1

• pm 〈V0, V1〉 as 〈x, y〉. M to pm 〈V ′0 , V
′
1〉 as 〈x, y〉. M ′, where V0 RV ′0 and V1 RV ′1

and M RM ′

• pm 〈̂ı, V 〉 as {〈i, x〉. Mi}i∈I to pm 〈̂ı, V ′〉 as {〈i, x〉. M ′
i}i∈I where V RV ′ and

Mi RM ′
i for each i ∈ I

• (rec fλx.M)V to (rec fλx.M ′)V ′ where M RM ′ and V RV ′

• choose i∈I . Mi to choose i∈I . M ′
i , where Mi RM ′

i for each i ∈ I

• amb i∈I . Mi to amb i∈I . M ′
i , where Mi RM ′

i for each i ∈ I.

Definition 3.7 Let R be a closed relation.

(i) R respects tuples when
• 〈̂ı, V 〉R 〈̂ı′, V ′〉 :

∑
i∈IAi implies ı̂ = ı̂′ and V R V ′ : Aı̂,

• 〈V0, V1〉R 〈V ′0 , V
′
1〉 : A0 × A1 implies V0 R V ′0 : A0 and V1 R V ′1 : A1.

(ii) R respects functions when V R V ′ : A → B implies V W R V ′W : B for every

closed value W : A

(iii) We say that R is a lower applicative simulation when it respects tuples and

functions, and M R M ′ and M ⇓ V implies M ′ ⇓ V ′ for some V ′ such

that V R V ′. If, moreover, M R M ′ and M ⇑ implies M ′ ⇑, then R is a

lower+divergence applicative simulation.

(iv) We say that R is a lower (resp. lower+divergence) applicative bisimulation

when R and R
op

are both lower (resp. lower+divergence) simulations.

(v) We say that R is a lower+divergence applicative sesquisimulation when it is a

lower+divergence simulation and a lower bisimulation.

The dual of a lower+divergence simulation is called a refinement simulation

in [6].

We define lower applicative similarity to be the greatest lower applicative sim-

ulation, and so forth for the other kinds of simulation.

It is convenient to define contextual equivalence (and inequality) without for-

mally defining contexts.

Definition 3.8 Let R be a closed relation.
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• R is may-preadequate when, if M R M ′ : A where A is a ground type, and M ⇓ n

then M ′ ⇓ n. It is may-adequate when both R and R
op

are may preadequate.

• R is preadequate when it is preadequate and, if M R M ′ : A where A is a ground

type, and M ⇑ then M ′ ⇑. It is adequate when both R and R
op

are preadequate.

Definition 3.9 Let Γ ⊢ M, M ′ : A be terms. Write R(M,M ′) for the substitutive

compatible closure of the open relation that only relates Γ′ ⊢ M, M ′ : A for Γ′ ⊇ Γ.

We say

• M ⊑⋄ M ′ when R(M,M ′)0
is may-preadequate

• M ≃⋄ M ′ when R(M,M ′)0
is may-adequate

• M ⊑⇑ M ′ when R(M,M ′)0
is preadequate

• M ≃⇑ M ′ when R(M,M ′)0
is adequate.

Definition 3.10 (i) Let M, M ′ : A be closed terms. We say M ⊑⇑U M ′ when

for any ground type C and term z : A ⊢ P : C, the behaviours (values or

divergence) of M to z. P are contained in the behaviours of M ′ to z. P .

(ii) Let V, V ′ : A be closed values. We say V ⊑⇑U V ′ when for any ground type

B and term z : A ⊢ P : B, the behaviours (values or divergence) of P [V/z] are

contained in the behaviours of P ′[V/z].

Clearly contextual inequality ⊑⇑ is contained in ⊑⇑U
◦.

The only task that we have in the setting of general amb is proving Prop. 2.1, or

rather a corresponding statement in our CBV setting.

Definition 3.11 A closed relation R is said to be ground on functions when

V R V ′ : A → B implies that A is a ground type.

Proposition 3.12 (i) Let R be a lower+divergence applicative simulation that is

ground on functions. Then RwSC
0 is a lower+divergence applicative simulation.

(ii) Let R be a lower+divergence applicative bisimulation that is ground on func-

tions. Then RwSC
0 is a lower+divergence applicative bisimulation.

Proof.

(i) Clearly RwSC
0 respects functions, and it is easy to show that it respects tuples.

Hence if W RwSC W ′ : A and A is a ground type, then W = W ′. This is by

induction on W .

We next show that RwSC
0 ⊆ R ∪ `RwSC. Suppose M RwSC

0 M ′. By

Lemma 3.5, either M R M ′ or M ̂RwSC M ′. In the latter case, we show that

either M R M ′ or M `RwSCM ′, by case analysis.
• Suppose M = (rec fλx.M0)W and M ′ = (rec fλx.M ′

0)W
′ and

rec fλx.M0 RwSC rec fλx.M ′
0 and W RwSC W ′. By Lemma 3.5, either

· M0 RwSC M ′
0, in which case we are done, or

· rec fλx.M0 R rec fλx.M ′
0, in which case W has ground type so W = W ′

by the first paragraph. Hence M R M ′, since R respects functions.
• The other cases are trivial, using the fact that RwSC respects tuples.

We next show that RwSC
0 is a lower applicative simulation. We need to show

that if M ⇓ V and M RwSC
0 M ′ then there exists V ′ such that M ′ ⇓ V ′ and

11
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V RwSC
0 V ′. We do this by induction on M ⇓ V . The case that M R M ′ is

trivial, so we suppose that M `RwSC M ′, and go through the various cases of

M . We omit the details, which are straightforward.

We next show that if M ′ ⇓2 and M RwSC M ′ then M ⇓2; we do this by

induction on M ′ ⇓2. The case that M R M ′ is trivial, so we suppose that

M `RwSC M ′.
• Suppose M = M0 to x. M1 and M ′ = M ′

0 to x. M ′
1 and M0 RwSC M ′

0 and

M1 RwSC M ′
1. Then M ′

0 ⇓2, which gives us M0 ⇓2. If M0 ⇓ W , then,

since RwSC
0 is a lower simulation, there exists W ′ such that M ′

0 ⇓ W ′ and

W RwSC W ′, and we have M ′
1[W

′/x] ⇓2. Since M1[W/x] RwSC M ′
1[W

′/x] we

have M1[W/x] ⇓2 by inductive hypothesis. Hence M0 to x. M1 ⇓2.

(ii) A corollary of (i).

2

4 Ground Amb

4.1 Aims

Our aim is to prove the following results.

Proposition 4.1 When we restrict the use of amb to ground type,

(i) lower+divergence applicative similarity is a substitutive precongruence

(ii) lower+divergence applicative sesquisimilarity is a substitutive precongruence

(iii) lower+divergence applicative bisimilarity is a substitutive congruence.

(iv) ⊑⇑ and ⊑⇑U
◦ coincide, i.e. ⊑⇑U

◦SC
0 is preadequate.

4.2 Decomposing Over A Relation

The following will be useful in the following sections.

Definition 4.2 An open relation S decomposes over a closed relation R when S ⊆

Ŝ; R◦.

Proposition 4.3 Let S be an open relation that decomposes over a closed relation

R. Suppose that S respects tuples and R respects functions. Then S0, restricted to

terms (i.e. not values), is contained in S̀; R.

Proof. Suppose M S0 M ′. Since S decomposes over R, there exists M ′′ such that

M Ŝ M ′′ and M ′′R M ′. We then reason by cases.

• Suppose M = V W and M ′′ = V ′W ′ and V S V ′ and W S W ′. Then V =

rec fλx.M0, so, by decomposition, there exists M ′′
0 such that M0 S M ′′

0 and

rec fλx.M ′′
0 R V ′. Since R respects functions, (rec fλx.M ′′

0 )W ′R V ′W ′R M ′.

• In all other cases, M S̀ M ′′, using the fact that S respects tuples.

2
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4.3 Divergence Similarity Is A Precongruence

The goal of this section is to prove Prop. 4.1.

Definition 4.4 An open relation S is Howe-suitable over a closed relation R when

• S decomposes over R.

• S is reflexive, substitutive and respects functions

• S; R◦ ⊆ S

Proposition 4.5 Let R be a closed preorder and let S be an open relation Howe-

suitable over R.

(i) R◦ ⊆ S

(ii) If S0 ⊆ R (e.g. if (S∗)0 ⊆ R), then R◦ = S = S∗.

(iii) If R respects tuples then so does S.

Proof.

(i) R◦ = id; R◦ ⊆ S; R◦ ⊆ S

(ii) For any open relation S, we have S ⊆ S[id]0
◦. In our case, since S is reflexive

and substitutive, we have S ⊆ S0
◦ ⊆ R◦.

(iii) Suppose 〈̂ı, V 〉 S0 〈̂ı
′, V ′〉. Then there exists V ′′ such that V S0 V ′′ and

〈̂ı, V ′′〉R 〈̂ı′, V ′〉. Because R respects values, ı̂ = ı̂′ and V ′′R V ′ so V S V ′.

Similarly at product types.

2

Definition 4.6 A closed relation R is an upper simulation when it respects values

and tuples and M R M ′ and M ⇓2 implies M ′ ⇓2 ∧∀V ′.(M ′ ⇓ V ′ ⇒ ∃V.(M ⇓

V ∧ V R V ′))

Proposition 4.7 Let S be an open relation Howe-suitable over a closed relation R

respecting functions and tuples.

(i) If R is a lower simulation, then so is S0, and hence so is S∗0 .

(ii) If R is an upper simulation and S
op

0 is may-preadequate, then S0 is an upper

simulation, and hence so is S∗0 .

Proof. S respects functions by definition, and respects tuples by Prop. 4.5(iii).

Hence Prop. 4.3 applies.

(i) Suppose that R is a lower simulation. We have to show that M S0 M ′ and

M ⇓ V implies M ′ ⇓ V ′′ for some V ′′ such that V S0 V ′′. We proceed by

induction on M ⇓ V . This is standard.

(ii) Suppose that R is an upper simulation. We have to show that M S0M
′ and

M ⇓2 implies M ′ ⇓2 ∧∀V ′.(M ′ ⇓ V ′ ⇒ ∃V.(M ⇓ V ∧ V R V ′)) We prove this

by induction on M ⇓2.

We know that there exists M ′′ such that M S̀ M ′′ and M ′′R M ′.

Suppose M = amb i∈IMi and M ′′ = amb i∈IM
′
i and Mi S M ′

i for all i ∈ I.

Then there exists ı̂ ∈ I such that Mı̂ ⇓2. So M ′

ı̂ ⇓2, so M ′′ ⇓2, so M ′ ⇓2. If

13
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M ′ ⇓ n, then, since M S0 M ′ and S
op

0 is may-preadequate, we have M ⇓ n, and

we know that nS n.

Otherwise, we proceed as follows. We first show M ′′ ⇓2 ∧∀V ′′.(M ′′ ⇓ V ′′ ⇒

∃V.(M ⇓ V ∧ V R V ′′)) in the following way.
• Suppose that M = M0 to x. M1 and M ′′ = M ′

0 to x. M ′
1 and M0 S M ′

0 and

M1 S M ′
1. We have M0 ⇓2, so M ′

0 ⇓2. If M ′
0 ⇓ W ′, then by the inductive

hypothesis there exists W such that M0 ⇓ W and W S W ′. So M1[W/x] ⇓2,

and M1[W/x]S M ′
1[W

′x], so M ′
1[W

′/x] ⇓2.

If M ′
0 to x. M ′

1 ⇓ V ′′, then there exists W ′ such that M ′
0 ⇓ W ′ and

M ′
1[W

′/x] ⇓ V ′′. Then there exists W such that M0 ⇓ W and W S W ′. Since

M1[W/x]S M ′
1[W

′x], there exists V such that M1[W/x] ⇓ V and V S V ′′.
• The other cases are similar.

It follows that:
• M ′ ⇓2, as required
• if M ′ ⇓ V ′, then there exists V ′′ such that M ′′ ⇓ V ′′ and V ′′RV ′, so there

exists V such that M ⇓ V and V S V ′′, so V S V ′, as required

2

Proposition 4.8 Let R be a closed relation. Then there exist relations R→ and

R← such that

• R→ is Howe-suitable over R

• R←
op

is Howe-suitable over R
op

• R→∗ = R←∗

• R→ ∩ R← is compatible.

Proof. See [12]. For finitary syntax, one can use the standard Howe extension for

R→ and the dual construction for R←. 2

To prove Prop. 4.1(i), let R be lower+divergence similarity. Then R→ is Howe-

suitable over a lower simulation (viz. R), so R→0
∗ is a lower simulation, and hence

may-preadequate. Hence R←0, as it is contained in a preadequate relation (viz.

R←∗0) is may-preadequate.

R←
op

is Howe-suitable over the upper simulation R
op

, and R←0 is may-

preadequate, so R←0
op∗ is an upper simulation.

Since R→∗0 is both a lower simulation and the opposite of an upper simulation,

it is a lower+divergence simulation, hence contained in R. By Prop. 4.5(ii), we have

R◦ = R→ = R→∗. Hence R← ⊆ R←∗ = R◦ so R← = R◦. So R◦ = R→ ∩R←, which

is compatible.

The proof of Prop. 4.1(ii)–(iii) is similar.

4.4 CIU Theorem

The goal of this section is to prove Prop. 4.1(iv).

Definition 4.9 A closed relation R is closed under sequencing when

• V R V ′ : A implies P [V/x] R P [V ′/x] for any term x : A ⊢ P : B

• M R M ′ : B implies M to x. P R M ′ to x. P for any term x : A ⊢ P : B.

14
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Clearly ⊑⇑U is closed under sequencing.

Proposition 4.10 Let R be a closed preorder. Then R◦SC decomposes over R◦.

Proof. [6] 2

Definition 4.11 Let S be a closed relation, let A be a type and let V,V ′ be sets

of closed values of type A. We say V S2 V ′ when ∀V ′ ∈ V ′. ∃V ∈ V. V S V ′.

Definition 4.12 Let A be a type, and let N be a closed term of type A.

(i) For a closed value W : A, we say W ⊑⋄ N when for every ground term

z : A ⊢ P :
∑

i∈I1, if P [W/z] ⇓ n then N to z. P ⇓ n.

(ii) For a set W of closed values of type A, we say W ⊑2 N when, for every ground

term z : A ⊢ P :
∑

i∈I1, if P [W/z] ⇓2 for all W ∈ W, then

N to z. P ⇓2 ∧∀n.(N to z. P ⇓ n ⇒ ∃W ∈ W. P [W/z] ⇓ n)

Proposition 4.13 (i) W ⊑2 N implies N ⇓2.

(ii) If N ⇓2, then {W | N ⇓2 W} ⊑2 N

Proof. Trivial. 2

Definition 4.14 A closed relation R is must-preadequate when M R M ′ : C, where

B is a ground type, and M ⇓2, implies M ′ ⇓2 ∧∀n.(M ′ ⇓ n ⇒ M ⇓ n).

Proposition 4.15 Let R be a closed preorder that is closed under sequencing. Let

S be a substitutive open relation that decomposes over R.

(i) S0 ⊆ S̀; R.

(ii) Suppose that R is may-preadequate. If M ⇓ V : A and M S0 M ′, there exists a

closed value V ′ : A such that V S0 V ′ and V ′ ⊑⋄ M ′

(iii) Suppose that R is must-preadequate. Suppose that S
op

0 is may-preadequate and

nS n for each closed ground value n. If M ⇓2 and M S0 M ′, then there exists

a set V ′ of closed values of type A such that {V | M ⇓ V } S2

0 V ′ and V ′ ⊑2 M ′.

Proof.

(i) Suppose pm 〈V, W 〉 as 〈x, y〉. M S0 N . Then there exists V ′, W ′, M ′ such that

〈V, W 〉 S 〈V ′, W ′〉 and M S M ′ and pm 〈V ′, W ′〉 as 〈x, y〉. M ′R N . Then there

exists V ′′ and W ′′ such that V S V ′′ and W S W ′′ and 〈V ′′, W ′′〉R 〈V ′, W ′〉.

Then, since R is closed under sequencing, we have

pm 〈V ′′, W ′′〉 as 〈x, y〉. M ′R pm 〈V ′, W ′〉 as 〈x, y〉. M ′R N

The case (rec fλx.M)V S0 N is similar to the same case in Prop. 4.3.
•• All the other cases are similar to these or trivial.

(ii) We proceed by induction on M ⇓ V . We know that there exists M ′′ such that

M S̀ M ′′ and M ′′R M ′. We show that there exists a closed value V ′ : A such that

V S V ′ and V ′ ⊑⋄ M ′′, as follows.
• Suppose that M = M0 to x. M1 and M ′′ = M ′

0 to x. M ′
1 and M0 S M ′

0 and

M1 S M ′
1. We have M0 ⇓ W and M1[W/x] ⇓ V . By inductive hypothesis, there

exists W ′ such that W S W ′ and W ′ ⊑⋄ M ′
0. Hence M1[W/x]S M ′

1[W
′/x]. By
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inductive hypothesis, there exists V ′ such that V S V ′ and V ′ ⊑⋄ M ′
1[W

′/x].

We require V ′ ⊑⋄ M ′
0 to x. M ′

1.

Given z : A ⊢ P :
∑

i∈I1, suppose P [V ′/z] ⇓ n. Then M ′
1[W

′/x] to z. P ⇓ n.

So M0 to x. (M ′
1 to z. xP ) ⇓ n. So (M ′

0 to x. M ′
1) to z. P ⇓ n.

• Similarly for the other cases.

We then deduce that V ′ ⊑⋄ M ′ by may-preadequacy of R.

(iii) We proceed by induction on M ⇓2. We know that there exists M ′′ such that

M S̀ M ′′ and M ′′R M ′.

Suppose M = amb i∈IMi and M ′′ = amb i∈IM
′
i and Mi S M ′

i for all i ∈ I. Then

there exists ı̂ ∈ I such that Mı̂ ⇓2. By inductive hypothesis and Prop. 4.13(i)

M ′

ı̂ ⇓2, so amb i∈IM
′
i ⇓2, so M ′ ⇓2. Set V ′ to be {n | M ′ ⇓ n}. By Prop. 4.13(ii)

we have V ′ ⊑2 M ′. To show {n | M ⇓ n}S2

0 V
′, we reason as follows. If n ∈ V ′

then M ′ ⇓ n; since M S M ′ and S
op

is may-preadequate, M ⇓ n, and nS n by

assumption.

Otherwise we proceed as follows. We first show that there exists a set V ′ of

closed values of type A such that {V | M ⇓ V } S2

0 V ′ and V ′ ⊑2 M ′′, in the

following way.
• Suppose that M = return W , and M ′′ = return W ′ and W S W ′. Define

V ′ to be {W ′}, so {V | M ⇓ V } = {W} S2

0 V ′. Prop. 4.13(ii) tells us that

{W ′} ⊑2 return W ′.
• Suppose that M = M0 to x. M1 and M ′′ = M ′

0 to x. M ′
1 and M0 S M ′

0 and

M1 S M ′
1. We have M0 ⇓2, so there exists W ′ such that

{W | M0 ⇓ W} S2

0 W ′ (1)

W ′ ⊑2 M ′
0 (2)

Write L for the set of pairs (W, W ′) such that M0 ⇓ W and W ′ ∈ W ′

and W S W ′. For each (W, W ′) ∈ L, we have M1[W/x]S M ′
1[W

′/x] and

M1[W/x] ⇓2, so by the inductive hypothesis there exists a set V ′W,W ′ of closed

values such that

{V | M1[W/x] ⇓ V } S2

0 V ′W,W ′ (3)

V ′W,W ′ ⊑2 M ′
1[W

′/x] (4)

Define V ′ to be
⋃

(W,W ′)∈L V ′W,W ′ .

We show {V | M0 to x. M1 ⇓ V } S2

0 V ′ as follows. If V ′ ∈ V ′ then there

exists (W, W ′) ∈ L such that V ′ ∈ V ′W,W ′ . By (3), there exists V such that

M1[W/x] ⇓ V and V S V ′. Since M0 ⇓ W , we have M0 to x. M1 ⇓ V .

To show V ′ ⊑2 M ′
0 to x. M ′

1, suppose that z : A ⊢ P :
∑

i∈I1 is a ground

term such that P [V ′/z] ⇓2 for all V ′ ∈ V ′. Define Q to be M ′
1 to z. xP . For

any W ′ ∈ W ′, (1) tells us that there exists W such that (W, W ′) ∈ L, and for

any V ′ ∈ V ′W,W ′ we have P [V ′/z] ⇓2, so by (4) we have M ′
1[W

′x] to z. P ⇓2,

i.e. Q[W ′/x] ⇓2.

· By (2) we have M ′
0 to x. Q ⇓2. Hence M ′

0 ⇓2, and for each V ′ such that M ′
0 ⇓

V ′ we have M ′
1[V
′/ttx] to z. P ⇓2, so M ′

1[V
′/x] ⇓2 and for each W ′ such that

M ′
1 ⇓ W ′ we have P [W ′/z] ⇓2. Hence M ′

0 to x. M ′
1 ⇓2. If M ′

0 to x. M ′
1 ⇓ W ′

then there exists V ′ such that M ′
0 ⇓ V ′ and M ′

1[V
′/x] ⇓ W ′, so P [W ′/z] ⇓2.

Hence (M ′
0 to x. M ′

1) to z. P ⇓2.

· Suppose (M ′
0 to x. M ′

1) to z. P ⇓ n. Then M ′
0 to x. Q ⇓ n. By (2) there
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exists W ′ ∈ W ′ such that Q[W ′/x] ⇓ n, i.e. M ′
1[W

′/x] to z. P ⇓ n. (1) tells

us that there exists W such that (W, W ′) ∈ L. Since P [V ′/z] ⇓2 for every

V ′ ∈ V ′W,W ′ , (4) tells us that there exists V ′ ∈ V ′W,W ′ (hence ∈ V ′) such that

P [V ′/z] ⇓ n.
• The other cases are similar (but much easier).

We then deduce that V ′ ⊑2 M ′′ by must-preadequacy of R.

2

We now prove Prop. 4.1(iv). We know ⊑⇑U
◦SC is substitutive and decomposes

over ⊑⇑U , which is closed under sequencing. If M ⊑⇑U
◦SC

0 M ′ : C, where C is

ground, and M ⇓ n, then, since ⊑⇑U is may-preadequate, Prop. 4.15(ii) tells us

that M ′ ⇓ n.

We also know ⊑
op

⇑U
◦SC

is substitutive and decomposes over ⊑
op

⇑U , which is closed

under sequencing. If M ⊑⇑U
◦SC

0 M ′ : C, where C is ground, and M ′ ⇓2, then,

since ⊑
op

⇑U is must-preadequate and ⊑⇑U
◦SC

0 is reflexive and (we have just shown)

may-preadequate, we obtain from Prop. 4.15(iii) that M ⇓2.
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