
Amb breaks well-pointedness,
ground amb doesn’t

Paul Blain Levy

School of Computer Science, University of Birmingham, UK

Amb breaks well-pointedness, ground amb doesn’t – p. 1/21

Nondeterministic Operators

We can extend a functional language with:

binary erratic choice M or N

countable erratic choice choose n ∈ N. Mn

ambiguous choice M amb N

To evaluate M amb N , we run M and N on an arbitrary
fair scheduler, and return whatever we get first.

Thus M amb N can diverge iff M and N can both
diverge.

Amb breaks well-pointedness, ground amb doesn’t – p. 2/21

Small Language

A call-by-name language, with two ground types, and
(unary) sum types.

Types A ::= bool | 1 | LA

Terms M ::= x | rec x. M |

M or M | M amb M |

true | false | if M then M else M |

top | M ; M |

up M | pm M as up x. M

Amb breaks well-pointedness, ground amb doesn’t – p. 3/21

Operational Semantics

Terminal Terms

T ::= true | false | top | up M

Remember: in a call-by-name sum type, we don’t
evaluate under the constructor.

M ⇓ T is defined inductively.

M ⇑ is defined coinductively.

Amb breaks well-pointedness, ground amb doesn’t – p. 4/21

(Crude) Meaning Of A Type

For each type B, we define the set [B] by induction on
B:

[bool] = P({true, false,⊥})

[1] = P({⊤,⊥})

[LA] = P([A]⊥)

Could restrict to nonempty sets—doesn’t matter.

For each closed term M : B, we define the operational
meaning [M] ∈ [B], by induction on B.

E.g. [M]
def
= {up [N] | M ⇓ up N} ∪ {⊥ | M ⇑} for B = LA.

Amb breaks well-pointedness, ground amb doesn’t – p. 5/21

Big Question

Programs ⊢ M,M ′ : bool are behaviourally equivalent
when [M] = [M ′].

We would like a denotational semantics such that for
programs ⊢ M,M ′ : bool, we have

[[M]] = [[M ′]] iff M and M ′ are behaviourally equivalent.

Is this possible?

Amb breaks well-pointedness, ground amb doesn’t – p. 6/21

What doesn’t work (1)

A semantics is divergence-least when
terms denote element of a poset
all constructs are monotone
diverge

def
= rec x. x denotes least element ⊥.

This is the case if rec denotes least prefixed point.

Example: domain semantics

Amb breaks well-pointedness, ground amb doesn’t – p. 7/21

What goes wrong with divergence-least

(folklore, also Lassen, Levy, Panangaden, APPSEM 2005)

On the one hand

true or diverge 6 true or true = true

On the other hand, monotonicity of amb gives

true = if (false amb diverge) then diverge else true

6 if (false amb true) then diverge else true

= true or diverge

So true or diverge = true

Each powerdomain theory either gives this equation, or
makes amb non-monotone.

Amb breaks well-pointedness, ground amb doesn’t – p. 8/21

What doesn’t work (2)

Well-pointed semantics is one where a term in context
Γ denotes a function from a set of environments.

E.g. a term x : L1 ⊢ M : L1 should denote a function
from [L1] to itself.

And [[rec x. M]] should be a fixpoint of this function.

We need some way of computing this fixpoint.

Amb breaks well-pointedness, ground amb doesn’t – p. 9/21

Operational Question 1 (Lassen 1998)

Two closed terms ⊢ M,M : A are convex bisimilar when
[M] = [M ′].

This is robust (preserved by every context).

Two terms Γ ⊢ M,M ′ : A are convex applicatively

bisimilar when M [
−−→
N/x] and M ′[

−−→
N/x] are convex bisimilar

for every Γ-environment
−−→
N/x.

Is this a congruence?

Without amb, the answer is yes.

Amb breaks well-pointedness, ground amb doesn’t – p. 10/21

Operational Question 2 (Lassen 1999)

Two terms Γ ⊢ M,M ′ : A are contextually equivalent
when CM and CM ′ are behaviourally equivalent for
every ground context C[·].

Two Γ ⊢ M,M ′ : A terms are Closed Instantiation

equivalent when M [
−−→
N/x] and M ′[

−−→
N/x] are contextually

equivalent for every Γ-environment
−−→
N/x.

The context lemma says that CI equivalence implies
contextual equivalence. This is true without amb.

Is it true in the presence of amb?

Amb breaks well-pointedness, ground amb doesn’t – p. 11/21

Inclusion Ordering

Both of these questions has a variant where we use
inclusion of behaviour sets rather than equality.

{t, f, d}

uuuuuuuuu

IIIIIIIII

{t, d}

IIIIIIIII
{t, f}

uuuuuuuuuu

IIIIIIIIII
{f, d}

uuuuuuuuu

{t}

IIIIIIIIIII
{d} {f}

uuuuuuuuuuu

{}

This makes amb monotone.

Amb breaks well-pointedness, ground amb doesn’t – p. 12/21

Divergence Ordering

Alternatively, we can use equality for convergence, but
inclusion for divergence.

{d} {t, d} {f, d} {t, f, d}

{} {t} {f} {t, f}

This makes amb monotone.

Amb breaks well-pointedness, ground amb doesn’t – p. 13/21

Breaking well-pointedness

We will exhibit two terms x : L1 ⊢ M,M ′′ : L1 and a
context C[·] : 1
such that

C[M] 6⇑ and C[M ′′] ⇑

but M and M ′′ represent the same selfmap f on [L1].

This refutes all 6 operational conjectures, and shows
the impossibility of a well-pointed denotational
semantics.

The terms rec x. M and rec x. M ′′ represent different
fixpoints of f .

Amb breaks well-pointedness, ground amb doesn’t – p. 14/21

The Terms

M
def
= (up top) amb (pm x as up z.up (top or z))

M ′ def
= up (top or pm (x amb up top) as up y.y)

M ′′ def
= M or M ′

Consider M [N/x] and M ′′[N/x].

Neither may diverge.

Both may return up P , where P ⇓ top and P 6⇑

Neither may return up P , where P 6⇓ top.

If N ⇓ up Q, where Q ⇑, then both may return up P ,
where P ⇓ top and P ⇑.

Otherwise, neither may.

Amb breaks well-pointedness, ground amb doesn’t – p. 15/21

The distinguishing context

M
def
= (up top) amb (pm x as up z.up (top or z))

M ′ def
= up (top or pm (up top amb x) as up y. y)

M ′′ def
= M or M ′

C[·]
def
= pm (up top amb (rec x.[·])) as up y. y

C[M ′′] may diverge: just keep choosing to go right, using

rec x.M ′′ ⇓ up (top or C[M ′′])

C[M] cannot diverge because if rec x.M ⇓ up N then
N = (top or)n top, which cannot diverge.

Amb breaks well-pointedness, ground amb doesn’t – p. 16/21

That Big Question

We would like a denotational semantics such that for
programs ⊢ M,M ′ : bool, we have

[[M]] = [[M ′]] iff [M] = [M ′]

Is this possible?

Still open.

Amb breaks well-pointedness, ground amb doesn’t – p. 17/21

General Amb vs Ground Amb

Our example uses amb at type L1, not just at ground
type.

All 6 conjectures are true if we restrict to ground amb.

The proofs are mild adaptations of the proofs without
amb.

These results can be extended to a full type system
with recursive types.

It can be call-by-name, call-by-value or
call-by-push-value.

Cf. O’Hearn’s monad for ground storage, Laird’s semantics
of ground control.

Amb breaks well-pointedness, ground amb doesn’t – p. 18/21

Uses

A use is a special kind of ground context.
A use for bool is if [·] then N else N ′

A use for 1 is [·]; N

A use for LA is pm [·] as up x. N .

Closed terms M,M ′ : A are Uses equivalent when they
are behaviourally equivalent under every use.

The Uses theorem says that Uses equivalence implies
contextual equivalence.

Again 2 variants using inclusion.

Context lemma + Uses theorem = CIU theorem

Amb breaks well-pointedness, ground amb doesn’t – p. 19/21

Amb breaks Uses

We define two terms ⊢ M,M ′ : L1 and a context C[·] : 1 such
that

M and M ′ are Uses equivalent

C[M] 6⇑ but C[M ′] ⇑

M
def
= diverge or up top

M ′ def
= M or up (top or diverge)

C[·]
def
= pm ([·] amb up top) as x. x

With ground amb, the CIU theorem holds.

Amb breaks well-pointedness, ground amb doesn’t – p. 20/21

Conclusion (denotational slant)

amb cannot have a well-pointed denotational semantics.

ground amb might have.

Amb breaks well-pointedness, ground amb doesn’t – p. 21/21

	Nondeterministic Operators
	Small Language
	Operational Semantics
	(Crude)
Meaning Of A Type
	Big Question
	What doesn't work (1)
	What goes wrong with divergence-least
	What doesn't work (2)
	Operational Question 1 (Lassen 1998)
	Operational Question 2 (Lassen 1999)
	Inclusion Ordering
	Divergence Ordering
	Breaking well-pointedness
	The Terms
	The distinguishing context
	That Big Question
	General Amb vs Ground Amb
	Uses
	Amb breaks Uses
	Conclusion (denotational slant)

