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1 Introduction

Applicative bisimulation [1] provides a relational semantics that elegantly en-
codes extensionality of higher-order functions. It has been shown to be sound
and complete with respect to contextual equivalence for pure lambda calculi
[1,8], object calculi [7], and languages with I/O [33]. However, several re-
cent bisimulation semantics of languages (stateful and pure) with higher-order
functions are based on environmental bisimulation [31,32,27,15,5,14,16], a def-
inition with significantly more complex conditions. Despite its applicability to
numerous higher-order languages, the additional complexity of environmental
bisimulation has not been sufficiently justified. The question we ask in this
paper (which we answer in the affirmative) is whether this complexity is nec-
essary.

Both applicative and environmental bisimulation test related functions by
applying them to arguments, and require that the two applications equi-
terminate and give related results. However, there are two ways in which
environmental bisimulation deviates from applicative bisimulation, each by
giving a degree of freedom to the context in the tests that it can make.

• Accumulation of values: In applicative bisimulation, the context may call
only related functions it has just received from the related programs. In
environmental bisimulation, it accumulates the functions it has received, so
it can call them at any time, possibly multiple times.

• Resourceful arguments: In applicative bisimulation, the context supplies a
single closed value to which related functions get applied. But in environ-
mental bisimulation it supplies a single open value, closed by corresponding
functions from the inventory, and therefore the related functions get applied
to different arguments.

In a stateful language (or a language with names), the necessity of the first
deviation is quite plausible. Accumulation is needed because a function may
return a different value the second time it is applied. But the necessity of
resourceful arguments appears more questionable. Even more so in a language
with exceptions and polymorphism.

A related point was made by Mason and Talcott [22] in their study of a
relational theory for a language with general store. They gave an example
inequivalence showing the need for the opponent to assign to global locations
before each function application [22, Sec. 3]. Therefore they identified the need
for extending the definition of applicative bisimulation to apply to effectful
languages:

“[Applicative] bisimulation provides an alternative approach to equivalence
and deserves consideration in computation systems that permit effects other
than non-termination. The definition of bisimulation relation assumes that
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extensionality is consistent. Since the presence [of] memory effects makes
this no longer true, the basic definition would require some modification in
order to extend the methods of Abramsky and Howe to the computational
language presented in this paper. We plan to investigate this approach.”

In this paper we investigate two versions of environmental bisimulations,
one with no accumulation and one without resourceful arguments. We empha-
size the bisimulation without resourceful arguments since it is the more subtle.
We show by examples that these bisimulations are unsound in an array of lan-
guages that use state, exceptions, names, and polymorphism. In this way we
identify common aspects in the behaviour of higher-order functions in all of
these languages, and justify the complexity in the definition of environmental
bisimulation.

Our examples for exceptions and polymorphism are, we believe, the first
in the literature that invalidate the defective bisimulations in these languages.
However, our examples for state and names are not the first of their kind; Stark
gave examples that embody the same principles [28, pp. 24–25, examples 11
and 14, and p. 104, examples 12 and 14].

Additionally, in this paper we investigate the provision in the definition
of environmental bisimulation for the context to create new names at every
step of the bisimulation, instead of only generating an arbitrary amount of
names at the beginning. For deterministic languages we believe this is un-
necessary. In the presence of nondeterminism, however, there is no single
answer. We give novel examples that show the necessity of this provision for
environmental bisimulation to be sound with respect to must-testing, in the
presence of countable nondeterminism, and with respect to lower bisimilarity,
in the presence of even finite nondeterminism. We believe that name genera-
tion at every step is unnecessary for may testing and, in the presence of finite
nondeterminism, for must testing.

We start by examining a pure language (Sec. 2), for which we define ap-
plicative and environmental bisimulation. We then study a language with
general state (Sec. 3). In this setting, we define the two defective versions
of environmental bisimulation, and present simple examples that show their
unsoundness with respect to contextual equivalence. We then present simi-
lar examples for a language with exceptions (Sec. 4.1), names (Sec. 4.2), and
existential types (Sec. 4.3). Finally, we present examples that show the un-
soundness of fixed name-set bisimulation in the cases mentioned above (Sec. 5).
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2 Bisimulations in a Pure Language

2.1 The Language λ

To understand the two deviations from applicative bisimulation, discussed in
the introduction, we first review applicative and environmental bisimulation
in a pure setting. We choose a call-by-value λ-calculus with recursion, which
we call λ and will serve as the basis for the languages we study later on in this
paper. The types of λ are given by

A,B,C ::= 0 | A+ A | 1 | A× A | A → A | X | rec X. A

We use the syntax of “fine-grain call-by-value”, in which values and computa-
tions are distinguished, and returning and sequencing (to) are made explicit:

V ::= x | inl V | inr V | 〈〉 | 〈V, V 〉 | λx.M | rec fλx.M | fold V

M ::= return V | M to x. M | V V | match V as {}
| match V as {inl x. M, inr x. M} | match V as 〈〉. M
| match V as 〈x, y〉. M | match V as fold x. M

We have typing judgements Γ % M : A and for values Γ %v V : A, where
Γ is a list of distinct closed-typed identifiers and A is a closed type, defined
in the usual inductive way. We write Γ %v −→

V :
−→
A to mean Γ %v Vi : Ai,

for all i < |−→A |. We abbreviate bool
def
= 1 + 1 with true and false defined

accordingly, abbreviate diverge
def
= (rec fλx. fx)〈〉 and write M to x. N as

M ;N when x does not occur in N . We then define as usual M ⇓B V , for
% M : B and %v V : B.

2.2 Ultimate Pattern Matching

It is useful to note that any closed value consists of tags and functions. The
tags constitute an ultimate pattern [18], and the functions constitute the filling
of the pattern. For example, we divide the value

〈inl λx.M, inr 〈inl λy.N, 〈〉〉〉

into the ultimate pattern 〈inl −, inr 〈inl −, 〈〉〉〉 and the filling λx.M,λy.N .
To make this precise, we define for each type A a set ulpatt(A) of ultimate

patterns p, each equipped with a list H(p) of function types. These sets are
defined by induction:

• −A→B ∈ ulpatt(A → B) and H(−A→B)
def
= A → B

• 〈〉 ∈ ulpatt() and H(〈〉) def
= ε
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• if p ∈ ulpatt(A) and p′ ∈ ulpatt(A′) then 〈p, p′〉 ∈ ulpatt(A× A′) and

H(〈p, p′〉) def
= H(p) ·H(p′)

• if p ∈ ulpatt(A) then inl p ∈ ulpatt(A+ A′) and H(inl p)
def
= H(p)

• if p ∈ ulpatt(A′) then inr p ∈ ulpatt(A+ A′) and H(inr p)
def
= H(p)

• if p ∈ ulpatt(A[rec X. A/X]) then fold p ∈ ulpatt(rec X. A) and

H(fold p)
def
= H(p).

Given p ∈ ulpatt(A), and list of values Γ %v −→
V : H(p), we define a value

Γ %v p[
−→
V ] : A in the obvious way. Unique decomposition is immediate:

Theorem 2.1 For any closed value %v V : A, there is unique p ∈ ulpatt(A)

and list of closed values %v −→W : H(p) such that V = p[
−→
W ].

2.3 Applicative Bisimulation

We now define our applicative bisimulation. It will be convenient for later
extensions of this definition to give it as a set of tuples which we call relatees.

A relatee is a tuple (
−−−−→
A → B;

−→
V ;

−→
V ′) consisting of

• a list of function types
−−−−→
A → B

• a list of functions %v −→V :
−−−−→
A → B

• a list of functions %v
−→
V ′ :

−−−−→
A → B.

These three zones of the relatee represent the public information known to the
context (for this language this is only a list of types) and the two situations,
−→
V and

−→
V ′, that we want to relate.

The conditions of applicative bisimulation say that when we apply corre-
sponding functions to the same closed value, the applications equi-terminate
and the resulting values have the same ultimate pattern with bisimilar fillings.

Definition 2.2 A set R of relatees is an applicative bisimulation when

(
−−−−→
A → B;

−→
V ;

−→
V ′) ∈ R implies that for any

• index i < |−−−−→A → B|
• and closed value %v U : Ai,

if Vi U ⇓Bi p[
−→
W ] then there exists a filling %v

−→
W ′ : H(p) such that

V ′
i U ⇓Bi p[

−→
W ′] and (H(p);

−→
W ;

−→
W ′) ∈ R

and the converse of the above condition holds when V ′
i U ⇓Bi p[

−→
W ′].
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Definition 2.3 Closed terms % M,M ′ : A are applicatively bisimilar when
there exists applicative bisimulation R such that

• if M ⇓A p[
−→
W ] then there exists %v

−→
W ′ : H(p) such that M ′ ⇓A p[

−→
W ′] and

(H(p);
−→
W ;

−→
W ′) is contained in R,

• the converse of the above condition holds when M ′ ⇓A p[
−→
W ′].

As we discussed in the introduction, Def. 2.2 is non-accumulating : the final

relatee (H(p);
−→
W ;

−→
W ′) does not contain the functions in the starting relatee

(
−−−−→
A → B;

−→
V ;

−→
V ′). Moreover, the definition is non-resourceful because it applies

related functions to the same closed arguments.

2.4 Environmental Bisimulation

We define environmental bisimulation for the pure language λ to illustrate
its differences from applicative bisimulation. In the following section we will
adapt this definition for a language with state.

Definition 2.4 A set R of relatees is an environmental bisimulation when
(
−−−−→
A → B;

−→
V ;

−→
V ′) ∈ R implies that for any

• index i < |−−−−→A → B|
• and open value

−−−−−−−→
f : A → B %v U : Ai,

if Vi U [
−−→
V/f] ⇓Bi p[

−→
W ] then there exists a filling %v

−→
W ′ : H(p) such that

V ′
i U [

−−→
V ′/f] ⇓Bi p[

−→
W ′] and (

−−−−→
A → B ·H(p);

−→
V ·−→W ;

−→
V ′ ·

−→
W ′) ∈ R

and the converse of the above condition holds when V ′
i U [

−−→
V ′/f] ⇓Bi p[

−→
W ′].

Definition 2.5 Closed terms % M,M ′ : A are environmentally bisimilar
when there exists environmental bisimulation R such that

• if M ⇓A p[
−→
W ] then there exists %v

−→
W ′ : H(p) such that M ′ ⇓A p[

−→
W ′] and

(H(p);
−→
W ;

−→
W ′) is contained in R,

• the converse of the above condition holds when M ′ ⇓A p[
−→
W ′].

As with applicative bisimulation, the conditions of environmental bisimu-
lation require the applications of functions Vi and V ′

i , related in the originating
relatee, to equi-terminate and their resulting values to have the same ultimate
pattern with bisimilar fillings. However, in environmental bisimulation the
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argument provided to each of Vi and V ′
i is constructed by closing the same

open value
−−−−−−−→
f : A → B %v U : Ai with the functions

−→
V and

−→
V ′, respectively,

from the inventory of the originating relatee. This encodes the principle of
resourceful arguments. Moreover, the concatenation of the types

−−−−→
A → B ·H(p)

and the values
−→
V ·−→W and

−→
V ′ ·

−→
W ′ in the final relatee encode the accumulation

of values.

3 Environmental Bisimulation for State

We give a stateful language and the definition of environmental bisimulation
for this language. We then give two simpler versions of bisimulation, one
without resourceful arguments and one without accumulation, and demon-
strate their unsoundness with respect to contextual equivalence.

3.1 The language λs

We add to the language λ the facility to generate fresh locations that may be
assigned to and read from. Rather than treating locations as values (as for
names in Sec. 4.2), we use the syntax

M ::= · · · | l := V. M | read l as x. M | new −−−−→
l := V . M

Thus locations can neither be stored nor returned. The typing judgements are
now ∆;Γ % M : A and ∆;Γ %v V : A, where ∆ is a list of distinct closed-typed
locations. For a state s we write∆;Γ %v s : ∆′ to mean dom(s) = dom(∆′) and
∆;Γ %v s(i) : ∆′(i). Evaluation takes the form ∆, s,M ⇓A Θ, t, V , for term
∆;% M : A, state ∆;% s : ∆, location list Θ extending ∆, value Θ;%v V : A
and state Θ;% t : Θ.

The operational semantics of the term new
−−−−→
l := V . M uses a gensym op-

eration to generate fresh locations, which we call private since the context of
the term has no direct access to them. The particular selection of the gensym
operation leaves the semantics unaffected. Thus, without loss of generality,
we assume that there is a countably infinite set of locations that is disjoint
from the range of gensym. We call these locations public and use them in the
following section as the domain of the public state in our relations; i.e. the
state to which the context has direct access.

3.2 Environmental Bisimulation for State

We shall write a location context as∆pub!∆priv, where∆pub is a public location
context and ∆priv is a private location context, with domains the set of public
and private locations, respectively. Likewise, we write a state as spub ! spriv,
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and we call spub a public state and spriv a private state. Note that every state
is uniquely decomposable to a public and private state.

When the context calls a function, the public state provides additional
communication between a function and its context, besides the argument and
the result. It is essentially another argument to the function and, when the
function returns, it is another result which needs to be ultimately pattern-
matched. Note that this is not the case for private state since the context has
no access to it.

Thus, for a public location context ∆pub, we write

ulpatt(∆pub)
def
=

∏

(l:C)∈∆pub

l )→ ulpatt(C)

For p ∈ ulpatt(∆pub), we define H(p) to be the concatenation over (l : C) ∈
∆pub of H(p(l)). Then for any ∆;Γ %v −→

W : H(p), we define ∆;Γ %v p[
−→
W ] :

∆pub in the obvious way. As an example, let l1 and l2 be public locations and

∆pub
def
= l1 : bool× bool, l2 : 1 + (bool→ bool)

then the public state

∆pub;%v l1 )→ 〈true, false〉, l2 )→ inr λx. read l1 as 〈y, z〉. return y : ∆pub

has ultimate pattern p
def
= l1 )→ 〈true, false〉, l1 )→ inr −.

Again, we have unique decomposition:

Theorem 3.1

(i) For any value ∆;%v V : A, there is a unique p ∈ ulpatt(A) and ∆;%v −→W :

H(p) such that V = p[
−→
W ].

(ii) For any public state ∆;%v spub : ∆pub, there is a unique p ∈ ulpatt(∆pub)

and ∆;%v −→W : H(p) such that spub = p[
−→
W ].

Environmental bisimulation for λs is defined over relatees that are tuples

of the form (∆pub,
−−−−→
A → B; ∆priv, spriv,

−→
V ; ∆′

priv, s
′
priv,

−→
V ′), consisting of:

• a public location context ∆pub

• a list of function types
−−−−→
A → B

• a private location context ∆priv

• a private state ∆pub ! ∆priv;%v spriv : ∆priv

• a list of functions ∆pub ! ∆priv;%v −→V :
−−−−→
A → B

• a private location context ∆′
priv

• a private state ∆pub ! ∆′
priv;%v s′priv : ∆

′
priv
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• a list of functions ∆pub ! ∆′
priv;%v

−→
V ′ :

−−−−→
A → B.

As in the applicative setting, a relatee is organized in three zones (separated
by semicolons), representing public information and the two situations that
we want to relate. Here the public information contains the type of the public
state, besides the types of the functions. The other two zones contain the
private state (and its type) that may be used in the functions.

The definition of environmental bisimulation for λs follows the same struc-
ture as that for λ (Def. 2.4), with the addition of the creation of a public state
before the applications, which is ultimately pattern-matched at the end.

Definition 3.2 A set R of relatees is an environmental bisimulation when

(∆pub,
−−−−→
A → B;∆priv, spriv,

−→
V ;∆′

priv, s
′
priv,

−→
V ′) ∈ R

implies that for any

• index i < |−−−−→A → B|
• public location context Θpub extending ∆pub

• public state Θpub;
−−−−−−−→
f : A → B %v spub : Θpub

• and value Θpub;
−−−−−−−→
f : A → B %v U : Ai,

if

Θpub ! ∆priv, spub[
−−→
V/f] ! spriv, Vi U [

−−→
V/f] ⇓Bi Θpub ! Θpriv, q[

−→
T ] ! tpriv, p[

−→
W ]

then there exists

• a private location context Θ′
priv

• a filling Θpub ! Θ′
priv;%v

−→
T ′ : H(q)

• a private state Θpub ! Θ′
priv;%v t′priv : Θ

′
priv

• a filling Θpub ! Θ′
priv;%v

−→
W ′ : H(p)

such that

Θpub !∆′
priv, spub[

−−→
V ′/f]! s′priv, V

′
i U [

−−→
V ′/f] ⇓Bi Θpub !Θ′

priv, q[
−→
T ′]! t′priv, p[

−→
W ′]

and

(Θpub,
−−−−→
A → B ·H(q) ·H(p); Θpriv, tpriv,

−→
V ·−→T ·−→W ; Θ′

priv, t
′
priv,

−→
V ′ ·

−→
T ′ ·

−→
W ′) ∈ R

(1)
Moreover, the converse condition holds when

Θpub !∆′
priv, spub[

−−→
V ′/f]! s′priv, V

′
i U [

−−→
V ′/f] ⇓Bi Θpub !Θ′

priv, q[
−→
T ′]! t′priv, p[

−→
W ′]
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Definition 3.3 We say that closed terms ;% M,M ′ : A are environmentally
bisimilar when there exists an environmental bisimulation R such that

• if

ε, ε,M ⇓A Θpriv, tpriv, p[
−→
W ]

then there exists
· a private location context Θ′

priv

· a private state Θ′
priv;%v t′priv : Θ

′
priv

· a filling Θ′
priv;%v

−→
W ′ : H(p)

such that
ε, ε,M ′ ⇓A Θ′

priv, t
′
priv, p[

−→
W ′]

and (ε, H(p); Θpriv, tpriv,
−→
W ; Θ′

priv, t
′
priv,

−→
W ′) is contained in R,

• the converse of the above condition holds when

ε, ε,M ′ ⇓A Θ′
priv, t

′
priv, p[

−→
W ′]

Def. 3.2 encompasses both deviations from applicative bisimulation dis-
cussed in the introduction; specifically:

(i) The use of open argument Θpub;
−−−−−−−→
f : A → B %v U : Ai and state spub

Θpub;
−−−−−−−→
f : A → B %v spub : Θpub encodes the resourceful arguments princi-

ple.

(ii) The concatenation of the types
−−−−→
A → B ·H(q) ·H(p) and the values

−→
V ·

−→
T · −→W and

−→
V ′ ·

−→
T ′ ·

−→
W ′ in the final relatee encode the accumulation of

values.

Dropping each of these principles leads to two alternative versions of Def. 3.2:

(i) If we require Θpub;%v U :Ai and Θpub;%v spub : Θpub, we say that R is a
closed-argument bisimulation.

(ii) If we replace (1) by (Θpub, H(q)·H(p);Θpriv, tpriv,
−→
T ·−→W ;Θ′

priv, t
′
priv,

−→
T ′·

−→
W ′) ∈

R we say that R is a no-accumulation bisimulation.

This also leads to two corresponding versions of relations for closed expres-
sions. Clearly, if ;% M,M ′ : A are environmentally bisimilar, then they are
also closed-argument and no-accumulation bisimilar.

3.3 Resourceful Arguments and Accumulation

To show the necessity of resourceful arguments, we need to show closed-
argument bisimulation unsound. The following example accomplishes that.
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Example 3.4 (Resourceful Arguments) Consider M1 and M ′
1 of type

(1→ 1)→ bool:

M1
def
= return V1

M ′
1

def
= new flag := true. return V ′

1

where

V1
def
= λf:1→ 1. f 〈〉; return true

V ′
1

def
= λf:1→ 1. read flag as

{true. flag := false; f 〈〉; flag := true; return true

false. return false}

The function V ′
1 returns a different value than V1 when flag = false, which

is only the case within the extent of the application f 〈〉. The following context
distinguishes M1 and M ′

1:

C1
def
= new record := true. [·] to g.

g (λx. g (λy. return y) to z. record := z; return 〈〉);
read record as x. return x

The term C1[M1] returns true, while C1[M ′
1] returns false. This context is

clearly resourceful: the outer argument provided to g contains g itself.
However, the following set of relatees is a closed-argument bisimulation

that relates V1 to V ′
1 with flag )→ true. To prove that, it suffices to show

that the applications f 〈〉 in V1 and V ′
1 equi-terminate in stores with related

private parts. This follows from the fact that f and the public state are
constructed by closed values and thus the applications do not depend on, and
do not change, the value of the flag. Thus M1 and M ′

1 are closed-argument
bisimilar, and closed-argument bisimulation is unsound for λs.

{(
∆pub, ((1→ 1)→ bool ·−−−−→A→B); ∆priv, spriv, (V1 ·

−→
T );

(flag : bool ·∆′
priv), (flag )→ true · sprivθ), (V ′

1 ·
−→
T θ)

)
|

θ : ∆priv →∆′
priv is a bijective renaming,

∆pub ! ∆priv;%v −→T :
−−−−→
A→B, ∆pub ! ∆priv;%v spriv : ∆priv

}
!

We now provide an example that shows that accumulation is necessary in
a bisimulation for state. Therefore no-accumulation bisimulation is unsound.
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Example 3.5 (Accumulation) Consider M2 and M ′
2 of type 1→ bool:

M2
def
= return V2

M ′
2

def
= new flag := true. return V ′

2

where

V2
def
= λ〈〉. return true

V ′
2

def
= λ〈〉. read flag as {true. flag := false; return true

false. return false}

The function V ′
2 is a function that returns true the first time it is applied and

false all subsequent times, whereas V2 always returns true.
The following context distinguishes M2 and M ′

2:

C2
def
= [·] to f. f 〈〉; f 〈〉

The term C2[M2] returns true, while C2[M ′
2] returns false.

We can show, however, that the following set of relatees is a no-
accumulation bisimulation, and therefore M2 and M ′

2 are no-accumulation
bisimilar. Hence no-accumulation bisimulation is unsound for λs.

{(
∆pub, 1→ bool; ε, ε, V2; flag : bool, flag )→ true, V ′

2

)}
∪

{(
∆pub,

−−−−→
A→B; ∆priv, spriv,

−→
T ;

(flag : bool ·∆′
priv), (flag )→ false · s′privθ),

−→
T θ

)
|

θ : ∆priv →∆′
priv is a bijective renaming,

∆pub ! ∆priv;%v −→T :
−−−−→
A→B, ∆pub ! ∆priv;%v spriv : ∆priv

}
!

4 Other Language Extensions

4.1 Exceptions

We add to the λ language the facility to generate fresh exceptions that may
be raised and caught. Following [4] our syntax takes the form

M ::= · · · | new e. M | raise e | M {to x. M,
−−−−−−−−→
catch e. Me}

To evaluate M {to x. P,
−−−−−−−−→
catch e. Me}, we first evaluate M , and if it returns

V we evaluate P [V/x]. If instead it raises an exception e, then if e appears
in −→e we proceed to evaluate Me, otherwise e remains raised. We define two
big-step relations, for returning and raising respectively:

12
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• ∆,M ⇓A,Θ, V for ∆;% M : A, exceptions Θ extending ∆ and Θ;%v V : A.

• ∆,M "A Θ, e for a term ∆;% M : A, exceptions Θ extending ∆ and excep-
tion e appearing in Θ.

Ultimate pattern matching and environmental bisimulation—and its two de-
fective variants—are defined as in Sec. 3.2.

Example 4.1 (Resourceful arguments) Consider M3,M ′
3 of type (1→ 1)→ 1:

M3
def
= new e. return V3

M ′
3

def
= new e. return V ′

3

where

V3
def
= λf. f 〈〉; raise e

V ′
3

def
= λf. f 〈〉 {to x. raise e, catch e. return 〈〉}

These terms are distinguished by the context

C3
def
= [·] to g. g (λx. g (λy. return y))

The term C3[M3] raises an exception, while C3[M ′
3] returns 〈〉. However,

the terms M3 and M ′
3 are closed-argument bisimilar because the applications

of V3 and V ′
3 to the same closed argument will have the same behaviour; such

arguments will not be able to throw an exception e. !

Example 4.2 (Accumulation) Let M4 and M ′
4 of type (1→ 1) ×

(1→ (1→ 1)→ bool) be the terms:

M4
def
= new e. return 〈λ〈〉. raise e, λ〈〉. return V4〉

M ′
4

def
= new e. return 〈λ〈〉. raise e, λ〈〉. return V ′

4〉

where

V4
def
= λf. f 〈〉 {to x. return true, catch e. return false}

V ′
4

def
= λf. f 〈〉 {to x. return true, catch e. return true}

A distinguishing context is

C4
def
= [·] to 〈f, g〉. g 〈〉 to h. h f

so that C4[M4] returns false and C4[M ′
4] returns true. Note that the context

C4 employs accumulation: it uses the function f, obtained before the appli-
cation of g, as an argument to h, obtained as a result of the application of g.

13
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The terms M4 and M ′
4 are no-accumulation bisimilar, because by the time a

non-accumulating context has obtained h by applying g, it has discarded the
function f.

Because a no-accumulation bisimulation uses resourceful arguments, to
prove the above terms no-accumulation bisimilar, we need the following fact:
for any ∆; y : (1→ 1)→ bool % M : B, where ∆ does not contain e, if
∆ · e,M [V4/y] evaluates to Θ · e,W then there exists Θ; y : (1→ 1)→ bool %
V : B such that W = V [V4/y] and ∆ · e,M [V ′

4/y] evaluates to Θ · e, V [V ′
4/y],

and likewise if it raises an exception. This is proved by induction on the
big-step relation. !

4.2 Names

We add to λ the facility to generate fresh names that are values and may be
compared for equality, similar to the nu-calculus [25,28]. Our syntax becomes

A ::= · · · | name
V ::= · · · | m
M ::= · · · | new x. M | V = V

Unlike previous work on environmental bisimulation for languages with
first-class names (e.g. [31,15,5]) here we do not relate names in the rela-
tees. Instead, private names that are revealed by related functions to their
context are renamed into identical public names by means of ultimate pattern-
matching. For example, the value

m0, m1 ! n0, n1, n2;%v

〈〈n2, m0〉, 〈n1, 〈n2, inl λx.return 〈n0, n1〉〉〉〉 (2)

: (name× name)× (name× (name× ((1 → (name× name)) + 1)))

has ultimate pattern

p
def
= 〈〈m2, m0〉, 〈m3, 〈m2, inl −〉〉〉 (3)

To obtain (3) algorithmically, we scan (2) from left to right, converting a
private name encountered for the first time into a public one, replacing func-
tions by − and retaining public names and tags. We encounter n2 before n1,
therefore they are converted to m2 and m3 respectively.

We recover (2) from (3) by providing

• the filling of the hole under the new name scheme, viz. λx.return 〈n0, m3〉
• the list of converted private names in order of appearance, viz. n2, n1.

Once we have reformulated Thm. 3.1 along these lines, the notion of environ-
mental bisimulation—and its two defective variants—is defined as in Sect. 3.2.
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Example 4.3 (Resourceful arguments) Let M5 and M ′
5 of type

(name→ bool)→ bool be

M5
def
= new n. return V5 V5

def
= λf. f n

M ′
5

def
= return V ′

5 V ′
5

def
= λf. new n. f n

These are distinguished by

C5
def
= [·] to g. g (λn. g (λm. m= n))

Evidently C5[M5] evaluates to true while C5[M ′
5] evaluates to false. On

the other hand, M5 and M ′
5 are closed-argument bisimilar, because a closed

argument cannot know about n. In particular, it cannot store n when applied
to it, for future use, because the language does not allow storage of names.!

Example 4.4 (Accumulation) The following are terms of type 1→ name:

M6
def
= new n. return V6 V6

def
= λ〈〉. return n

M ′
6

def
= return V ′

6 V ′
6

def
= λ〈〉. new n. return n

These terms are only distinguished by a context that accumulates the function
in its hole and applies it twice, such as the following:

C6
def
= [·] to g. g 〈〉 to x. g 〈〉 to y. x = y

C6[M6] returns true but C6[M ′
6] returns false. However M6 and M ′

6 are
no-accumulation bisimilar since when applied just once (even to resourceful
arguments) they behave the same. !

4.3 Polymorphism

We add polymorphism to λ, so our syntax of types and terms becomes

A ::= · · · |
∏
X.A |

∑
X.A

V ::= · · · | ΛX.M | rec fΛX.M | 〈A, V 〉
M ::= · · · | V A | match V as 〈X, x〉. M

Using the ultimate pattern-matching theorem developed in [19], we again for-
mulate environmental bisimulation incorporating the principles of resourceful
arguments and accumulation, and the two defective versions. The following
examples show the necessity of these principles.
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Example 4.5 (Resourceful arguments) Consider the following existential
packages of type

∑
X. (X→ (1 + X))→ bool:

M7
def
= return 〈1, V7〉

M ′
7

def
= return 〈bool, V ′

7〉

where

V7
def
= λf. f 〈〉 to {inl 〈〉. return false,

inr 〈〉. f 〈〉; return true}

V ′
7

def
= λf. f false to {inl 〈〉. return false

inr true. return false

inr false. f true as {inl 〈〉. return true

inr true. return true

inr false. return false}}

These are distinguished by the context

C7
def
= [·] to 〈X, g〉.

g (λy:X. g (λz:X. return inr y) to {true. return inr y,

false. return inl 〈〉})

The term C7[M7] ⇓ true, while C7[M ′
7] ⇓ false. But M7 and M ′

7 are
closed-argument bisimilar, because a closed argument for V7 and V ′

7 has poly-
morphic type X→ (1+X), and there are only three such: the constant functions
λx. return inl 〈〉 and λx. diverge, and the function λx. return inr x. Evi-
dently V7 and V ′

7 behave the same way when applied to these arguments. !

Note that functions with existentially quantified argument type X (such
as those in the following example) will necessarily need to be provided with
resourceful arguments, because the context cannot construct closed values of
type X. Thus one may think that, for this language, a weaker notion of re-
sourcefulness might be sound. However, the preceding example demonstrates
the need not just for a resourceful argument but for one in which a resource
(value from the inventory) is used under λ, just as in the rest of the languages
we studied so far.

Example 4.6 (Accumulation) Accumulation is necessary since the context
may receive new arguments to an old function. For example consider the
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terms M8 and M ′
8 of type

∑
X. (1→ X)× (X→ bool):

M8
def
= return 〈1, V8〉 V8

def
= 〈λ〈〉. return 〈〉,λx. return true〉

M ′
8

def
= return 〈1, V ′

8〉 V8
def
= 〈λ〈〉. return 〈〉,λx. return false〉

These are distinguished by the context

C8
def
= [·] to 〈X, 〈f, g〉〉. f 〈〉 to x. g x

Evidently C8[M8] returns true while C8[M ′
8] returns false. However M8 and

M ′
8 are no-accumulation bisimilar because when the context receives the two

functions it cannot distinguish the right-hand function since it does not yet
have a value to apply them to. !

5 Repeated Generation of Fresh Names

Another questionable point in the definition of environmental bisimulation is
the ability of the context to add public names at each step of the bisimulation.
Perhaps we could fix ∆pub in Def. 3.2, giving a notion of ∆pub-bisimulation,
and then require terms ;% M,M ′ : A to be ∆pub-bisimilar for all ∆pub? For
the deterministic languages we considered so far, we believe this to be a sound
modification.

In the presence of nondeterminism, however, there is no single answer; it
depends on the kind of nondeterminism and on the contextual equivalence
we consider. Here we study the extensions of the language with names from
Sec. 4.2 with finite and countable nondeterminism. We believe the above re-
striction is sound for may-testing and, in the finitely non-deterministic setting,
also for must-testing. Here we give two examples that show this to be unsound
for must-testing, in the presence of countable nondeterminism, and for lower
bisimilarity, in the presence of even finite nondeterminism.

In this section we abbreviate nat = rec X. 1+X and namelist = rec x. 1+
name × X. We use the usual constructors zero and succ for nat, and empty
and cons for namelist. We use the following functions:

• ;%v member : (name× namelist)→ bool tells us whether its first argument
appears in its second

• ;%v distnames : namelist→ nat returns the number of distinct names in
its argument

• ;%v mkfreshlist : nat→ namelist creates a list of fresh names of length
equal to its argument

• ;%v min : nat× nat→ nat is the minimum function.
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5.1 Countable Nondeterminism and Must-Testing

We extend the language from Sec. 4.2 with both binary and countable (erratic)
nondeterministic choice—of course the former is redundant. Our syntax is now

M ::= · · · | M or M | choose x. M

where x has type nat. The bigstep semantics is given in the standard manner
[23]. First, we inductively define a relation ∆,M ⇓A Θ, V , meaning that ∆,M
may evaluate to Θ, V . Then, we coinductively define a predicate ∆,M ⇑A,
meaning that ∆,M may diverge.

To soundly reason about both may-testing (possibility of convergence) and
must-testing (impossibility of divergence) a set of relateesR needs to be a con-
vex environmental bisimulation, i.e. if C and C ′ are R-related configurations,
then any convergence step or divergence that one may perform can be imitated
by the other. If we do not require divergence to be imitated, then R is merely
a lower environmental bisimulation [34,20], which is sound for may-testing
only.

Example 5.1 (Generation) We consider the terms M9 and M ′
9 of type

T
def
= rec X. name→ 1 + X:

M9
def
= choose w. V9 〈w, empty〉

M ′
9

def
= M9 or V ′

9 empty

where

V9
def
= rec (f : (nat× namelist)→T ) λ(c, lst). return fold λn.

member 〈n, lst〉 to {
true. return inl 〈〉,
false. match c as {
zero. return inl 〈〉,
succ y. f 〈y, cons 〈n, lst〉〉 to g. return inr g } }

V ′
9

def
= rec (f : namelist→T ) λlst. return λn.

member 〈n, lst〉 to {
true. return inl 〈〉,
false. f (cons 〈n, lst〉) to g. return inr g }

Here M9 and M ′
9 return a “hungry function” that after accepting a name it

returns another function that can accept more names, if the name is undoubt-
edly new to the function, and inl 〈〉, otherwise. The term M9 grants the
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context an arbitrary finite number w of distinct names it can remember; M ′
9

has the additional possibility of granting an unbounded memory.
The two terms are distinguished by the context

C9
def
= [·] to f.

(rec (h : T → 1) λ(fold y). new n. y n to {
inl 〈〉. return 〈〉,
inr g. h g

}) f

Evidently C9[M ′
9] is able to diverge, whereas C9[M9] is not. But for any fixed

list of names ∆pub, it is clear that M9 and M ′
9 are convex ∆pub-bisimilar. This

example shows that, in order for environmental bisimulation to be sound for
must-testing in the presence of countable nondeterminism, we cannot dispense
with the provision for the context to generate fresh names at each step. !

5.2 Lower Bisimulation as a Congruence

Example 5.2 (Generation) Let M10 and M ′
10 be the following terms of type

namelist→ nat:

M10
def
= choose w. return V10

M ′
10

def
= return V ′

10 or M10

where

V10
def
= λlst. min〈distnames(lst), w〉

V ′
10

def
= λlst. distnames(lst)

The term M10 picks a number w (or diverges) and returns a function that
can count up to w distinct names in a list; M ′

10 has the additional possibility of
returning a function that can count an unbounded number of distinct names
in a list.

Let C10 be the following context of type 1→ nat:

C10
def
= [·] to f.

return λ〈〉. choose k. mkfreshlist(k) to lst. f lst

Now C10[M ′
10] may return a function that, when applied to 〈〉, may return

any natural number, whereas C10[M10] cannot do this. Therefore any conceiv-
able notion of lower bisimulation (or even lower simulation) must distinguish
C10[M ′

10] from C10[M10], and hence, if it is a congruence, M ′
10 from M10. Yet
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for every fixed list of names ∆pub, M ′
10 and M10 are lower (in fact, even convex)

∆pub bisimilar.
This example shows that, in order for lower environmental bisimulation

to be a congruence (or simulation to be a precongruence) in the presence of
nondeterminism, we cannot dispense with the provision for the context to
generate fresh names at each step.

Note that for this example, we may replace countable nondeterministic
choice by a variant that may also diverge, which is expressible using only
binary nondeterministic choice (or) and recursion. The change is immaterial
for lower bisimulation. !

6 Conclusions

In early developments of Environmental Bisimulation [31,32] it was realized
that when we attempt to prove a contextual equivalence by brute force, we re-
peatedly find that the proof divides into two parts. One part is “boilerplate”;
it does not change from example to example. The other part requires under-
standing of the particular example. Environmental bisimulation is simply a
convenient way of packaging the boilerplate, so that only the example-specific
part of the proof remains to be done. Once environmental relations are de-
fined, the bisimulation conditions can be discovered by the soundness proof of
these relations [12].

This paper motivates in retrospect the necessity of the complexity in the
conditions of environmental bisimulation by giving a collection of examples in a
variety of higher-order languages. The examples show, for these languages, the
need to deviate in two significant ways from the standard notion of applicative
bisimulation.

There are also other sound operational techniques for these languages
which resemble applicative bisimulation even less. Notably open bisimula-
tion [19,18,26,9] and complete traces [17]; and logical relations in conjunction
with step-indexing [3,2,6] and biorthogonal closure [24]. A logical relation is
typically a single relation relating all contextually equivalent terms—thus ac-
cumulation is a given. It also supplies related arguments to related functions
which, because the logical relation is a congruence, follows the principle of
resourceful arguments. Open bisimulation and complete traces for languages
similar to those studied here accumulate values [17,9]. However, they follow a
quite different approach for functions: they provide them with fresh identifiers,
and make the applications of identifiers observable.

Jeffrey and Rathke [10] showed the unsoundness of an accumulating but
closed-argument form of bisimulation for the nu-calculus. The addition of
infinitely many global name references makes their bisimulation sound and
complete. That language is unaffected by Ex. 4.3 because names may be
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stored, and unaffected by Ex. 3.4 because there are no local references. On
the other hand, their notion of bisimulation for a fragment of Concurrent ML
[11] both accumulates values and uses resourceful arguments.

The notion of environmental bisimulation in the polymorphic setting in-
troduced in [32] allows the context to supply resourceful type arguments to
polymorphic functions. It would be interesting to know whether this is neces-
sary, in the light of genericity results such as those in [21].
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