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Abstract. We investigate the possible ways of ordering terms of ground type in a non-
deterministic (or deterministic) language that contains erroneous behaviours such as di-
vergence, crash or deadlock. We see that the ordering at boolean type, called a “boolean
precongruence”, is key: it determines the ordering at other ground types, and induces a
contextual preorder. We examine the circumstances in which amb is monotone, and in
which the ordering at Sierpinski type or even zero type suffices.

Each boolean precongruence gives a way of lifting relations, leading to a power-poset
construction. We obtain a notion of simulation, and give general conditions for when a
modal logic is sound and complete for the induced similarity preorder.
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1. Introduction

A familiar scenario in semantics research is that we have a typed language L, with
binary nondeterminism (or) and divergent terms.

Certain types are designated ground types, each equipped with a set of values. For
example we might have a boolean type, a natural number type, a Sierpinski type (with just
one value) and a zero type (with no values). The language provides a case operation for
each finite ground type, and a case . . . else construction for each infinite ground type.

We then consider various precongruences on L. The first question that arises is: how
should we order the terms of a ground type? For ground type, three choices are traditionally
considered: the lower, upper and convex orderings. They give rise to the powerdomain
constructions associated with Hoare, Smyth and Plotkin respectively [Plo76, Smy78], and
hence to a least fixpoint semantics of recursion. In particular divergence, recursively defined
to be itself, is a least element.

Are these the only possible orderings at ground type? The goal of this paper is to
consider this question, and its ramifications, in a systematic manner.

We begin with the boolean type. We surely want if to be monotone, which implies
monotonicity of or because of the equation

M or N = if (true or false) then M else N (1.1)

So we list all the “boolean precongruences” i.e. all possible orderings that have these prop-
erties. Of course, there can only be finitely many. We examine which ones make divergence
a least element: surprisingly, there is a fourth, which we call “smash”.

One might expect to have to perform a similar listing at other ground types. But that
is unnecessary: the ordering at the boolean type determines the ordering at all other ground
types.

We analyze some variants of the above situation. One is where there is a finite set E of
“errors” that might include divergence, crash, deadlock etc. This highlights the structure
of many definitions and results, which easily admit this generalization.

Other variants are where the language is deterministic, or provides McCarthy’s amb.
The non-monotonicity of amb wrt certain orderings is notorious, so—continuing the work
of [LLP05]—we look at which orders are acceptable.

Each boolean precongruence gives rise to a contextual preorder, and in Sect. 3.1 we
see some instances of these preorders that have appeared in the literature. Although our
work demonstrates that contexts of boolean type always suffice, we examine in Sect. 3.3
when it is acceptable to restict attention further, to contexts of Sierpinski type or even zero
type. This analysis exploits some results, presented in Sect. 3.2, saying that certain boolean
precongruences can be represented as intersections of canonical ones.

In Sect. 4, we see how each boolean precongruence gives a way of lifting relations
(Sect. 4.1), and these leads in two directions.

• to a free construction (Sect. 4.2), generalizing the definition of our orders at ground
types in the form of a “power-poset”.
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• a notion of simulation for transition systems (Sect. 4.3), equipped with a modal
logic (Sect. 4.4).

Each of these developments is familiar from the literature; the contribution of this paper
is simply a more systematic analysis. In particular, various notions of simulation have
been proposed for transition systems with divergence [Abr91, AH92, HP80, How96, Mil81,
Ong93, vG01, vG93, Wal90], and some have been explicitly linked to orderings such as lower
and upper [Las98, Mor98, Pit01, Uli92]. Our account explains the connection.

A theme of the paper is that requirements can be reduced to simple conditions on
booleans that can be mechanically checked. In particular:

• an ordering on ground type is determined by an ordering at boolean type (Prop. 2.19)
• compatibility of a semilattice with a power-poset construction (Prop. 4.7) is deter-

mined by some boolean conditions (Def. 2.12)
• the monotonicity of amb at all ground types (Prop. 2.23) is determined by its mono-

tonicity at boolean type (Def. 2.21(2))
• the sufficiency of Sierpinski type or zero type contexts is easily checked (Sect. 3.2)
• the soundness and completeness of modal logics for similarities (Prop. 4.14 and

Prop. 4.16) is determined by some boolean properties of the modalities (Def. 4.13
and Def. 4.15).

Notation

P>0A
def= {B ⊆ A | B nonempty}

P>0,<ℵ0A
def= {B ⊆ A | B nonempty and finite}

P>0,6ℵ0A
def= {B ⊆ A | B nonempty and countable}

B = {t, f} (the set of booleans)

2. Ordering Terms

2.1. Ordering Terms of Boolean Type. Let us write out explicitly the semantic form
of the case construction. (The prefixes “D” and “ND” stand for “deterministic” and
“nondeterministic”.)

Definition 2.1.
(1) Let E be a set. For sets X and Y , we write DcaseEX,Y for the function

X + E × (Y + E)X −→ Y + E

inl b, f 7→ f(b)
inr e, f 7→ inr e

For X = B, we call it DifEY : (B + E)× (Y + E)B −→ Y + E.
(2) Let E be a set. For sets X and Y , we write NDcaseEX,Y for the function

P(X + E) × (P(Y + E))X −→ P(Y + E)
K +D, f 7→

⋃
b∈K f(b) ∪ {inr e | e ∈ D}

In the case X = B, we write

NDifEY : P>0(B + E)× (P>0(Y + E))B −→ P>0(Y + E)
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INCONSISTENT EQUALITY

t=f t f

Figure 1: All the DBPs for no errors

for the restriction to nonempty sets.

Remark 2.2. For any monad T on Set, and sets X and Y , the Kleisli extension map klTX,Y
is given by

TX × (TY )X −→ TY

x, f 7→ (µY )((Tf)x)
Def. 2.1 can be regarded as consisting of special cases of this:

• DcaseEX,Y is klTX,Y where T : Z 7→ Z + E

• DifEXY is klTB,Y where T : Z 7→ Z + E

• NDcaseEX,Y is klTX,Y where T : Z 7→ P(Z + E)
• NDifEXY is klTB,Y where T : Z 7→ P>0(Z + E).

We shall not need this more abstract formulation.

The key definition of the paper is the following.

Definition 2.3.
(1) Let E be a set. A deterministic boolean precongruence (DBP) for E-errors is a

preorder on B + E making DifEB monotone. If symmetric, it is a deterministic
boolean congruence (DBC) for E-errors.

(2) Let E be a finite set. A nondeterministic boolean precongruence (NDBP) for E-
errors is a preorder on P>0(B + E) making NDifEB and ∪ monotone. If symmetric,
it is a nondeterministic boolean congruence (NDBC) for E-errors.

Clearly any precongruence of interest on our language L provides a NDBP (or DBP).

Remark 2.4. The exclusion of the empty set in Def. 2.3(2) is immaterial. We shall see
below (Prop. 2.16(2d)) that every NDBP for E-errors extends uniquely to a preorder on
P(B + E) making NDcaseEB,B and ∪ monotone.

Remark 2.5. The requirement for ∪ to be monotone in Def. 2.3(2) is redundant, because
of (1.1), which takes the form

x ∪ y = NDifEB ({inl t, inl f}, {t.x, f.y})
Remark 2.6. If E is a countable set, then we can still use Def. 2.3(2) provided we addi-
tionally require countable union to be monotone. (This is automatic if E is finite.) The
results in the paper all remain valid, but see Remarks 2.22 and 4.8.

The boolean precongruences in some cases of interest are listed in Fig. 1–5.
The DBPs for divergence and crash are all intersections of BIPOINTED and DOUBLE

POINTED, and their converses. The names “stable”, “costable”, “bistable” and “bistable
coherence” are taken from [Lai07a, Lai05].
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INCONSISTENT

t=f=d

EQUALITY

t f d

POINTED OP-POINTED

t f

d

d

t f

Figure 2: All the DBPs for divergence

INCONSISTENT EQUALITY BISTABLE COHERENCE

t=f=d=c t f d c t f d=c

STABLE COSTABLE BISTABLE
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t f
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d

t f
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d

t f c
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Figure 3: All the DBPs for divergence and crash
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INCONSISTENT

{t}={f}={t,f}

EQUALITY

{t} {f} {t,f}

INCLUSION

{t} {f}

{t,f}

REFINEMENT

{t} {f}

{t,f}

Figure 4: All the NDBPs for no errors

The NDBPs for divergence are all intersections of LOWER, UPPER and SMASH, and
their converses. Although SMASH is stronger than UPPER, they have the symmetrization
(viz. UPPER CONGRUENCE) and the same intersection with LOWER (viz. CONVEX).

We do not list the NDBPs for divergence and crash, as they are numerous. But in [Lai06,
Lai07b, Lai09], five NDBPs are studied, displayed in Fig. 6. (Warning: in [Lai06], both the
may and the costable preorders are reversed.)

The following is repeatedly useful.

Lemma 2.7. Let v be a NDBP for a finite set E. Then for any D,D′ ⊆ E, we have

{t}+D v {f}+D′

iff both {t}+D v {t, f}+D′

and {t, f}+D v {f}+D′

Proof. (⇒) is obvious, and (⇐) is given by

{t}+D = ({t}+D) ∪ ({t}+D)
v ({t}+D) ∪ ({t, f}+D′)
= ({t, f}+D) ∪ ({f}+D′)
v ({f}+D′) ∪ ({f}+D′)
= {f}+D′

There is one DBP for E-errors in which

inl true v inl false

and one NDBP for E-errors in which

{inl true} v {inl false}
Both are called INCONSISTENT. Any other boolean precongruence is said to be consistent.

Remark 2.8. A deterministic calculus with divergence and deadlock is studied in [BL95],
but it does not include sequencing. For this reason, the “vertical” ordering presented
there is not a DBP, although the “standard” and “flat” orderings correspond to DOUBLE
POINTED and STABLE respectively.
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{t} {f} {t,f} {d} {t,d} {f,d} {t,f,d}

EQUALITY

{d} {t}={t,d} {f}={f,d} {t,f}={t,f,d}

{d}={t,d}={f,d}={t,f,d} {t} {f} {t,f}

{t,f} ={t,f,d}

{t}={t,d} {f}={f,d}

{d} {d}={t,d}={f,d}={t,f,d}

{t,f}

{t} {f}

{d}={t,d}={f,d}={t,f,d}

{t,f}{t} {f}

{d}

{t}={t,d} {f}={f,d}

{t,f}={t,f,d}

{d}={t,d}={f,d}={t,f,d}

{t,f}

{t} {f}

{d}={t,d}={f,d}={t,f,d}

{t} {t,f} {f}

{d}
{t,d} {f,d}

{t,f,d}

{t} {t,f} {f}

{d}
{t,d} {f,d}

{t,f,d}

{t} {t,f} {f}

{t} {d}{f}

{t,f} {t,d} {f,d}

{t,f,d} {d} {t,d} {f,d} {t,f,d}

{t} {f} {t,f}

{t} {f} {d}

{t,f} {t,d} {f,d}

{t,f,d}

{t} {f} {t,f}

{d} {t,d} {f,d} {t,f,d}

{t} {f} {t,f}

{t,f,d}

{t,d} {f,d}

{d}

{t} {f} {t,f}

{d}

{t,d} {f,d}

{t,f,d}

{t,f,d}

{t,d} {t,f} {f,d}

{t} {d} {f}

{t} {d} {f}
{t,d} {t,f} {f,d}

{t,f,d}

LOWER UPPER SMASH

OP-LOWER OP-UPPER OP-SMASH

CONVEX INCLUSION SESQUI INCLUSION

OP-CONVEX REFINEMENT SESQUI REFINEMENT

PLUCKED STUNTED LOWER CONGRUENCE

OP-PLUCKED OP-STUNTED UPPER CONGRUENCE

INCONSISTENT

{t}={f}={t,f}={d}={t,d}={f,d}={t,f,d}

Figure 5: All the NDBPs for divergence
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MAY

MUST

COSTABLE

STABLE

{c}={t,c}={f,c}={t,f,c}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

{t,f}={t,f,d}

{t}={t,d} {f}={f,d}

{d}

{c}

{t}={t,c} {f}={f,c}

{t,f}={t,f,c}

{d}={t,d}={f,d}={t,f,d}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

{c}={t,c}={f,c}={t,f,c}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

{t,f}={t,f,d}
{t}={t,d} {f}={f,d}

{d}

{c}

{t}={t,c} {f}={f,c}

{t,f}={t,f,c}

{d}={t,d}={f,d}={t,f,d}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

MAY-AND-MUST

{c}

{t,c} {f,c} {t,f,c}

{t} {f} {t,f}

{t,d} {f,d} {t,f,d}

{d}

{d,c}={t,d,c}={f,d,c}={t,f,d,c}

Figure 6: NDBPs for divergence and crash described in [Lai06, Lai07b, Lai09]
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2.2. Preordered Semilattices. In this section, we examine the algebraic structure of the
set of terms of any type.

Definition 2.9. (1) A semilattice is a set X equipped with a binary operation or sat-
isfying

Commutativity ∀x, y ∈ X. x or y = y or x

Associativity ∀x, y, z ∈ X. (x or y) or z = x or (y or x)
Idempotency ∀x ∈ X. x or x = x

(2) Let B = (X, or) be a semilattice. An I-ary operation XI choose−−−−→ X is a join
operation for B when it satisfies
• for I = ∅

Neutrality ∀x ∈ X. x or choose{} = x

• for I 6= ∅

Absorption ∀ı̂ ∈ I, x ∈ XI . xı̂ or choosei∈I xi = choosei∈I xi

Idempotency ∀x ∈ X. choosei∈I x = x

Distributivity ∀x ∈ X, y ∈ XI . x or choosei∈I yi = choosei∈I (x or yi)

We recall that a semilattice operation or on X corresponds to a partial order wrt which
every two elements have a least upper bound x or y. Explicitly the order is given by

6or
def= {(x, y) ∈ X2 | x or y = y}

Moreover, an I-ary operation choose is a join operation iff choosei∈Ixi is the least upper
bound of {xi}i∈I wrt 6or. Consequently an I-ary join operation is unique when it exists.

Definition 2.10.
(1) Let E be a set. Let X be a set and let Y be a set with E-errors i.e. a set Y equipped

with a function E
raise // Y . We write DcaseEX,Y for the function

(X + E) × Y X −→ Y

inl b, f 7→ f(b)
inr e, f 7→ raise e

For X = B, we call it DifEY : (B + E)× Y B −→ Y .
(2) Let E be a finite set. Let X be a set and let Y be a semilattice with E-errors i.e.

a semilattice (Y, or) equipped with a function E
raise // Y . We write NDcaseEX,Y for

the partial function

P(X + E) × Y A −→ Y

x, f 7→ choosex

{
inl a. fa

inr e. raise e

if (Y, or) has an x-ary join operation
7→ undefined otherwise

For X = B, it restricts to a total function

NDifEY : P>0(B + E)× Y B −→ Y
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.

Remark 2.11. For any monad T on Set, set X and T -algebra B = (Y, θ), the Kleisli
extension map klTX,B is given by

TX × Y X −→ Y

x, f 7→ (θ)((Tf)x)

Def. 2.10 can be regarded as consisting of special cases of this:
• DcaseEX,B is klTX,B where T : Z 7→ Z + E

• DifEXB is klTB,B where T : Z 7→ Z + E

• NDcaseEX,B is klTX,B where T is any submonad of Z 7→ P(Z + E) for which B is an
algebra
• NDifEXB is klTB,B where T : Z 7→ P>0(Z + E).

We shall not need this more abstract formulation.

Definition 2.12.
(1) Let E be a set.

• A preordered set with E-errors B is a preordered set (X,6) equipped with a

function E
raise // X .

• Such a B is compatible with a DBP for E-errors v when
(a) inl t v inl f implies x 6 y for all x, y ∈ B
(b) inr e v inl t implies raise e 6 x for all x ∈ B
(c) inl t v inr e implies x 6 raise e for all x ∈ B
(d) inr e v inr e′ implies raise e 6 raise e′.

(2) Let E be a finite set.
• A preordered semilattice with E-errors B is a preordered set (X,6) equipped

with a monotone binary operation or that is commutative, associative and

idempotent, and a function E
raise // X .

• Such a B is compatible with a NDBP for E-errors v when1

(a) {t}+D v {t}+D′ implies x orraise D 6 x orraise D′ for all x ∈ X
(b) {t}+D v {t, f}+D′ implies x orraise D 6 x or y orraise D′ for all x, y ∈ X
(c) {t, f} + D v {t} + D′ implies x or y orraise D 6 x orraise D′ for all

x, y ∈ X.
(d) {t}+D v {f}+D′ implies x orraise D 6 y orraise D′ for all x, y ∈ X.

• An I-ary join operation for B (where I is a set) is a monotone function
XI choose−−−−→ X satisfying neutrality if I = ∅, and absorption, idempotency
and distributivity otherwise.
• If B has an ω-ary join operation, it is a preordered ω-semilattice with E-errors.

Remark 2.13. In Def. 2.12(2), requirement (2d) is redundant, because, by Lemma 2.7,

x orraise D 6 x or y orraise D

6 y orraise D

To illustrate Def. 2.12(2), consider the three consistent NDBPs for no errors—Fig. 4.
A preordered semilattice (X,6, or) is compatible with

1For D = {e0, . . . , en−1}, we write x orraise D as an abbreviation for x or raise e0 or · · · or raise en−1.
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• EQUALITY always
• INCLUSION when it is inflationary i.e. when ∀x, y ∈ X. x 6 x or y, or equivalently

when or is a least upper bound operator wrt 6
• REFINEMENT when it is deflationary, the dual property.

Next, consider the four consistent NDBPs for divergence that are pointed (i.e. have
divergence as a least element)—Fig. 5. A preordered semilattice with {d}-errors (X,6
, or, raise) is compatible with

• CONVEX when ⊥ def= raise d is least
• SMASH when ⊥ is least and chaotic i.e. ∀x ∈ X. x or ⊥ = ⊥
• UPPER when ⊥ is least and or is deflationary—this implies that ⊥ is chaotic
• LOWER when ⊥ is least and or is inflationary—the second condition is equivalent

to ⊥ being neutral.
Def. 2.12 is justified by the following result. We shall see below (Prop. 4.7) that, for

each part, the converse also holds.

Lemma 2.14.
(1) Let E be a set, and let v be a DBP for E. Let B = (X,6, raise) be a preordered set

with E-errors, such that

(B + E,v)× (X,6)B DifEB−−−→ (X,6)

is monotone. Then B is compatible with v.
(2) Let E be a finite set and let v be e a NDBP for E. Let B = (X,6, or, raise) be a

preordered semilattice with E-errors, such that

(P>0(B + E),v)× (X,6)B NDifEB−−−−→ (X,6)

is monotone. Then B is compatible with v.

Proof.
(1) Compatibility is proved as follows.

(a) If inl t v inl f then apply DifEB(−, {t.x, f.y}) giving x 6 y.
(b) If inr e v inl t then apply DifEB(−, {t.x, f.x}) giving raise e 6 x.
(c) Dual.
(d) If inr e v inr e′, then apply DifEB(−, {t.raise e, f.raise e}) giving raise e 6 raise e′.

(2) Compatibility is proved as follows.
• If {t} + D v {t} + D′ then apply NDifEB(−, {t.x, f.x}) giving x orraise D 6
x orraise D′.
• If {t} + D v {t, f} + D′ then apply NDifEB(−, {t.x, f.y}) giving x orraise D 6
x or y orraise D′.
• Dual.

If 6 is a precongruence of interest on our language L, then at any type τ , the terms
modulo 6 form a partially ordered semilattice (or partially ordered set) with E-errors. By
Lemma 2.14, it must be compatible with the NDBP (or DBP) provided by 6.
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2.3. Ordering Terms of Ground Type. The reader might suspect that our focus on the
boolean type is unjustified. Perhaps a ground type with more values, such as an integer
type, would give a bigger range of preorders? Fortunately that is not the case. We shall see
the boolean ordering determines the ordering at every ground type.

Definition 2.15.
(1) Let E be a set, and let v be a DBP for E-errors. For any set A, we define a relation
vA on A+ E as follows.
(a) inl a vA inl b when a = b or inl t v inl f.
(b) inr e vA inl b when inr e v inl t.
(c) inl a vA inr e when inl t v inr e.
(d) inr e vA inr e′ when inr e v inr e′.

(2) Let E be a finite set, and let v be NDBP for E-errors. For any set A, we define
a relation vA on P(A + E), setting K + D vA K ′ + D′ when all the following
conditions are met.
(a) {t}+D v {t}+D′.
(b) if {t, f}+D 6v {t}+D′ then K ⊆ K ′.
(c) if {t}+D 6v {t, f}+D′ then K ′ ⊆ K.

This construction enjoys the following properties. We defer the proof until after Prop. 4.7.

Proposition 2.16.
(1) Let E be a set, and let v be a DBP for E-errors. Write T : Z 7→ Z + E.

• For any set A, vA is a preorder on TA.
• For any sets A and B, the following is monotone:

(TA,vA)× (TB,vB)A
DcaseE

A,B−−−−−−→ (TB,vB)

• vB is precisely v.

• For any injection A
i // B , the preorder vA is vB restricted along Ti.

(2) Let E be a set, and let v be a NDBP for E-errors. Write T : Z 7→ Z + E.
(a) For any set A, vA is a preorder on TA.
(b) For any sets A and I, the following is monotone:

(TA,vA)I
S

I−−→ (TA,vA)

(c) For any sets A and B, the following is monotone:

(TA,vA)× (TB,vB)A
NDcaseE

A,B−−−−−−−→ (TB,vB)

(d) vB is the unique extension of v to a preorder on TB making NDcaseEB,B and ∪
monotone.

(e) For any injection A
i // B , the preorder vA is vB restricted along Ti.

Suppose that σ is a ground type of our language L, and C is a finite set of values. If L
is a deterministic language, then for any term M : σ we write

DcharC M
def= case M of {a. true}a∈C else false : bool

If L is nondeterministic, then for any term M : σ we write

NDcharC M
def= false or case M of {a. true}a∈C else false : bool
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The semantic equivalents of these constructions are as follows.

Definition 2.17. Let E be a set. Let A be a set and let C ⊆ A be finite. We define
functions

DcharEA,C : A+ E −→ B + E

x 7→ DcaseEA,B(x, {a ∈ C. inr t, a 6∈ C. inr f})

NDcharEA,C : P(A+ E) −→ P>0(B + E)

x 7→ {inl f} ∪ NDcaseEA,B(x, {a ∈ C. {inl t}, a 6∈ C. {inr f}})

Lemma 2.18.
(1) Let E be a set, and let v be a DBP for E-errors. Let A be a set, and let x, y ∈ A+E.

If x 6vA y then there is a finite C ⊆ A such that

DcharEA,C(x) 6v DcharEA,C(y) (2.1)

(2) Let E be a finite set, and let v be a NDBP for E-errors. Let A be a set, and let
x, y ∈ P(A+ E). If x 6vA y then there is a finite C ⊆ A such that

NDcharEA,C(x) 6v NDcharEA,C(y) (2.2)

Proof.
(1) Suppose x 6vA y, and consider the cases.

• If x = inl a and y = inl a′, we put C def= {a}. Since a 6= a′, (2.1) reduces to
inl t 6v inl f, which must be the case for otherwise x vA y.
• If x = inr e and y = inl a, we put C def= {a}. Then (2.1) reduces to inr e 6v inl t,

which must be the case for otherwise x vA y.
• The case x = inl a and y = inr e is treated dually.
• If x = inr e and y = inr e′, we put C def= {}. Then (2.1) reduces to inr e 6v inr e′,

which must be the case for otherwise x vA y.
(2) Put x = K + D and y = K ′ + D′. Supposing x 6vA y, one of the following must

hold.
• {t}+D 6v {t}+D′. In this case we put C def= {}, so (2.2) reduces to {f}+D 6v
{f}+D′ which is correct.
• {t, f} + D 6v {t} + D′ and K 6⊆ K ′. In this case we pick a ∈ K \K ′ and put
C

def= {a}, so (2.2) reduces to {t, f}+D 6v {f}+D′ which is correct.
• {t}+D 6v {t, f}+D′ and K ′ 6⊆ K. Dual argument.

Proposition 2.19.
(1) Let E be a set, and let v be a DBP for E-errors. Let A be a set. Then any preorder
6 on A+ E making the functions

(B + E,v)× (A+ E,6)B DifEA−−−→ (A+ E,6)

(A+ E,6)
DcharEA,C−−−−−−→ (B + E,v) for every finite C ⊆ A

monotone must be vA.
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(2) Let E be a finite set, and let v be a NDBP for E-errors. Let A be a set, and let U
be a subset of P(A+ E) that contains all singleton sets and is closed under binary
union. Then any preorder 6 on U making the functions

(P>0(B + E),v)× (U ,6)B NDifEA−−−−→ (U ,6)

(U ,6)
NDcharEA,C−−−−−−−→ (P>0(B + E),v) for every finite C ⊆ A

monotone must be vA restricted to U .

Proof.
(1) To prove vA is contained in 6, we first see that (A+ E,6, inr) is compatible with
v, by Lemma 2.14(1). Then we consider the cases.
• If inl a vA inl a′ then either a = a′ or v is inconsistent. Either way, inl a 6 inl a′,

by compatibility.
• If inr e vA inl a then inr e v inl t so inr e 6 inl a by compatibility.
• Dually if inl a vA inr e.
• If inr e vA inr e′ then inr e v inr e′ so inr e 6 inr e′ by compatibility.

Lemma 2.18(1) tells us that 6 is contained in vA.
(2) To prove vA� U is contained in 6, we first see that (U ,6, inr) is compatible with v,

by Lemma 2.14(2). Suppose K +D vA K ′ +D′, so {t}+D v {t}+D′. We show

K +D 6 (K ∪K ′) + (D ∪D′) (2.3)
6 K ′ +D′ (2.4)

We prove only (2.3), as (2.4) is proved dually.
• If {t}+D v {t, f}+D′ then compatibility gives

K +D = (K +D) ∪ (∅+D)
6 (K +D) ∪ (K ′ +D′) ∪ (∅+D′)
= (K ∪K ′) + (D ∪D′)

• Otherwise K ′ ⊆ K and {t}+D v {t}+D′ so compatibility gives

K +D = (K +D) ∪ (∅+D)
v (K +D) ∪ (∅+D′)
= (K ∪K ′) + (D ∪D′)

Lemma 2.18(2) tells us that 6 is contained in vA.

If 6 is a precongruence of interest on our language L, then Prop. 2.19 tells us that the
ordering at each ground type is determined by the NDBP (or DBP) provided by 6.

Remark 2.20. A similar analysis is given in [AP97], Thm. 17 (attributed to Gordon
Plotkin), in the setting of NDBCs for divergence. Our generalization is to consider preorders
rather than equivalence relations.
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INCONSISTENT
EQUALITY
INCLUSION
REFINEMENT
LOWER
UPPER
SESQUI INCLUSION
SESQUI REFINEMENT
LOWER CONGRUENCE

Figure 7: All the ABPs for no errors

2.4. Ambiguous Nondeterminism. We recall McCarthy’s amb operator: M amb M ′

evaluates both M and M ′ on an arbitrary fair scheduler, then returns whatever it gets first.
It diverges only if both M and M ′ diverge. The semantic I-ary version of this is as follows.

Definition 2.21.
(1) Let A and I be sets. We write ambIA for the I-ary operation

(P A⊥)I −→ P A⊥
x 7→ {up a | ∃i ∈ I. up a ∈ xi} ∪ {⊥ | ∀i ∈ I.⊥ ∈ xi}

where A⊥
def= A+ {d}. We write ambA (infix) for the binary case.

(2) Let E be a finite set. An amb boolean precongruence (ABP) for E-errors is a preorder
on P(B + E)⊥ that is a NDBP for divergence and E-errors and such that

(P>0 (B + E)⊥,v)2 −→ (P>0 (B + E)⊥,v)
x, y 7→ x ambB y

is monotone. If symmetric, it is an amb boolean congruence (ABC) for E-errors.

Remark 2.22. If E is a countable set, then we can still use Def. 2.21(2) provided we
additionally require countable amb to be monotone.

The ABPs for no errors are listed in Fig. 7. All of them are intersections of LOWER and
INCLUSION and their converses. We note that the only consistent ABP making divergence
least is LOWER; this observation was first made in [LLP05].

Once again, the boolean type is sufficient for all ground types.

Proposition 2.23. Let E be a finite set, and let v be an ABP for E-errors. Then the
function

(P A⊥,vA)I
ambI

A−−−→ (P A⊥,vA)
is monotone for any sets A and I.

We omit the proof, as we give a more general theorem below—Lemma 4.4(2).

Remark 2.24. Deterministic parallel operators such as parallel-or and parallel-exists [Plo77]
do not cause the same problems as amb. They are monotone wrt all of the DBPs and NDBPs
for divergence (assuming the empty set is excluded).
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3. Contexts and Tests

3.1. Contextual Preorders. It is easy to see that any NDBP (or DBP) v induces a
contextual preorder on our language L. Two terms M,M ′ : τ are contextually related up to
v, when for every context

· : τ ` C[·] : σ
where σ is a ground type whose set of values is A(σ), the meanings of C[M ] and C[M ′] are
related by vA(σ). Equivalently—by Lemma 2.18—we can consider only contexts of boolean
type. Prop. 2.19 tells us that any preorder determined by contexts of ground type must
arise in this way.

We note some preorders appearing in the denotational literature that turn out to be
contextual preorders.

In [Lai07a], a deterministic language with divergence and crash is studied, and a model
described using three orderings ≤E ,≤B, l. These are in fact the contextual preorders in-
duced, respectively, by BIPOINTED, BISTABLE and BISTABLE COHERENCE (Fig. 3).
Similarly in [Lai06, Lai07b] a nondeterministic language with divergence and crash is stud-
ied, and two models are studied, each using two orders. These are the contextual preorders
induced by MAY, STABLE, MUST and COSTABLE (Fig. 6).

CSP is a well-known process calculus with two erroneous behaviours: divergence and
deadlock. Various models of CSP are described in [Ros98, Ros93]:

• T , where a process denotes its finite trace set
• F , where a process denotes its finite trace set and stable failure set
• I, where a process denotes its finite trace set, divergence set and infinite trace set,

each saturated with extensions of divergences
• U , where a process denotes its finite trace set (redundant, therefore usually omitted),

stable failure set, divergence set and infinite trace set, each saturated with extensions
of divergences.

For I and U , as well as refinement, a stronger ordering called “definedness” is stud-
ied [Ros92]. That gives six ordered models, and they can be regarded as contextual preorders
for the NDBPs shown in Fig. 8. Although CSP does not have a boolean type in our sense,
the full abstraction results presented in [Ros98] for the equivalences can be adapted to the
preorders.

Curiously, the three rows correspond to LOWER, UPPER and SMASH, which are
NDBPs for divergence alone. Each column extends these to deadlock in a uniform way:
the left column by making deadlock a neutral element, the right column by treating it as a
value.

3.2. Intersection Theorems. An intersection theorem says that every precongruence or
congruence is an intersection of certain special ones. We have already seen examples of this
in Sect. 2.1 and Sect. 2.4. In the deterministic case, there is a general such theorem, using
the following special precongruences.



BOOLEAN PRECONGRUENCES 17

T, INCLUSION

{t,f}={t,f,d}={t,f,c}={t,f,d,c}

{t}={t,d}={t,c}={t,d,c} {f}={f,d}={f,c}={f,d,c}

{d}={c}={d,c}

F, INCLUSION

{t,f,c}={t,f,d,c}

{t,f}={t,f,d}
{t,c}={t,d,c}

{f,c}={f,d,c}

{t}={t,d}
{f}={f,d}

{c}={d,c}

{d}

I, REFINEMENT

{c}

{t}={t,c} {f}={f,c}

{t,f}={t,f,c}

{d}={t,d}={f,d}={t,f,d}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

{t} {f} {c}

{t,f} {t,c} {f,c}

{t,f,c}

{d}={t,d}={f,d}={t,f,d}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

U, REFINEMENT

I, DEFINEDNESS U, DEFINEDNESS

{c}

{t}={t,c} {f}={f,c}
{t,f}={t,f,c}

{d}={t,d}={f,d}={t,f,d}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

{t}

{f}

{c}
{t,f}

{t,c}
{f,c}

{t,f,c}

{d}={t,d}={f,d}={t,f,d}={d,c}={t,d,c}={f,d,c}={t,f,d,c}

Figure 8: NDBPs for divergence (d) and deadlock (c) in standard CSP models
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Definition 3.1. Let E be a set, and let C ⊆ E. We write .(C) for the DBP for E-errors
given by

e′

�������

=======

t

???????? f

��������

e

where e ∈ C and e′ ∈ E \ C. We write ≡(C) for its symmetrization.

A consistent DBP is of the form .(C), for some C ⊆ E, iff every error is either least or
greatest. These precongruences give the following intersection theorem.

Proposition 3.2. Let E be a set.
(1) Any DBP for E-errors is of the form

⋂
C∈C .

(C), for some C ⊆ PE.
(2) Any DBC for E-errors is of the form

⋂
C∈C ≡(C), for some C ⊆ PE.

Proof. (1) Let v be a DBP for E-errors. Given x 6v y, we need to find C ⊆ E such that
.(C) contains v and x 6.(C) y. We set C def= {e ∈ E | inr e v y}.

If x .(C) y, then either
• x = y, implying x v y, a contradiction
• x = inr e with e ∈ C, giving x v y, a contradiction
• y = inr e with e ∈ E \ C, giving y 6v y, a contradiction.

So x 6.(C) y. We show .(C) contains v as follows.
• Suppose inl b v inl b′. Then b = b′ since v is consistent, so inl b .(C) inl b′.
• Suppose inr e v inl b. Applying DifEB (−, {i.y}) gives inr e v y. So e ∈ C, so

inr e .(C) inl b.
• Suppose inl b v inr e. Applying DifEB (−, {i.x}) gives x v inr e. If e ∈ C then
x v inr e v y, a contradiction. So e ∈ E \ C, so inl b .(C) inr e.
• Suppose inr e v inr e′. If e′ ∈ C then inr e v inr e′ v y so e ∈ C. So

inr e .(C) inr e′.
(2) Obvious.
We do not give a general result for NDBPs, although it might be possible to do so.

Instead we restrict our attention to inflationary, deflationary and symmetric ones. These
special classes are related as follows.

Proposition 3.3. Let E be a finite set. Consider the sets and functions

inflationary
NDBPs

with E-errors
oo converse //

symmetrization

""EEEEEEEEEEEEEEEEEE

deflationary
NDBPs

with E-errors

symmetrization

||yyyyyyyyyyyyyyyyy

NDBCs
with E-errors
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(1) The intersection of any two is {INCONSISTENT}.
(2) The functions are bijections and preserve intersections.

The same result holds for ABPs for E-errors.

Proof. The only nontrivial part is showing that any NDBC for E-errors ≡ is the sym-
metrization of a unique inflationary NDBP for E-errors v.

Let v be {(x, y) | x ∪ y ≡ y}, clearly the only possibility.
Reflexivity is trival. If x v y and y v z then

z ≡ y ∪ z
≡ x ∪ y ∪ z
≡ x ∪ z

Clearly NDifEB is monotone wrt v in its first argument. Let g, g′ ∈ (P>0(bools + E))B be
such that gb v g′b for all b ∈ B. Then for u ∈ P>0(B + E) we have

NDifEB (u, {b.g′b}) ≡ NDifEB (u, {b.gb or g′b})
= NDifEB (u, {b.gb}) or NDifEB (u, {b.g′b})

So v is a NDBP for E-errors. Clearly it is inflationary and its symmetrization is ≡.
If ≡ is an ABC, we also must show that amb is monotone wrt v. Monotonicity in one

argument suffices. If x v y then

y ambB u ≡ (x ∪ y) ambB u

= (x ambB u) ∪ (y ambB u)

In an inflationary NDBP, an error is least iff neutral, and greatest iff chaotic. We
accordingly consider the following special precongruences.

Definition 3.4. Let E be a finite set, and let C ⊆ E. We write .ND(C) for the inflationary
DBP for E-errors given by

∅+D′ = {t}+D′ = {f}+D′ = {t, f}+D′

{t, f}+D

hhhhhhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVVVVVV

{t}+D

VVVVVVVVVVVVVVVVVVVVVVVV {f}+D

hhhhhhhhhhhhhhhhhhhhhhhh

∅+D

where D ⊆ C and D′ 6⊆ C. We write ≡ND(C) for its symmetrization.

An inflationary consistent NDBP is of the form .ND(C) iff every error is either least
(neutral) or greatest (chaotic). Similarly, a consistent NDBC is of the form ≡ND(C) iff every
error is either neutral or chaotic. We can now formulate our intersection theorem.

Proposition 3.5. Let E be a finite set.
(1) Any inflationary NDBP for E-errors is of the form

⋂
C∈C .

ND(C) for some C ⊆ PE.
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(2) Any NDBC for E-errors is of the form
⋂
C∈C ≡ND(C) for some C ⊆ E.

Proof. (1) Let v be an inflationary NDBP for E-errors. It suffices to show that, given
K + D 6v K ′ + D′, there is some C ⊆ E such that .ND(C) contains v and K +
D 6.ND(C) K ′ + D′. We set C def= {e ∈ E | K ′ + (D′ ∪ {e}) v K ′ +D′}. Thus L +
F .ND(C) L′ + F ′ iff either
(a) there is e ∈ F ′ such that K ′ + (D′ ∪ {e}) 6v K ′ +D′, or
(b) K ′ + (D′ ∪ F ) v K ′ +D′ and L ⊆ L′.
If K+D .ND(C) K ′+D′ then, since (1a) cannot be true, (1b) must be, i.e. K ⊆ K ′
and K ′ + (D ∪D′) v K ′ +D′. Hence

K +D ⊆ (K ∪K ′) + (D ∪D′)
= K ′ + (D ∪D′)
v K ′ +D′

a contradiction. So K +D 6.ND(C) K ′ +D′.
We show .ND(C) contains v as follows. Suppose L+F v L′+F ′ but L+F 6.ND(C)

L′ + F ′.
The failure of (1a) tells us, for all e ∈ F ′, that K ′ + (D′ ∪ {e}) v K ′ + D′.

Taking the union of all these, along with K ′+D′ v K ′+D′ (to ensure the union is
nonempty), gives K ′ + (D′ ∪ F ′) v K ′ +D′.

Applying (K ′+D′)∪NDifEB (−, i.K ′ +D′) to L+F v L′+F ′ gives K ′+(D′∪F ) v
K ′ + (D′ ∪ F ′) and hence K ′ + (D′ ∪ F ) v K ′ +D′.

Hence the failure of (1b) must be caused by some b ∈ L\L′. Applying (K ′+D′)∪
NDifEB (,b.K +D, i 6= b.K ′ +D′) to L+F v L′+F ′ gives (K∪K ′)+(D∪D′ cupF ) v
K ′ + (D′ ∪ F ′). Hence

K +D ⊆ (K ∪K ′) + (D ∪D′ ∪ F )
v K ′ + (D′ ∪ F ′)
v K ′ +D′

a contradiction.
(2) Immediate from (1) and Prop. 3.3.

3.3. Testing at Sierpinski Type or Zero Type. We have seen that, to define a contex-
tual preorder, it suffices to consider contexts of boolean type. In many situations—indeed,
for all the boolean precongruences we have noted in the literature—one can use contexts of
Sierpinski type. This underlies the idea of testing preorders [NH84]: a process either passes
the test (returns the sole value of Sierpinski type) or does not. And occasionally one can
go even further by using only contexts of zero type [Lai07a, Lai06].

In general, these contexts give a weaker preorder. We examine when they do in fact
suffice.

Definition 3.6.
(1) Let E be a set, and let v be a DBP for E-errors. For x, y ∈ B + E we write

x Test1(v) y when DifE1 (x, h) v1 DifE1 (y, h) for all h ∈ (1 + E)B

x Test0(v) y when DifE∅ (x, h) v∅ DifE1 (y, h) for all h ∈ (∅+ E)B
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(2) Let E be a finite set, and let v be a NDBP for E-erorrs. For x, y ∈ P>0(B +E) we
write

x Test1(v) y when NDifE1 (x, h) v1 NDifE1 (y, h) for all h ∈ (P>0(1 + E))B

x Test0(v) y when NDifE∅ (x, h) v∅ NDifE1 (y, h) for all h ∈ (P>0(∅+ E))B

Proposition 3.7. Let E be a finite set, and let v be a NDBP for E-errors.
(1) Test1(v) and Test0(v) are NDBPs for E-errors and contain v.
(2) Test1(v) is contained in Test0(v).
(3) (Test1(v))1 and v1 coincide, as preorders on P>0(1 + E).
(4) (Test0(v))∅ and (Test1(v))∅ and v∅ coincide, as preorders on P>0(∅+ E).

The analogous results hold for any set E and DBP for E-errors v.

Proof. We write TZ for P>0(Z + E).
(1) Clearly Test1(v) and Test0(v) are preorders containing v. We show Test1(v) is a

NDBP; the proof for Test0(v) is similar. Let x, x′ ∈ TB be such that x Test1(v) x′.
Let g, g′ ∈ (TB)B be such that gb Test1(v) g′b for b ∈ B. If h ∈ P>0(1 + E)B then
NDifE1 (gb, h) v1 NDifE1 (g′b, h) for b ∈ B and so

NDifE1 (NDifEB (x, g), h) = NDifE1 (x, {b.NDifE1 (gb, h)})
v1 NDifE1 (x′, {b.NDifE1 (gb, h)})
v1 NDifE1 (x′, {b.NDifE1 (g′b, h)})
= NDifE1 (NDifEB (x′, g′), h)

Thus NDifEB (x, g) Test1(v) NDifEB (x′, g′).
(2) Suppose x Test1(v) y and h ∈ (T∅)B. Define g ∈ (T1)B to be {b.NDcaseE∅,1(hb, {})}.

Then NDifE1 (x, g) v1 NDifE1 (x′, g). Pick p ∈ T∅, e.g. NDifE∅ (x, h). Then

NDifE∅ (x, h) = NDcaseE1,∅(NDifE1 (x, g), {∗.p})

v NDcaseE1,∅(NDifE1 (x′, g), {∗.p})

= NDifE∅ (x′, h)

(3) Pick an injection 1
i // B . Let x, x′ ∈ T1 be such that x(Test1(v))1x′ then

(Ti)x Test1(v) (Ti)x′ by Prop. 2.16(2d)–(2e). Pick p ∈ T1, e.g. x. Then

x = NDifE1 ((Ti)x, {ia.{inl a}, b 6∈ range i.p})
v1 NDifE1 ((Ti)(x′, {ia.{inl a}, b 6∈ range i.p})
= x′

(4) Similar.
(5) Trivial.
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DBP v Test1(v) Test0(v)

All the DBPs for no errors (Fig. 1)
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY INCONSISTENT INCONSISTENT

All the DBPs for divergence (Fig. 2)
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY EQUALITY INCONSISTENT
POINTED POINTED INCONSISTENT
OP-POINTED OP-POINTED INCONSISTENT

All the DBPs for divergence and crash (Fig. 3)
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY EQUALITY
BISTABLE COHERENCE BISTABLE COHERENCE INCONSISTENT
STABLE STABLE BIPOINTED
OP-STABLE OP-STABLE OP-BIPOINTED
COSTABLE COSTABLE BIPOINTED
OP-COSTABLE OP-COSTABLE OP-BIPOINTED
BISTABLE BISTABLE BIPOINTED
OP-BISTABLE OP-BISTABLE OP-BIPOINTED
BIPOINTED BIPOINTED BIPOINTED
OP-BIPOINTED OP-BIPOINTED OP-BIPOINTED
DOUBLE POINTED DOUBLE POINTED INCONSISTENT
DOUBLE OP-POINTED DOUBLE OP-POINTED INCONSISTENT

Canonical DBPs for E-errors (Def. 3.1) with |E| > 2
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY EQUALITY EQUALITY

.(∅) .(∅) INCONSISTENT

.(E) .(E) INCONSISTENT

.(C) (C 6= ∅, E) .(C) .(C)

≡(∅) ≡(∅) INCONSISTENT

≡(E) ≡(E) INCONSISTENT

≡(C) (C 6= ∅, E) ≡(C) ≡(C)

Figure 9: 1-testing and 0-testing all the DBPs in this paper

It follows from Prop. 3.7 that Test1 and Test0 are closure operators on the poset of
NDBPs (or DBPs) for E-errors, and they clearly preserve intersection and converse. Their
behaviour on all the boolean precongruences mentioned in this paper is given in Fig. 9–10.

A 1-testable boolean precongruence is a fixpoint of Test1, and a 0-testable one is a
fixpoint of Test0. These correspond to contextual preorders that are definable by contexts of
Sierpinski type and of zero type, respectively. As stated above, every boolean precongruence
we have found in the literature is 1-testable. Both properties are preserved by converse and
intersection, and 0-testability implies 1-testability.

We note that
• all the 1-testable NDBPs for divergence are intersections of LOWER and UPPER

and their converses.
• all the 0-testable DBPs for divergence and crash are intersections of BIPOINTED

and its converse
• all the 0-testable NDBPs for divergence and crash are intersections of MAY and

MUST and their converses.
We provide a variety of conditions for 1- and 0-testability.

Proposition 3.8.
(1) Let E be a nonempty set. Every DBP for E-errors is 1-testable.
(2) Let E be a set, and ≡ a consistent DBC for E-errors. Then ≡ is 0-testable iff there

are e, e′ ∈ E such that e 6≡ e′.
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NDBP v Test1(v) Test0(v)

All the NDBPs for no errors (Fig. 4)
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY INCONSISTENT INCONSISTENT
INCLUSION INCONSISTENT INCONSISTENT
REFINEMENT INCONSISTENT INCONSISTENT

All the NDBPs for divergence (Fig. 5)
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY EQUALITY INCONSISTENT
LOWER LOWER INCONSISTENT
OP-LOWER OP-LOWER INCONSISTENT
UPPER UPPER INCONSISTENT
OP-UPPER OP-UPPER INCONSISTENT
SMASH UPPER INCONSISTENT
OP-SMASH OP-UPPER INCONSISTENT
CONVEX CONVEX INCONSISTENT
OP-CONVEX OP-CONVEX INCONSISTENT
INCLUSION INCLUSION INCONSISTENT
REFINEMENT REFINEMENT INCONSISTENT
SESQUI INCLUSION SESQUI INCLUSION INCONSISTENT
SESQUI REFINEMENT SESQUI REFINEMENT INCONSISTENT
PLUCKED PLUCKED INCONSISTENT
OP-PLUCKED OP-PLUCKED INCONSISTENT
STUNTED INCLUSION INCONSISTENT
OP-STUNTED REFINEMENT INCONSISTENT
LOWER CONGRUENCE LOWER CONGRUENCE INCONSISTENT
UPPER CONGRUENCE UPPER CONGRUENCE INCONSISTENT

Assorted NDBPs for divergence and crash/deadlock (Fig. 6, Fig. 8, Fig. 12)
MAY MAY MAY
COSTABLE COSTABLE MAY
MUST = I, REFINEMENT MUST MUST
STABLE STABLE MUST
T , INCLUSION T , INCLUSION INCONSISTENT
F , INCLUSION F , INCLUSION MAY
U , REFINEMENT U , REFINEMENT MUST
I, DEFINEDNESS I, DEFINEDNESS MUST
U , DEFINEDNESS U , DEFINEDNESS MUST
ACETO-HENNESSY ACETO-HENNESSY MUST

Canonical NDBPs for E-errors (Def. 3.4 with |E| > 2
INCONSISTENT INCONSISTENT INCONSISTENT
EQUALITY EQUALITY EQUALITY
INCLUSION INCLUSION INCLUSION
REFINEMENT REFINEMENT REFINEMENT

.ND(∅) .ND(∅) INCONSISTENT

.ND(E) .ND(E) INCONSISTENT

.ND(C) (C 6= ∅, E) .ND(C) .ND(C)

≡ND(∅) ≡ND(∅) INCONSISTENT

≡ND(E) ≡ND(E) INCONSISTENT

≡ND(C) (C 6= ∅, E) ≡ND(C) ≡ND(C)

Figure 10: 1-testing and 0-testing all the NDBPs in this paper

(3) Let E be a nonempty finite set. Every inflationary NDBP, deflationary NDBP and
NDBC for E-errors is 1-testable.

(4) Let E be a finite set, and v a consistent NDBP for E-errors with a neutral element
x. Then x has the form ∅+D with every e ∈ D neutral, and v is 1-testable.

(5) Let E be a finite set, and v an inflationary NDBP for E-errors. Then v is 0-testable
iff it is of the form

⋂
C∈C .

ND(C) for C ⊆ (PE) \ {∅, E}.
(6) Let E be a finite set, and ≡ a NDBC for E-errors. Then ≡ is 0-testable iff it is of

the form
⋂
C∈C ≡ND(C) for C ⊆ (PE) \ {∅, E}.

Proof. (1) From Prop. 3.2(1).
(2) Such a DBC must be of the form

⋂
C∈C ≡(C), for some C ⊆ PE \ {∅, E}.

(3) From Prop. 3.5.
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(4) In any semilattice, if u or v is neutral then u (and likewise v) are neutral, because
for any w

w or u = (w or u) or (u or v) = w or (u or v) = w

Since inl b cannot be neutral for a consistent NDBP, x must be ∅ + D with every
e ∈ E neutral.

Suppose K +C,K ′+C ′ ∈ P>0(B +E) are such that K +C 6v K ′+C ′. We wish
to find f ∈ P>0(1 + E)B such that

Pf (K + C) 6v1 Pf (K ′ + C ′) (3.1)

where Pf : y 7→ x∪NDifE1 (y, f). Since K+C 6vB K
′+C ′, one of the following cases

must apply.
• If {t}+ C 6v {t}+ C ′, let f be the constant function to {inl ∗}.
• If {t, f}+ C 6v {t}+ C ′ and a ∈ K \K ′, let f be {a.{inl ∗}, i 6= a.x}.
• Likewise if {t}+ C ′ 6v {t, f}+ C ′ and a ∈ K ′ \K.

(5) From Prop. 3.5.
(6) From Prop. 3.5.

4. Relational Lifting

4.1. Lifting a Relation. In Sect. 2.3 we saw how a boolean precongruence gives an order-
ing at every ground type. We generalize this to a way of lifting relations.

Definition 4.1.
(1) Let E be a set, and let v be a DBP for E-errors. For any sets A,B and relation

A
R // B , we define a relation A+ E

vR // B + E as follows.
(a) inl a vR inl b when a R b or inl t v inl f.
(b) inr e vR inl b when inr e v inl t.
(c) inl a vR inr e when inl t v inr e.
(d) inr e vR inr e′ when inr e v inr e′.

(2) Let E be a finite set, and let v be a NDBP for E-errors. For any sets A,B and

relation A
R // B , we define a relation P(A+ E)

vR // P(B + E) setting K +
D vR K ′ +D′ when all the following conditions are met.
(a) {t}+D v {t}+D′.
(b) if {t, f} + D 6v {t} + D′ then for every a ∈ K there exists b ∈ K ′ such that

a R b.
(c) if {t} + D 6v {t, f} + D′ then for every b ∈ K ′ there exists a ∈ K such that

a R b.

This construction has the “stable relator” properties stipulated in [Bal00, HT00, HJ04].
We write “;” for relational composition in diagrammatic order.

Lemma 4.2.
(1) Let E be a set, and let v be a DBP for E-errors. Write T : Z 7→ Z + E

(a) For sets A,B and relations A
R,S // B , if R ⊆ S then vR ⊆ vS .

(b) For a set A, we have idTA ⊆ vidA
= vA.
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(c) For sets A,B,C and relations A
R // B

S // C we have

vR;vS ⊆ vR;S (4.1)

If v is consistent, then (4.1) is an equality.

(d) For sets A,B,A′, B′, a relation A
R // B and functions A′

f // A and

B′
g // B we have

v(f×g)−1R = (Tf × Tg)−1 vR
(2) Let E be a finite set, and let v be a NDBP for E-errors. Write T : Z 7→ P(Z +E).

(a) For sets A,B and relations A
R,S // B , if R ⊆ S then vR ⊆ vS .

(b) For a set A, we have idTA ⊆ vidA
= vA

(c) For sets A,B,C and relations A
R // B

S // C we have

vR;vS ⊆ vR;S (4.2)

If v is consistent, then (4.2) is an equality, and this remains true if we restrict
P to nonempty, countable or finite subsets.

(d) For sets A,B,A′, B′, a relation A
R // B and functions A′

f // A and

B′
g // B we have

v(f×g)−1R = (Tf × Tg)−1 vR
Proof.

(1) (a) Trivial.
(b) Trivial.
(c) If inl a vR inr e vS inl b, then inl t v inr e v inl f and so making v inconsistent.

The other seven cases are trivial, and so is the reverse inclusion assuming v
consistent.

(d) Trivial.
(2) (a) Trivial.

(b) Trivial.
(c) Suppose K +D vR K ′ +D′ vS K ′′ +D′′. Then

{t}+D v {t}+D′ v {t}+D′′

Suppose {t, f}+D 6v {t}+D′′, and a ∈ K. If {t, f}+D v {t}+D′ then

{t, f}+D v {t}+D′ v {t}+D′′

a contradiction, so there is b ∈ K ′ such that a R b. If {t, f} + D′ v {t} + D′′

then
{t, f}+D v {t, f}+D′ v {t}+D′′

a contradiction, so there is c ∈ K ′′ such that b S c. Dually for requirement (2c)
of Def. 4.1.
Conversely, suppose v is consistent, and x vR;S z. We shall show that there
is y ∈ P(B + E) such that
• x vR y and y vS z
• if x and z are both nonempty (resp. finite, countable) then so is y.
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We write x = K+D and z = K ′′+D′′. Define L ⊆ B as follows: if {t, f}+D v
{t}+D′′ then L def= ∅, otherwise for each a ∈ K we pick f(a) ∈ B and g(a) ∈ C
such that a R f(a) and f(a) S g(a), and then we set L to be the range of

K
f // B . We define L′′ ⊆ B the same way in the opposite direction, and

set y def= (L ∪ L′′) + (D ∪D′′).
We note that for each b ∈ L∪L′ there is a ∈ A such that a R b and c ∈ C such
that b S c.
We show x vR y as follows. For condition (2a),

{t}+D = ({t}+D) ∪ ({t}+D)
v ({t}+D) ∪ ({t}+D′′)
= {t}+ (D ∪D′′)

For condition (2b), suppose {t, f} + D 6v {t} + (D ∪ D′′). Then {t, f} + D 6v
{t}+D′′, for otherwise

{t, f}+D = ({t}+D) ∪ ({t, f}+D)
v ({t}+D) ∪ ({t}+D′′)
= {t}+ (D ∪D′′)

contradicting our assumption. Therefore for each a ∈ K we have f(a) ∈ L and
a R f(a). For condition (2c) of Def. 4.1, we observe that for each b ∈ L ∪ L′
there is a ∈ A such that a R b.
The proof of y vS z is similar.
Clearly if both x and z are finite (resp. countable) then so is y. Suppose
both x and z are nonempty but y is empty. Then D and D′′ are empty.
Since D is empty, K must be nonempty, but L is empty so we must have
{t, f} + ∅ v {t} + ∅. By the dual argument {t} + ∅ v {t, f} + ∅, contradicting
our consistency assumption by Lemma 2.7.

(d) Trivial.
Following [HT00], we can express the general construction R 7→vR in terms of the

special case A 7→vA.

Proposition 4.3. Let A and B be sets and A
R // B a relation. We write

graph(R)
π

zzvvvvvvvvvv
π′

$$IIIIIIIIII
def= {(x, y) ∈ A×B | x R y}

A B

for the two projections from the graph of R.
(1) Let E be a set, and v a consistent DBP for E-errors. Write T : Z 7→ Z +E. Then
vR is the composite

TA
(TA×Tπ)−1vA−−−−−−−−−−→ Tgraph(R)

(Tπ′×TB)−1vB−−−−−−−−−−→ TB (4.3)

(2) Let E be a finite set, and v a consistent NDBP for E-errors. Write T : Z 7→
P(Z + E). Then vR is the composite (4.3), and this remains true if we restrict P
to nonempty, finite or countable sets.
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Proof. The relation R is the composite

A
(A×π)−1idA−−−−−−−−→ graph(R)

(π′×B)−1idB−−−−−−−−→ B

So Lemma 4.2 gives us

vR = v(A×π)−1idA
; v(π′×B)−1idB

= (TA× Tπ)−1 vidA
; (Tπ′ × TB)−1 vidB

= (TA× Tπ)−1 vA ; (Tπ′ × TB)−1 vB

Finally we see that our construction is compatible with union and amb.

Lemma 4.4.

(1) Let E be a finite set, and let v be a NDBP for E-errors. If A
R // B a relation,

then vR is preserved by I-ary union, for each set I.

(2) Let E be a finite set, and let v be an ABP for E-errors. If A
R // B a relation,

then vR is preserved by I-ary amb, for each set I.

Proof. (1) Given a set I, and for each i ∈ I elements Ki+Di ∈ P(A+E) and K ′i+D′i ∈
P(B + E) such that Ki +Di vR K ′i +D′i, we want to show⋃

i∈I
Ki +

⋃
i∈I

Di vR
⋃
i∈I

K ′i +
⋃
i∈I

D′i (4.4)

We have {t}+Di v {t}+D′i for each i ∈ I, and so

({t}+ ∅) ∪
⋃
i∈I

({t}+Di) v ({t}+ ∅) ∪
⋃
i∈I

({t}+D′i) (4.5)

using the fact that P>0(B + E) is finite, so 1 + I-ary union reduces to a finite
nonempty union and is therefore monotone wrt v. (4.5) reduces to

{t}+
⋃
i∈I

Di v {t}+
⋃
i∈I

D′i (4.6)

Suppose
{t, f}+

⋃
i∈I

Di 6v {t}+
⋃
i∈I

D′i (4.7)

and a ∈
⋃
i∈I Ki. Pick ı̂ ∈ I such that a ∈ Kı̂. If {t, f} + Dı̂ v {t} + D′ı̂, then the

union of this with (4.6) contradicts (4.7). So this is not the case, and there is b ∈ Kı̂
such that a R b. Dually for requirement (2c).

(2) The same argument, replacing ∪ by amb and ∅ by {d}.
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4.2. Lifting a Preorder. We turn to the case in which the relation being lifted is a
preorder.

Proposition 4.5.
(1) Let E be a set, and let v be a DBP for E-errors. Let (A,6) be a preordered set.

Then
(a) (A+ E,v6, inr) is a preordered set with E-errors, compatible with v
(b) the following is monotone:

(A,6) −→ (A+ E,v6)
x 7→ inl x

(2) Let E be a finite set, and let v be a NDBP for E-errors. Let (A,6) be a preordered
set. Then
(a) (P(A + E),v6,∪, inr) is a semilattice with E-errors, compatible with v, with

a join operation
⋃
I for every set I

(b) the following is monotone:

(A,6) −→ (P(A+ E),v6)
x 7→ {inl x}

Proof.
(1) v6 is a preorder by Lemma 4.2(4.2)(1b–1c). Compatibility is straightforward case

analysis.
(2) v6 is a preorder by Lemma 4.2(2)(2b–2c). Compatibility is proved as follows:

(a) Suppose {t}+D v {t}+D′ Then for K+C ∈ P(B+E) we have {t}+(C∪D) v
{t}+ (C ∪D′) and hence

K + (C ∪D) v6 K + (C ∪D′)
(b) Suppose {t} + D v {t, f} + D′ Then for K + C,K ′ + C ′ ∈ P(B + E) we have
{t}+ (C ∪D) v {t, f}+ (C ∪ C ′ ∪D) and hence

K + (C ∪D) v6 (K ∪K ′) + (C ∪ C ′ ∪D)

(c) Dually.
It is clear that

⋃
I is a join operation, and its monotonicity is given by Lemma 4.4(1).

The following notation allows us to express our results in their full generality.

Definition 4.6. Let B be a preordered semilattice and let A be a set. Then PBA is the
set of all x ∈ A such that B has an x-ary join operation.

Proposition 4.7.
(1) Let E be a set, and let v be a DBP for E-errors. Let (A,6) be a preordered set,

and let B = (X,6, raise) be a preordered set with E-errors compatible with v. Then
the following function is monotone:

(A+ E,v6) × B(A,6) −→ B

x, f 7→ DcaseEB,(x, f)
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(2) Let E be a finite set, and let v be a NDBP for E-errors. Let (A,6) be a preordered
set, and let B = (X,6, or, raise) be a preordered semilattice with E-errors compatible
with v. For any set C, we write

PBC def= {R ⊆ C | B has a R-ary join operation }
Then the following (total) function is monotone:

(PB(A+ E),v6) × B(A,6) −→ B

x, f 7→ NDcaseEA,B(x, f)

In both parts B(A,6) means the preordered set of monotone functions from (A,6) to B.

Proof.
(1) Write B = (B,6′, raise). Suppose we are given x v6 y ∈ A + E and monotone

g
f // (A,6) (B,6′) such that f 6′ g. We need to show

DcaseEA,B(x, f) 6′ DcaseEA,B(y, g)

• If x = inl a and y = inl a′, then either a 6 a′, so LHS = fa 6′ ga 6′ ga′ = RHS,
or else v is inconsistent, giving LHS 6′ RHS immediately.
• If x = inr e and y = inl a, then inr e v inl true, so LHS = raise e 6′ ga′ = RHS.
• Dually if x = inl a and y = inr e.
• If x = inr e and y = inr e, then inl e v inr e, so LHS = raise e 6′ raise e′.

(2) Write B = (B,6′, or, raise). Suppose K + D,K ′ + D′ ∈ PB(A + E) are such that

K + D v6 K ′ + D′, and monotone functions (A,6)
f,g // (B,6′) are such that

fa 6′ ga for all a ∈ A. We show

NDcaseEA,B(K +D, f) 6 NDcaseEA,B(K +D, f) or NDcaseEA,B(K ′ +D′, g) (4.8)

6 NDcaseEA,B(K ′ +D′, g) (4.9)

We prove just (4.8), as (4.9) is proved dually.
If {t}+D v {t, f}+D′, then we have

chooseK+D

{
inl a. fk
inr e. raise e

= chooseK+D

{
inl a. fk
inr e. raise e

orraise D

(by absorption)

6′ chooseK+D

{
inl a. fk
inr e. raise e

or chooseK′+D′

{
inl a. gk
inr e. raise e

orraise D′

(since {t}+D v {t, f}+D′)

= chooseK+D

{
inl a. fk
inr e. raise e

or chooseK′+D′

{
inl a. gk
inr e. raise e

(by absorption)

On the other hand, if {t}+D 6v {t, f}+D′ then (by the Axiom of Choice) there is

a function K ′
h // K such that ha 6′ a, and hence f(ha) 6′ ga, for each a ∈ K.
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We then have

chooseK+D

{
inl a. fk
inr e. raise e

= chooseK+D

{
inl a. fk
inr e. raise e

orraise D

(by (2))

6′ chooseK+D

{
inl a. fk
inr e. raise e

orraise D′

(since {t}+D v {t}+D′)

= chooseK+D

{
inl a. fk
inr e. raise e

or chooseK′+D′

{
inl a. f(ha)
inr e. raise e

(supremum characterization of choose)

6′ chooseK+D

{
inl a. fk
inr e. raise e

or chooseK′+D′

{
inl a. ga
inr e. raise e

(monotonicity of or and choose)

Remark 4.8. If E is a countable set, Prop. 4.7(2) remains true provided that B is a
preordered ω-semilattice with E-errors.

We now give the proof of Prop. 2.16.
(1) (a) From Prop. 4.5(1a).

(b) By Prop. 4.5(1a), (B+E,vB, inr ) is compatible with v, and Prop. 4.7(1) then
gives monotonicity.

(c) v meets the hypotheses of Prop. 2.19(1) and therefore must be vB.
(d) Special case of Lemma 4.2(1d).

(2) (a) From Prop. 4.5(2a).
(b) By Lemma 4.4(1).
(c) By Prop. 4.5(2a), (P(A+E),v6,∪, inr) is compatible with v, and

⋃
I is a join

operation for every set I. So Prop. 4.7(2) gives monotonicity.
(d) v meets the hypotheses of Prop. 2.19(2), so v is the restriction of vB to
P>0(B + E). For uniqueness, suppose 6 is a NDBP with empty set for E-
errors that extends v. Then 6 meets the hypotheses of Prop. 2.19(2), and
therefore must be vB.

(e) Special case of Lemma 4.2(2d).
Putting together our results, we shall see that relational lifting gives a free construction

on a poset.

Proposition 4.9.
(1) Let E be a set, and let v be a DBP for E-errors. Write Posetv for the Poset-

enriched category of posets with E-errors, compatible with v. Then the forgetful

Poset-enriched functor Posetv
Uv // Poset is monadic, with (A,6) mapped by

the left adjoint to quotient(A + E,v6) with raise operation e 7→ [inr e] and unit
a 7→ [inl a].

(2) Let E be a finite set, and let v be a NDBP for E-errors.
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(a) Write Posetv for the Poset-enriched category of partially ordered semilattices
with E-errors, compatible with v. Then the forgetful Poset-enriched functor

Posetv
Uv // Poset is monadic, with (A,6) mapped by the left adjoint to

quotient(P>0,<ℵ0(A + E),v6) with semilattice operation [U ], [V ] 7→ [U ∪ V ],
raise operation e 7→ [{inr e}] and unit a 7→ [{inl a}].

(b) Similarly for partially ordered ω-semilattices, with the left adjoint mapping
(A,6) to quotient(P>0,6ℵ0(A+ E),v6).

Proof.
(1) Prop. 4.5(1) gives an unenriched left adjoint. Thus we have a bijection

θ : Poset((A,6), B) ∼= Posetv((A+ E, inr), (B, raise) (4.10)

whose inverse is the monotone function f 7→ inl; f . Prop. 4.7(1) tells us that θ is
monotone, hence an order isomorphism, giving a Poset-enriched left adjoint to Uv.

Let K be the unique Poset-enriched comparison functor from Posetv to the
enriched category of algebras. Beck’s theorem tells us that K is invertible as an
unenriched functor. K is locally order-reflecting because Uv is, so its inverse is a
Poset-enriched functor.

(2) Similar.

4.3. Simulation. In [Las98], a nondeterministic language with divergence is studied, and
various notions of simulation for a language are defined, named “lower”, “upper” and “con-
vex”. We now see how they can be systematically defined from a CBP. We recall that an
labelled transition system (LTS) over a set Act of actions2 is a coalgebra for the endofunctor
P(Act×−) on Set.

Definition 4.10. Let E be a finite set of errors, and let Act be a set of actions.
• A LTS with E-errors over Act is a coalgebra (X, ξ) for the endofunctor P(A×−+E)

on Set. For convenience, we represent ξ as a relation→⊆ X×Act×X and a relation
 ⊆ X × E. For x ∈ X we write

Errors(x) def= {e ∈ E | x e}
• Such a system is lively (resp. deterministic, countably branching) when for each
x ∈ X the set ξ(x) is nonempty (resp. singleton, countable).

Definition 4.11. Let E be a finite set and let v be a NDBP for E-errors. Let Act be a
set, and let X = (X, ξ) and X ′ = (X ′, ξ′) be LTSs with E-errors over Act.

(1) A v simulation from X to X ′ is a relation X
R // X ′ such that if x R x′ then

ξ(x) vR ξ′(x′) i.e.
• {t}+ Errors(x) v {t}+ Errors(x′)
• if {t, f} + Errors(x) 6v {t} + Errors(x′) then x

a // y implies that there is y′

such that x′
a // y′ and y R y′

2More generally, we can consider LTSs over a game graph of actions [LL09]. All of our theory works in
that more general situation.
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• if {t} + Errors(x) 6v {t, f} + Errors(x′) then x′
a // y′ implies that there is y

such that x
a // y and y R y′.

(2) The greatest simulation from X to X ′ is called v similarity.

Lemma 4.2(2) tells us that v similarity is a preorder on nodes of LTSs with E-errors
over Act. We write .vAct for this preorder.

We consider some particular cases of consistent NDBPs (since any relation between
transition systems is an INCONSISTENT simulation). Firstly, transition systems without
no errors. We see that

• an INCLUSION simulation is just a simulation
• a REFINEMENT simulation is the converse of a simulation
• an EQUALITY simulation is a bisimulation.

Next we consider transition systems with divergence, writing x ⇑ to mean that x may
diverge. A relation R between transition systems with divergence is

• a LOWER simulation [How89, Las98, Mor98, Pit01, Uli92] when for x R x′, if
x

a // y then there is y′ such that y R y′ and x′
a // y′

• an UPPER simulation [Las98, Mor98, Pit01, Uli92] when for x R x′, if x 6⇑ then
– y 6⇑
– if x′

a // y′ then there exists y such that y R y′ and x
a // y

• a SMASH simulation when for x R x′, if x 6⇑ then
– y 6⇑
– if x

a // y then there exists y′ such that y R y′ and x′
a // y′

– if x′
a // y′ then there exists y such that y R y′ and x

a // y

• an INCLUSION simulation when for x R x′,
– if x

a // y then there is y′ such that y R y′ and x′
a // y′

– if x ⇑ then x′ ⇑.
equivalently when it is a LOWER simulation and its converse is an UPPER simu-
lation
• a CONVEX simulation [Las98, Mor98, Ong93, Pit01] (or pre-bisimulation [HP80,

Mil81, Wal90] or partial bisimulation [Abr91]) when it is both a LOWER simulation
and an UPPER simulation
• a REFINEMENT simulation [How96, Las98, Mor98, Pit01] when its converse is an

INCLUSION simulation
• a LOWER CONGRUENCE simulation or lower bisimulation [How89, Las98, Mor98,

Pit01] when R and its converse are LOWER simulations
• an UPPER CONGRUENCE simulation or upper bisimulation [Las98, Mor98, Pit01]

when R and its converse are UPPER simulations
• an EQUALITY simulation or convex bisimulation [Las98, Mor98, Pit01] or refine-

ment bisimulation [How96, Las98, Mor98, Pit01] when for x R x′,
– if x

a // y then there is y′ such that y R y′ and x′
a // y′

– if x′
a // y′ then there is y such that y R y′ and x

a // y

– x ⇑ iff x′ ⇑



BOOLEAN PRECONGRUENCES 33

•
a

����������
a

��

•
a

����������
a

��

a

��????????

⇑ •

a

��

⇑ •

a

��

•

a

��

a

��========

•

a

��

•

a

��

⇑ •

a

��
⇑ ⇑ ⇑

Figure 11: Mutually convex similar, but neither lower nor upper bisimilar

{d}={d,c}

{t,d}=t,d,c}
{f,d}={f,d,c}

{t,f,d}={t,f,d,c}

{c}

{t} {t,c}

{t,f} {t,f,c}

{f} {f,c}

ACETO-HENNESSY

Figure 12: NDBP for divergence (d) and deadlock (c) used in [AH92]

equivalently when R and its converse are INCLUSION simulations, equivalently
when R and its converse are REFINEMENT simulations, equivalently when R and
its converse are CONVEX simulations.

We illustrate these distinctions with an example taken from [Pit01]. Consider the two
root nodes in Fig. 11. They are neither lower bisimilar nor upper bisimilar. But they are
mutually convex similar, by the following calculation:

a.diverge or a.a.a.diverge

= a.diverge or a.a.a.diverge or a.diverge

6 a.diverge or a.a.a.diverge or a.(a.diverge or a.a.diverge)
a.diverge or a.a.a.diverge

= a.diverge or a.a.a.diverge or a.a.a.diverge

= a.diverge or a.a.a.diverge or a.(a.a.diverge or a.a.diverge)
> a.diverge or a.a.a.diverge or a.(a.diverge or a.a.diverge)

using the fact that divergence is least in the convex ordering. This argument also demon-
strates the equality of these processes in any domain-theoretic semantics, such as in [Abr91].

As a final example, in the setting of transition systems with divergence and deadlock,
the paper [AH92] defines simulation corresponding to the NDBP illustrated in Fig. 12.
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4.4. Modal Logic For Similarity. It is well known [HM80] that similarity and bisimilar-
ity can be characterized using Hennessy-Milner logic. We want to adapt this theory in the
presence of divergence and other errors. For a finite set E, the formulas for E-errors over
a set Act of actions are defined inductively

P ::= OD (D ⊆ PE)
| ♦DD′a

∧
i∈I Pi (D,D′ ⊆ PE, D ∩D′ = ∅, a ∈ Act, I countable)

| �DD′a
∨
i∈I Pi (D,D′ ⊆ PE, D ∩D′ = ∅, a ∈ Act, I countable)

We define a relation x � P , where x is a node of an LTS with E-errors over Act, and P is
a formula for E-errors over Act, by induction on P .

• x � OD when Errors(x) ∈ D
• if Errors(x) ∈ D then x � ♦DD′a

∧
i∈I Pi and x � �DD′a

∨
i∈I Pi

• if Errors(x) ∈ D′ then x 6� ♦DD′a
∧
i∈I Pi and x 6� �DD′a

∨
i∈I Pi

• if Errors(x) 6∈ D ∪ D′ then
– x � ♦DD′a

∧
i∈I Pi when there is x

a // y such that y � Pi for all i ∈ I
– x � �DD′a

∨
i∈I Pi when for all x

a // y there is i ∈ I such that y � Pi.
The cases of ♦DD′ and �DD′ in which D′ = (PE) \ D are redundant, because each is

equivalent to OD. So the set of modalities for E-errors is defined as

modal(E) def= ({OD | D ⊆ E}
∪{♦DD | D,D′ ⊆ E,D ∩D′ = ∅}
∪{�DD | D,D′ ⊆ E,D ∩D′ = ∅}) / ≡

where ≡ identifies ♦DPE\D and �DPE\D with OD. We abbreviate

T def= OPE F def= O∅ (4.11)

♦
def= ♦∅∅ �

def= �∅∅ (4.12)

so the modalities for no errors are T,F,♦,�. Where d ∈ E we abbreviate

⇑ def= O{D⊆E|d∈D} 6⇑ def= O{D⊆E|d 6∈D} (4.13)

♦∧⇑
def= ♦∅{D⊆E|d 6∈D} �∧⇑

def= �∅{D⊆E|d 6∈D} (4.14)

♦∧6⇑
def= ♦∅{D⊆E|d∈D} �∧6⇑

def= �∅{D⊆E|d∈D} (4.15)

♦∨⇑
def= ♦{D⊆E|d∈D}∅ �∨⇑

def= �{D⊆E|d∈D}∅ (4.16)

♦∨6⇑
def= ♦{D⊆E|d 6∈D}∅ �∨6⇑

def= �{D⊆E|d 6∈D}∅ (4.17)

so the modalities for divergence are

T,F,⇑, 6⇑,♦,♦∧⇑,♦∧6⇑,♦∨⇑,♦∨6⇑,�,�∧⇑,�∧6⇑,�∨⇑,�∨6⇑

Definition 4.12. Let E be a finite set. Let R be a set of modalities for E-errors, i.e.
R ⊆ modal(E). It induces a preorder 6RAct on nodes of LTSs with E-errors over Act as
follows: x 6RAct y when, for any R-formula P over Act—i.e. formula using only modalities
in R—if x � P then y � P .
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For a given NDBP v, we want to know when a set R of modalities characterizes v
similarity. In keeping with the theme of the paper, we shall reduce this question to boolean
conditions on R and v that can be mechanically checked.

Definition 4.13. Let E be a finite set, and let v be a NDBP for E-errors. A modality
c ∈ modal(E) is sound for v under the following conditions.

• For c = OD, when {t}+D v {t}+D′ and D ∈ D imply D′ ∈ D.
• For c = ♦DD, when all the following hold:

– {t}+D v {t}+D′ and D ∈ D imply D′ ∈ D
– {t}+D v {t}+D′ and D′ ∈ D′ imply D ∈ D′
– {t, f}+D v {t}+D′ implies either D ∈ D′ or D′ ∈ D.

• For c = �DD, when all the following hold:
– {t}+D v {t}+D′ and D ∈ D imply D′ ∈ D
– {t}+D v {t}+D′ and D′ ∈ D′ imply D ∈ D′
– {t}+D v {t, f}+D′ implies either D ∈ D′ or D′ ∈ D.

We note that, for a finite set E of errors,
• only T and F are sound for INCONSISTENT
• all modalities are sound for EQUALITY.

The sound connectives for all the NDBPs for no errors, and for all the NDBPs for divergence,
are shown in Fig. 13–14.

Proposition 4.14. Let E be a finite set, and let v be a NDBP for E-errors. For R ⊆
modal(E), the following are equivalent.

(1) Each modality in R is sound for v.
(2) For every set Act of actions and nodes x, x′ of countably branching LTSs with E-

errors over Act, if x .vAct x
′ then x 6RAct x

′.

Proof. (1) ⇒ (2): Suppose x .vAct x
′. We have to show that x � P implies x′ � P ,

where P is an R-formula over Act. We proceed by induction on P .
• Suppose P = OD, so Errors(x) ∈ D. Then {t}+ Errors(x) v {t}+ Errors(x′). So

the soundness of OD gives Errors(x′) ∈ D.
• Suppose P = ♦DD

∧
i∈I Pi.

– If x ∈ Errors(D), then {t}+Errors(x) v {t}+Errors(x′). So the soundness
of ♦DD′ gives Errors(x′) ∈ D.

– Otherwise Errors(x) 6∈ D′, so {t} + Errors(x) v {t} + Errors(x′) and the
soundness of ♦DD′ give Errors(x′) 6∈ D′, and x

a // y for some y such
that Pi for all i ∈ I. There are two cases.
∗ If {t, f} + Errors(x) v {t} + Errors(x′) then soundness of ♦DD′ gives

Errors(x′) ∈ D.
∗ Otherwise x′

a // y′ for some y′ such that y .vR y
′. For each i ∈ I,

the inductive hypothesis at Pi gives y′ � Pi.
• The case P = �DD

∧
i∈I Pi is treated dually.

(2) ⇒ (1): Let c ∈ R be unsound. We set Act = {a, b} with a 6= b, and show there
exist nodes x, x′ of countably branching LTSs with E-errors over Act, and an R-
formula P over Act, such that the relation {(x, x′)} is a v-simulation and x � P but
x′ 6� P . Hence x .vAct x

′ but x 66RAct x
′.
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NDBP sound modalities a set of sound modalities
is complete when it contains

INCONSISTENT T,F (no requirement)
EQUALITY T,F,♦,� ♦ and �
INCLUSION T,F,♦ ♦
REFINEMENT T,F,� �

Figure 13: Sound and complete modal logics for similarity, wrt NDBPs for no errors

• Suppose c = OD, so there is D,D′ such that {t}+D v {t}+D′ and D ∈ D but
D′ 6∈ D. Let x be a node with Errors(x) = D and sole transition x

a // x ,
let x′ be a node with Errors(x′) = D′ and sole transition x

a // x′ , and let

P
def= OD.

• Suppose c = ♦DD′ . Then there are three possibilities.
– Suppose there is D,D′ such that {t}+D v {t}+D′ and D ∈ D, D′ 6∈ D.

Let x be a node with Errors(x) = D and sole transition x
a // x , let x′

be a node with h Errors(x′) = D′ and sole transition x
a // x′ , and let

P
def= ♦DD′b

∧
∅.

– Suppose there is D,D′ such that {t}+D v {t}+D′ and D 6∈ D′, D′ ∈ D′.
Then let x be a node with Errors(x) = D and sole transition x

a // x ,
let x′ be a node with h Errors(x′) = D′ and sole transition x

a // x′ ,

and let P def= ♦DD′a
∧
∅.

– Suppose there is D,D′ such that {t, f}+D v {t}+D′ and D 6∈ D′, D′ 6∈ D.
Then let x be a node with Errors(x) = D and sole transitions x

a // x

and x
b // x , and let x′ be a node with h Errors(x′) = D′ and sole

transition x
a // x′ , and let P def= ♦DD′b

∧
∅.

• The case c = �DD′ is treated dually.

Definition 4.15. Let E be a finite set, and let v be a NDBP for E-errors. Let R be a set
of modalities that are sound for v. Then R is complete for v when all the following hold:

(1) if {t}+D 6v {t}+D′ then there is OD ∈ R such that D ∈ D, D′ 6∈ D
(2) if {t, f}+D 6v {t}+D′ then there is ♦DD′ ∈ R such that D 6∈ D′, D′ 6∈ D
(3) if {t}+D 6v {t, f}+D′ then there is �DD′ ∈ R such that D 6∈ D′, D′ 6∈ D.

The complete sets of connectives for all the NDBPs for no errors, and all the NDBPs
for divergence, are shown in Fig. 13–14.

Proposition 4.16. Let E be a finite set, and let v be a NDBP for E-errors. Let R be a
set of modalities that are sound for v. Then the following are equivalent.

(1) R is complete for v.
(2) For any set Act of actions and nodes x, x′ of countably branching LTSs with E-errors

over Act, if x .RAct x
′ then x .vAct x

′.

Proof.
(1) ⇒ (2): We show that 6RAct is a v simulation. Suppose x 6RAct x

′.
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NDBP sound modalities a set of sound modalities
is complete when it contains

INCONSISTENT T,F (no requirement)
EQUALITY T,F,⇑, 6⇑, ⇑ and 6⇑ and

♦,♦∧⇑,♦∧6⇑,♦∨⇑,♦∨6⇑, (♦ or ((♦∧⇑ or ♦∨6⇑ ) and (♦∧6⇑ or ♦∨⇑)))
�,�∧⇑,�∧6⇑,�∨⇑,�∨6⇑ and

(� or ((�∧⇑ or �∨6⇑) and (�∧6⇑ or �∨⇑)))
LOWER T,F,♦ ♦
OP-LOWER T,F,� �
UPPER T,F, 6⇑,�∧6⇑ 6⇑ and �∧6⇑

OP-UPPER T,F,⇑,♦∨⇑ ⇑ and ♦∨⇑

SMASH T,F, 6⇑,♦∧6⇑,�∧6⇑ 6⇑ and ♦∧6⇑ and �∧6⇑

OP-SMASH T,F,⇑,♦∨⇑,�∨⇑ ⇑ and ♦∨⇑ and �∨⇑

CONVEX T,F, 6⇑,�∧6⇑, 6⇑ and �∧6⇑ and
♦,♦∧6⇑,♦∨6⇑ (♦ or ♦∧6⇑)

OP-CONVEX T,F,⇑,♦∨⇑, ⇑ and ♦∨⇑ and
�,�∧⇑,�∨⇑ (� or �∨⇑)

INCLUSION T,F,⇑,♦,♦∧⇑,♦∨⇑ ⇑ and ♦
REFINEMENT T,F, 6⇑,�,�∨6⇑,�∧6⇑ 6⇑ and �
SESQUI T,F,⇑,♦,♦∧⇑,♦∨⇑, ⇑ and ♦ and �
INCLUSION �,�∧⇑,�∨⇑

SESQUI T,F, 6⇑,♦,♦∧6⇑,♦∨6⇑, 6⇑ and ♦ and �
REFINEMENT �,�∧6⇑,�∨6⇑

PLUCKED T,F,⇑, 6⇑, ⇑ and 6⇑ and
♦,♦∧⇑,♦∧6⇑,♦∨⇑,♦∨6⇑, (♦ or ((♦∧⇑ or ♦∨6⇑) and (♦∧6⇑ or ♦∨⇑)))
�∧6⇑,�∨⇑ and (�∧6⇑ or �∨⇑)

OP-PLUCKED T,F,⇑, 6⇑, ⇑ and 6⇑ and
♦∧6⇑,♦∨⇑, (♦∧6⇑ or ♦∨⇑) and
�,�∧⇑,�∧6⇑,�∨⇑,�∨6⇑ (� or ((�∧⇑ or �∨6⇑) and (�∧6⇑ or �∨⇑)))

STUNTED T,F,⇑,♦,♦∧⇑,♦∨⇑,�∨⇑ ⇑ and ♦ and �∨⇑

OP-STUNTED T,F, 6⇑,♦∧6⇑,�,�∧6⇑,�∨6⇑ 6⇑ and ♦∧6⇑ and �
LOWER T,F,♦,� ♦ and �
CONGRUENCE
UPPER T,F,⇑, 6⇑, ⇑ and 6⇑ and
CONGRUENCE ♦∧6⇑,♦∨⇑, (♦∧6⇑ or ♦∨⇑) and

�∧6⇑,�∨⇑ (�∧6⇑ or �∨⇑)

Figure 14: Sound and complete modal logics for similarity, wrt NDBPs for divergence

• If {t}+Errors(x) 6v {t}+Errors(x′), then there is OD ∈ R such that Errors(x) ∈
D,Errors(x) 6∈ D′. Let P be the R-formula OD, giving x � P but x′ 6� P .
• If {t, f}+Errors(x) 6v {t}+Errors(x′) then there is ♦DD′ ∈ R such that Errors(x) 6∈
D′,Errors(x′) 6∈ D. Suppose that x

a // y . For each y′ such that x′
a // y′ ,

suppose for a contradiction that y 66RAct y
′, so we pick an R-formula Py′ such
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that y � Py′ but y′ 6� Py′ . Let P be the R-formula

♦DD′
∧

x′
a // y′

Py′

giving x � P but x′ 6� P .
• The case {t}+ Errors(x) 6v {t, f}+ Errors(x′) is treated dually.

(2) ⇒ (1): Suppose R is incomplete, i.e. one of conditions (1)–(3) within Def. 4.15
fails. In each case, we give a set Act of actions and nodes x, x′ of countably branching
LTSs with E-errors over Act such that x 6RAct x

′ but x 6.vAct x
′.

• Suppose (1) fails. Then there is D,D′ such that {t}+D 6v {t}+D′ but there
does not exist OD ∈ R such that D ∈ D, D′ 6∈ D. Let Act

def= ∅, let x be a node
with Errors(x) = D and no transitions, and let x′ be a node with Errors(x) = D′

and no transitions. Then x 6.vAct x
′. Let P be an R-formula over Act such that

x � P . Since there are no actions, P must be of the form OD, so D ∈ D. By
assumption D′ ∈ D, so y � P .
• Suppose (1) holds but (2) fails. Then there is D,D′ such that {t, f} + D 6v
{t} + D′ but there does not exist ♦DD′ ∈ R such that D 6∈ D′, D′ 6∈ D. We
know {t}+D v {t}+D′ because otherwise (1) gives OD = ♦D(PE)\D ∈ R with
D ∈ D, D′ 6∈ D. We set Act = {a}. Let x be a node with Errors(x) = D and
sole transition x

a // x and let x′ be a node with Errors(x′) = D′ and no
transitions. Let P be an R-formula over Act such that x � P .

– If P = OD then D ∈ D. Since OD ∈ R, it is sound for v, so D′ ∈ D i.e.
x′ � P .

– If P = ♦DD′a
∧
i∈I Pi then D 6∈ D′. Since ♦DD′ ∈ R, our assumption gives

D′ ∈ D so x′ � P .
– If P = �DD′a

∨
i∈I Pi then D 6∈ D′. Since �DD′ ∈ R, it is sound for v, so

D′ 6∈ D′, so x′ � P .
• The case where (1) holds but (3) fails is treated dually.

Example 4.17. In [Abr91] a modal logic is given to characterize convex similarity (there
called “partial bisimilarity”) over nonempty Act. The logic (cf. [Mil81, Sti87]) provides two
modalities, viz. ♦ and �∧6⇑. If Act were allowed to be empty, then the modality 6⇑ would
also be required, in accordance with Fig. 14.

Example 4.18. In [AH92] a modal logic is given to characterize ACETO-HENNESSY
similarity (the NDBP shown in Fig. 11). The logic provides four modalities, viz.

O{{}},O{{c}},♦,�∧6⇑

It is easily verified that this is a complete set of sound modalities for ACETO-HENNESSY.

One might wonder whether an NDBP has to have a complete set of sound modalities.
In fact, there are two canonical such sets, called the positive modalities and the negative
modalities.
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Proposition 4.19. Let E be a finite set, and let v be a NDBP for E-errors. Then each
of the following is a complete set of sound modalities for v.

modal+(v) def= {O{F⊆E | {t}+Dv{t}+F} | D ⊆ E}

∪ {♦{F⊆E | {t,f}+Dv{t}+F}{F⊆E | {t}+D 6v {t}+F} | D ⊆ E}

∪ {�{F⊆E | {t}+Dv{t,f}+F}{F⊆E | {t}+D 6v {t}+F} | D ⊆ E}

modal−(v) def= {O{F⊆E | {t}+F 6v {t}+D} | D ⊆ E}

∪ {♦{F⊆E | {t}+F 6v {t}+D}{F⊆E | {t,f}+F v{t}+D} | D ⊆ E}

∪ {�{F⊆E | {t}+F 6v {t}+D}{F⊆E | {t}+F v{t,f}+D} | D ⊆ E}

Hence the set of all sound modalities for v is complete.

5. Conclusions

We have seen that the notion of boolean precongruence is extremely helpful as a param-
eter of our analysis, whether in the deterministic or nondeterministic setting. It determines

• the ordering at each ground type
• whether a semilattice is compatible with these orderings
• whether amb is monotone
• a contextual preorder
• whether contexts of Sierpinski type suffice
• whether contexts of zero type suffice
• a way of lifting a relation
• a power-poset construction
• an appropriate definition of simulation
• a modal logic (indeed, a collection of modal logics) characterizing similarity.

Each of these things is familiar from the literature, but our use of a boolean precongruence
provides a more systematic analysis.

Although our primary case of interest is where the only error is divergence, we have
seen that the entire theory works more generally, for any finite set E of errors. This helps to
elucidate the theory, and moreover has applications to languages involving behaviours such
as crash or deadlock, both in deterministic settings [CCF94, Lai07a] and nondeterministic
ones [Lai06, Ros98, AH92].

We have not considered domain theory in this paper; a task that remains is to develop
the smash powerdomain of a pointed dcpo. It differs from the convex powerdomain in that
all elements containing ⊥ must be identified with ⊥.
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