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Typed λ-calculus

We consider typed λ-calculus with boolean, function and sum types.

Types

A ::= bool | A+A | A→ A

Typing judgement Γ `M : A

Terms

M ::= x | let M be x. M

| true | false | case M of {true. M, false. M}
| inl M | inr M | case M of {inl x. M, inr x. M}
| λx.M | MM
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Equational Laws

We consider the equational theory generated by the βη-laws.

η-law for A→ B

Any term Γ `M : A→ B can be expanded as

λx.Mx

Anything of function type is a λ-abstraction.

η-law for bool

Any term Γ, z : bool `M : B can be expanded as

case z of {true. M [true/z], false. M [false/z]}

Anything of boolean type is a boolean.

The η-law for sum types is similar.
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Denotational semantics in Set

A type denotes a set.

[[bool]] = B def
= {true, false}

[[A+B]] = [[A]] + [[B]]

[[A→ B]] = [[A]]→ [[B]]

A term Γ `M : B denotes a function [[Γ]]
[[M ]] // [[B]] .

Substitution Lemma

Given terms Γ, x : A `M : B and Γ ` N : A

we can obtain [[M [N/x]]] from [[M ]] and [[N ]]. It is

ρ 7−→ [[M ]](ρ, x 7→ [[N ]]ρ)

Corollary

The denotational semantics validates the β and η laws.
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Call-by-name evaluation of a closed term

In CBN the terminals are true, false, inl M, inr M,λx.M
To evaluate

true: return true.

λx.M : return λx.M .

inl M : return inl M .

let M be x. N : evaluate N [M/x].

case M of {true. N, false. N ′}: evaluate M . If it returns true,
evaluate N , but if it returns false, evaluate N ′.

case M of {inl x. N, inr x. N ′}: evaluate M . If it returns inl P ,
evaluate N [P/x], but if it returns inr P , evaluate N ′[P/x].

MN : evaluate M . If it returns λx.P , evaluate P [N/x].
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Call-by-value evaluation of a closed term

CBV terminals T ::= true | false | inl T | inr T | λx.M
To evaluate

true: return true.

λx.M : return λx.M .

inl M : evaluate M . If it returns T , return inl T .

let M be x. N : evaluate M . If it returns T , evaluate N [T/x].

case M of {true. N, false. N ′}: evaluate M . If it returns true,
evaluate N , but if it returns false, evaluate N ′.

case M of {inl x. N, inr x. N ′}: evaluate M . If it returns inl T ,
evaluate N [T/x], but if it returns inr T , evaluate N ′[T/x].

MN : evaluate M . If it returns λx.P , evaluate N . If that returns T ,
evaluate P [T/x].
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Adding computational effects

Errors

Let E = {CRASH,BANG,WALLOP} be a set of “errors”. We add

e ∈ E
Γ ` error e : B

To evaluate error e: halt with error message e.

Printing

Let A = {a, b, c, d, e} be a set of “characters”. We add

Γ `M : B
c ∈ A

Γ ` print c. M : B

To evaluate print c. M : print c and then evaluate M .
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Exercises

1 Evaluate
let (error CRASH) be x. 5

in CBV and CBN

2 Evaluate
(λx.(x + x))(print "hello". 4)

in CBV and CBN.

3 Evaluate

case (print "hello". inr error CRASH) of
{inl x. x + 1, inr y. 5}

in CBV and CBN.
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Big-Step Operational Semantics

We convert our CBV and CBN interpreters into big-step semantics,
defined inductively.

no effects We define a relation M ⇓ T meaning M evaluates to T .

errors We define a relation M ⇓ T meaning M evaluates to T , and
a relation M  e meaning M raises error e.

printing We define a relation M ⇓ m,T meaning M prints m ∈ A∗
and finally evaluates to T .

For example, in the case of printing we have rules such as

true ⇓ ε, true

M ⇓ m, true N ⇓ m′, T

case M of {true. N, false. N ′} ⇓ mm′, T

These are proved deterministic and total using Tait’s method.
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Observational equivalence

Two terms Γ `M,M ′ : B are observationally equivalent

when C[M ] and C[M ′] have the same behaviour

for every ground (i.e. boolean) context C[·].

Same behaviour means: print the same string, raise the same error, return
the same boolean.

We write M 'CBV M ′ and M 'CBN M ′.
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The η-law for boolean type: has it survived?

η-law for bool

Any term Γ, z : bool `M : B can be expanded as

case z of {true. M [true/z], false. M [false/z]}

Anything of boolean type is a boolean.

This holds in CBV, because z can only be replaced by true or false.

But it’s broken in CBN, because z might raise an error. For example,

true 6'CBN case z of {true. true, false. true}

because we can apply the context

let error CRASH be z. [·]

Similarly the η-law for sum types is valid in CBV but not in CBN.
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The η-law for functions: has it survived?

η-law for A→ B

Any term Γ `M : A→ B can be expanded as

λx.Mx

Anything of function type is a function.

This fails in CBV, but it holds in CBN.
Similarly

λx. error e 'CBN error e

λx. print c. M 'CBN print c. λx. M

Yet the two sides have different operational behaviour! What’s going on?

In CBN, a function gets evaluated only by being applied.
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Summary

The pure calculus satisfies all the β- and η-laws.

With computational effects,

CBV satisfies η for boolean and sum types, but not function types

CBN satisfies η for function types, but not boolean and sum types.

We want denotational semantics that validate the appropriate η-laws.

We’ll do CBV first, as it’s easier.
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Denotational Semantics of CBV (Moggi)

Take a (strong) monad T on Set.

For errors: −+ E

For printing: A∗ ×−
Each type denotes a set (think: semantic domain for terminals)

[[bool]] = B
[[A+B]] = [[A]] + [[B]]

[[A→ B]] = [[A]]→ T [[B]]

Each term Γ `M : B denotes a Kleisli morphism,

i.e. a function [[Γ]]
[[M ]] // T [[B]] .

To prove the soundness of the denotational semantics, we need a
substitution lemma.
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CBV Substitution Lemma: What Doesn’t Work

Can we obtain [[M [N/x]]] from [[M ]] and [[N ]]?

Not in CBV.

Example that rules out a general substitution lemma

Define x : bool `M,M ′ : bool and ` N : bool

M
def
= true

M ′
def
= case x of {true. true, false. true}

N
def
= error CRASH

[[M ]] = [[M ′]] because M =η bool M
′

[[M [N/x]]] 6= [[M ′[N/x]]]

But we can give a lemma for the substitution of values:

V ::= true | false | inl V | inr V | λx.M | x

The terminals are the closed values.
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Substitution Lemma For Values

Each value Γ ` V : B denotes a function [[Γ]]
[[V ]]val // [[B]] such that

[[Γ]]
[[V ]]val //

[[V ]] ""

[[B]]

η[[B]]
��

T [[B]]

commutes.

Substitution Lemma

Given a term Γ, x : A `M : B and a value Γ ` V : A

we can obtain [[M [V/x]]] from [[M ]] and [[V ]]val. It is

ρ 7−→ [[M ]](ρ, x 7→ [[V ]]valρ)
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Soundness of CBV Denotational Semantics

Errors

If M ⇓ V then [[M ]]ε = inl ([[V ]]valε).

If M  e then [[M ]]ε = inr e.

Printing

If M ⇓ m,V then [[M ]]ε = 〈m, [[V ]]valε〉.

These are straightforward inductions, using the substitution lemma.
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Naive Attempt At CBN: “Carrier” Semantics

Each type denotes a set (think: semantic domain for closed terms).
For example bool→ (bool→ bool) should denote TB→ (TB→ TB).
We define

[[bool]] = TB
[[A+B]] = T ([[A]] + [[B]])

[[A→ B]] = [[A]]→ [[B]]

Each term Γ `M : B should denote a function [[Γ]]
[[M ]] // [[B]] .
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Carrier Semantics: What Goes Wrong

Γ ` error e : B
denotes ρ 7→ ?

Example:

suppose B = bool→ (bool→ bool)

then B denotes (B + E)→ ((B + E)→ (B + E))

and error e 'CBN λx. λy. error e

so the answer should be λx. λy. inr e.

Intuition: go down through the function types until we hit a boolean or
sum type.
A similar problem arises with case.
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E-pointed semantics of CBN types

A CBN type should denote a set X (the carrier) with some designated

elements E
error // X .

This is called an E-pointed set.

Thus bool denotes B + E with e 7→ inr e.

If [[A]] = (X, error) and [[B]] = (Y, error′),

then A+B denotes (X + Y ) + E with e 7→ inr e

and A→ B denotes X → Y with e 7→ λx. error′(e).

Can we generalize the notion of E-pointed set to other monads on Set?
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Algebras for a Monad

An Eilenberg-Moore algebra for a monad T on Set is

a set X (the carrier)

a function TX
θ // X (the structure)

satisfying

X
ηX //

id !!

TX

θ
��

T 2X
µXoo

Tθ
��

X TX
θ

oo
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Examples of Algebras

An algebra for the −+ E monad is an E-pointed set.

An algebra for A∗ ×− is an A-set

i.e. a set X together with a function A×X ∗ // X .

This is what we need to interpret

Γ `M : B
c ∈ A

Γ ` print c. M : B

If B denotes (X, ∗) then print c. M denotes ρ 7→ c ∗ ([[M ]]ρ)
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3 Ways Of Building Algebras

Free Algebras

Given a set X, the free T -algebra on X has carrier TX and structure µX.

Product Algebras

Given a family of T -algebras (Xi, θi), the product algebra
∏
i∈I(Xi, θi)

has carrier
∏
i∈I Xi and structure given pointwise.

Exponential Algebras

Given a set A and a T -algebra (X, θ), the exponential algebra A→ (X, θ)
has carrier A→ X and structure given pointwise.
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Algebra Semantics For CBN Types

Let T be a monad on Set.

A type denotes a T -algebra.

bool denotes the free algebra on B
If [[A]] = (X, θ) and [[B]] = (Y, φ)

then A+B denotes the free algebra on X + Y
and A→ B denotes the exponential algebra X → (Y, φ).
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Algebra semantics for CBN terms

Suppose B denotes the algebra (Y, θ).

Then a term Γ `M : B denotes a function between the carrier sets

[[Γ]]
[[M ]] // Y .

Γ `M : bool Γ ` N : B Γ ` N ′ : B

Γ ` case M of {true. N, false. N ′} : B

This term denotes

[[Γ]]

〈id,[[M ]]〉
��

Y

[[Γ]]× TB
t[[Γ]],B

// T ([[Γ]]× B)
T [[[N ]],[[N ′]]]

// TY

θ

OO
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Soundness of algebra semantics for CBN

Errors

If M ⇓ T : B then [[M ]]ε = [[T ]]ε

If M  e : B then [[M ]]ε = error e where [[B]] = (X, error)

Printing

If M ⇓ m,T : B then [[M ]]ε = m ∗∗([[T ]]ε) where [[B]] = (X, ∗)

Straightforward inductive proofs using the substitution lemma.
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Summary

We have a denotational semantics for errors and printing for CBV and
CBN, and shown their correctness.

These are instances of a general recipe using a monad T on Set and its
algebras.

A CBV type denotes a set; a CBN type denotes a T -algebra.

They are fundamentally different things.
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Semantics of Types, Again

We write F TX for the free T -algebra (TX, µX) on X

and UT (X, θ) for the carrier X of a T -algebra (X, θ).

Our CBN semantics of types can be written

[[bool]] = F T (1 + 1)

[[A+B]] = F T (UT [[A]] + UT [[B]])

[[A→ B]] = UT [[A]]→ [[B]]

And our CBV semantics of types can be written

[[bool]] = 1 + 1

[[A+B]] = [[A]] + [[B]]

[[A→ B]] = UT ([[A]]→ F T [[B]])
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Call-By-Push-Value Types

Call-by-push-value has

value types which (like CBV types) denote sets

computation types which (like CBN types) denote T -algebras.

value type A ::= UB | 1 | A×A | 0 | A+A |
∑

i∈NAi

computation type B ::= FA | A→ B | 1Π | B Π B |
∏
i∈NBi

Strangely function types are computation types, and λx.M is a
computation.
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Judgements

An identifier gets bound to a value, so it has value type.

A context Γ is a finite set of identifiers with associated value type

x0 : A0, . . . , xm−1 : Am−1

Judgement for a value: Γ `v V : A

Judgement for a computation: Γ `c M : B

A value Γ `v V : A denotes a function [[Γ]]
[[V ]] // [[A]]

If B denotes (X, θ), then a computation Γ `c M : B denotes a

function [[Γ]]
[[M ]] // X .

Note From the viewpoint of monad/algebra semantics, there is no
difference between a computation Γ `c M : B and a value Γ `v V : UB.
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Note From the viewpoint of monad/algebra semantics, there is no
difference between a computation Γ `c M : B and a value Γ `v V : UB.
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F and U

The type FA

A computation in FA returns a value in A.

Γ `v V : A

Γ `c return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

The denotation of M to x. N uses the structure of [[B]].

The type UB

A value in UB is a thunk of a computation in B.

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : UB

Γ `c force V : B

The constructs thunk and force are inverse.
They are invisible in monad/algebra semantics.
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Identifiers

An identifier is a value.

(x : A) ∈ Γ
Γ `v x : A

Γ `v V : A Γ, x : A `c M : B

Γ `c let V be x. M : B

We write let to bind an identifier.
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Tuples

Γ `v V : Aı̂
ı̂ ∈ I

Γ `v 〈̂ı, V 〉 :
∑

i∈IAi

Γ `v V :
∑

i∈IAi Γ, x : Ai `c Mi : B (∀i ∈ I)

Γ `c case V of {〈i, x〉.Mi}i∈I : B

Γ `v V : A Γ `v V ′ : A′

Γ `v 〈V, V ′〉 : A×A′

Γ `v V : A×A′ Γ, x : A, y : A′ `c M : B

Γ `c case V of 〈x, y〉.M : B

The rules for 1 are similar.
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Functions

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `c M : A→ B Γ `v V : A

Γ `c MV : B

Γ `c Mi : Bi (∀i ∈ I)

Γ `c λ{i.Mi}i∈I :
∏
i∈IBi

Γ `c M :
∏
i∈IBi

ı̂ ∈ I
Γ `c Mı̂ : Bı̂

It is often convenient to write applications operand-first, as V ‘M and ı̂‘M .

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 35 / 69



Functions

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `c M : A→ B Γ `v V : A

Γ `c MV : B

Γ `c Mi : Bi (∀i ∈ I)

Γ `c λ{i.Mi}i∈I :
∏
i∈IBi

Γ `c M :
∏
i∈IBi

ı̂ ∈ I
Γ `c Mı̂ : Bı̂

It is often convenient to write applications operand-first, as V ‘M and ı̂‘M .

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 35 / 69



Interpreter

The terminals are computations:

return V λx.M λ{i.Mi}i∈I

To evaluate

return V : return return V .

M to x. N : evaluate M . If it returns return V , then evaluate
N [V/x].

λx.N : return λx.N .

MV : evaluate M . If it returns λx.N , evaluate N [V/x].

λ{i.Ni}i∈I : return λ{i.Ni}i∈I .

Mı̂: evaluate M . If it returns λ{i.Ni}i∈I , evaluate Nı̂.

let V be x. M : evaluate M [V/x].

force thunk M : evaluate M .

case 〈̂ı, V 〉 of {〈i, x〉.Mi}i∈I : evaluate Mı̂[V/x].

case 〈V, V ′〉 of 〈x, y〉.M : evaluate M [V/x, V ′/y].
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Decomposing CBV into CBPV

A CBV type translates into a value type.

A→ B 7→ U(A→ FB)

A CBV term x : A, y : B `M : C translates as x : A, y : B `c M : FC.

x 7→ return x

λx. M 7→ return thunk λx. M

M N 7→ M to f. N to y. ((force f) y)

let M be x. N 7→ M to y. let y be x. N

or 7→ M to x. N
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Decomposing CBN into CBPV

A CBN type translates into a computation type.

bool 7→ F (1 + 1)

A+B 7→ F (UA+ UB)

A→ B 7→ UA→ B

A CBN term x : A, y : B `M : C translates as x : UA, y : UB `c M : C.

x 7→ force x

let M be x. N 7→ let (thunk M) be x. N

λx. M 7→ λx. M

M N 7→ M (thunk N)

inl M 7→ return inl thunk M
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Summary

We’ve seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

The translations from CBV and CBN into CBPV preserve these semantics.

Moggi’s TA is UFA.

But

the monad/algebra semantics makes thunk and force invisible

we still don’t understand why a function is a “computation”.
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Antecedents: CBV

Landin’s ISWIM: CBV λ-calculus with effects.
Influenced ML and other languages.

Plotkin: λv-calculus provided equations for CBV with divergence.

Numerous researchers: CPS transforms for CBV.

Felleisen et al: CBV semantics for various effects.

Moggi: λc-calculus, monads for CBV and monadic metalanguage.

Power and Robinson: Freyd categories for CBV.

Benton and Kennedy: MIL-lite.

Thielecke: thunk and force constructs in CBV with callcc.
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Antecedents: CBN without η-law for functions

Plotkin: CPS transform for CBN without η-law.

Abramsky and Ong: untyped lazy λ-calculus.

Ong: typed lazy λ-calculus.

Moggi: monads for CBN without η-law.
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Antecedents: CBN with η-law for functions

Plotkin’s PCF, a CBN calculus for recursion.

Hennessy and Ashcroft: recursion and nondeterminism.

O’Hearn: semantics of conditional in Reynolds’ Idealized Algol.

Streicher and Reus: semantics of control effects in CBN.

¬¬ translations of classical logic. Also CBV.

Game semantics. Also CBV.
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Calculi combining CBV and CBN

Various calculi based on CPS.

Filinski’s Effect-PCF provided the CBPV to construct. U is implicit.

Howard’s λµν⊥ calculus for recursion. U is implicit.

Egger, Møgelberg and Simpson’s Effect Calculus emphasizes
connection to Benton’s Linear/Nonlinear Logic. U is implicit.

Marz’ SFPL for recursion and sequentiality. F is implicit.

Ehrhard’s variant of call-by-push-value, similar to SFPL. F is implicit.

Nygaard and Winskel’s HOPLA for recursion and nondeterminism. F
is implicit.

Laurent’s LLP has extra type constructors not included in CBPV.

Harper, Licata and Zeilberger’s Polarized Intuitionistic Logic.
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CK-machine

An operational semantics due to Felleisen and Friedman (1986).
And Landin, Krivine, Streicher and Reus, Bierman, Pitts, . . .

It is suitable for sequential languages whether CBV, CBN or CBPV.

At any time, there’s a computation (C) and a stack of contexts (K).

Initially, K is empty.

Some authors make K into a single context, called an “evaluation context”.
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Transitions for sequencing

To evaluate M to x. N : evaluate M . If it returns return V , then
evaluate N [V/x].

M to x. N K  
M to x. N :: K

return V to x. N :: K  
N [V/x] K
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Transitions for application

To evaluate V ‘M : evaluate M . If it returns λx.N , evaluate N [V/x].

V ‘M K  
M V :: K

λx.N V :: K  
N [V/x] K
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Those function rules again

V ‘M K  
M V :: K

λx.N V :: K  
N [V/x] K

We can read V ‘ as an instruction “push V ”.

We can read λx as an instruction “pop x”.

Revisiting some equations:

V ‘ λx. M = M [V/x]

M = λx. x ‘ M (x fresh)

λx. error e = error e

λx. print c. M = print c. λx.M
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Values and Computations

A value is, a computation does.

A value of type UB is a thunk of a computation of type B.

A value of type
∑

i∈IAi is a pair 〈i, V 〉.
A value of type A×A′ is a pair 〈V, V ′〉.

A computation of type FA returns a value of type A.

A computation of type A→ B
pops a value of type A
then behaves in B.

A computation of type
∏
i∈IBi

pops a tag i ∈ I
then behaves in Bi.
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What’s in a stack?

A stack consists of

arguments that are values

arguments that are tags

frames taking the form to x. N .
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Example program of type F nat

print "hello0".

let 3 be x.

let thunk (

print "hello1".

λz.
print "we just popped "z.

return x + z

) be y.

print "hello2".

( print "hello3".

7‘
print "we just pushed 7".

force y

) to w.

print "w is bound to " + w.

return w + 5
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Typing the CK-machine

Initial configuration to evaluate Γ `cP : C

Γ P C nil C

Transitions

Γ M to x. N B K C  
Γ M FA to x. N :: K C

Γ return V FA to x. N :: K C  
Γ N [V/x] B K C

Typically Γ would be empty and C = F bool.

We write

Γ `k K : B =⇒ C to mean that K can accompany a computation of type
B during evaluation.
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Typing rules, read off from the CK-machine

Typing a stack

Γ `k nil : C =⇒ C

Γ, x : A `c M : B Γ `k K : B =⇒ C

Γ `k to x. M :: K : FA =⇒ C

Γ `k K : B =⇒ C
ı̂ ∈ I

Γ `k ı̂ :: K :
∏
i∈IBi =⇒ C

Γ `v V : A Γ `k K : B =⇒ C

Γ `k V :: K : A→ B =⇒ C

Typing a CK-configuration

Γ `c M : B Γ `k K : B =⇒ C

Γ `ck (M,K) : C
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Special Stacks

Continuations

A continuation is a stack from an F type. For example:

Γ `k to x. M :: K : FA =⇒ C

It describes what happens next once it receives a value.

In CBV, all computations have F type, so all stacks are continuations.

Top-Level Stack

The top-level stack is
Γ `k nil : C =⇒ C

and C is the top-level type.
If C is an F type, then nil is the top-level continuation: it receives a
value and returns it to the user.
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Denotational semantics of stacks

Suppose [[C]] = (Y, φ). The behaviour of Γ `ck (M,K) : C depends on
the environment:

[[Γ]]
[[(M,K)]] // Y

to be preserved by each transition.

Suppose also [[B]] = (X, θ). A stack Γ `k K : B =⇒ C transforms
computations to CK-configurations. So we get a function

[[Γ]]×X
[[K]] // Y

homomorphic in its second argument.

because if M raises an error or prints, then so does M,K.

We assume there’s no exception handling.
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Adjunction between values and stacks

We have an adjunction between the category of values (sets and
functions) and the category of stacks (T -algebras and homomorphisms).

Set
FT

⊥
//
SetT

UT
oo

This resolves the monad T on Set.
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State

Consider CBPV extended with two storage cells:
l stores a natural number, and l′ stores a boolean.

Γ `c M : B
n ∈ N

Γ `c l := n. M : B

Γ `c Mn : B (∀n ∈ N)

Γ `c read l as {n. Mn}n∈N : B

A state is l 7→ n, l′ 7→ b.

The set of states is S ∼= N× B.
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Big-step semantics for state

The big-step semantics takes the form s,M ⇓ s′, T .

A pair s,M is called an SC-configuration.

We can type these using

Γ `c M : B
s ∈ S

Γ `sc (s,M) : B
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Monad/algebra semantics for state

Moggi’s monad for global state is S → (S ×−).

We can take algebras for this and obtain a denotational semantics of
CBPV with state.

But it doesn’t fit well with SC-configurations.

We’d like a soundness result of the following form:

If s,M ⇓ s′, T then [[s,M ]]ε = [[s′, T ]]ε

This requires an SC-configuration to have a denotation.
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Semantics of SC-configurations

Denotation of A is a semantic domain for values of type A. Like in monad
semantics.

Denotation of B is a semantic domain for configurations of type B.

The behaviour of an SC-configuration Γ `sc (s,M) : B depends on the
environment:

[[Γ]]
[[(s,M)]] // [[B]]

The behaviour of a computation Γ `c M : B depends on the state and
environment:

S × [[Γ]]
[[M ]] // [[B]]
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State: semantics of types

An SC-configuration of type FA will terminate as s, return V .

[[FA]] = S × [[A]]

An SC-configuration of type A→ B will pop x : A, then behave in B.

[[A→ B]] = [[A]]→ [[B]]

An SC-configuration of type
∏
i∈IBi will pop i ∈ I, then behave in Bi.

[[
∏
i∈IBi]] =

∏
i∈I [[Bi]]

A value Γ `v V : UB can be forced in any state s, giving an
SC-configuration s, force V .

[[UB]] = S → [[B]]

We recover standard semantics for CBV,
and O’Hearn’s semantics for CBN.
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The SCK-machine

We replace `ck with `sck.

Γ `c M : B Γ |B `k K : C
s ∈ S

Γ `sck (s,M,K) : C

The behaviour of an SCK-configuration Γ `sck (s,M,K) : C depends on
the environment:

[[Γ]]
[[(s,M,K)]] // [[C]]

to be preserved by each transition.

A stack Γ `k K : B =⇒ C transforms SC-configuration behaviours to
SCK-configuration behaviours:

[[Γ]]× [[B]]
[[K]] // [[C]]
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State: the value/stack adjunction

We’ve seen that a stack `k K : B =⇒ C denotes a function

[[B]]
[[K]] // [[C]] .

We have an adjunction

Set
S×−
⊥

//
Set

S→−
oo

between values and stacks.
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Catching and throwing a stack

We extend CBPV with Crolard’s instructions for changing the stack.

catch α means “let α be the current stack”.

throw K means “change the current stack to K”.

Γ catch α. M B K C | ∆  
Γ M [K/α] B K C | ∆

Γ throw K. M B′ K ′ C | ∆  
Γ M B K C | ∆
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Typing judgements for control

The stack context ∆ consists of stack names α : B.

So we have typing judgements:

Γ `v V : A | ∆ Γ `c M : B | ∆

During execution, the top-level type C must be indicated:

Γ `v V : A [C] ∆ Γ `c M : B [C] ∆

Γ `k K : B =⇒ C | ∆ Γ `ck (M,K) : C | ∆

Typically Γ and ∆ would be empty and C = F bool.
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Monad/algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

Moggi’s monad for control operators (“continuations”) is (− → R)→ R.

Maybe we can use algebras for this to build a denotational semantics of
control.
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Semantics of control using stacks

The denotation of B is a semantic domain for stacks from B.

The behaviour of a computation Γ `c M : B [C] ∆ depends on the
environment, current stack, top-level stack and stack environment:

[[Γ]]× [[B]]× [[C]]× [[∆]]
[[M ]] // R

A value Γ `v V : A [C] ∆ denotes

[[Γ]]× [[C]]× [[∆]]
[[V ]] // [[A]]

A stack Γ `k K : B =⇒ C | ∆ denotes

[[Γ]]× [[C]]× [[∆]]
[[K]] // [[B]]

A CK-configuration Γ `ck (M,K) : C | ∆ denotes

[[Γ]]× [[C]]× [[∆]]
[[(M,K)]] // R

to be preserved by each transition.
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Control: semantics of types

A stack from FA receives a value x : A and then behaves as a
configuration.

[[FA]] = [[A]]→ R

A stack from A→ B is a pair V :: K.

[[A→ B]] = [[A]]× [[B]]

A stack from
∏
i∈IBi is a pair i :: K.

[[
∏
i∈IBi]] =

∑
i∈I [[Bi]]

A value of type UB can be forced alongside any stack K, giving a
configuration.

[[UB]] = [[B]]→ R

We recover standard continuation semantics for CBV,
and Streicher and Reus’ semantics for CBN.
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Control: the value/stack adjunction

A stack
Γ `k K : B =⇒ C | ∆

denotes a function

[[Γ]]×[[C]]×[[∆]]
[[K]] // [[B]]

So we have an adjunction

Set
−→R
⊥

//
Set

op

−→R
oo

between values and stacks with top-level type.
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Summary of models

For every monad T on Set we have an adjunction

Set
FT

⊥
//
SetT

UT
oo

This is useful for modelling CBPV with errors and printing.

For a set S we have an adjunction

Set
S×−
⊥

//
Set

S→−
oo

This is useful for modelling CBPV with state.

For a set R we have an adjunction

Set
−→R
⊥

//
Set

op

−→R
oo

This is useful for modelling CBPV with control.
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