A tutorial on call-by-push-value

Paul Blain Levy

University of Birmingham

September 5, 2016

Paul Blain Levy (University of Birmingham)

Call-by-push-value

September 5, 2016

1/69



Outline

0 Typed A-calculus

© Typed \-calculus: denotational semantics
9 Call-by-push-value

@ Stacks

© State

© Control

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 2 /69



Typed A-calculus

We consider typed A-calculus with boolean, function and sum types.

A == bool | A+A|A—A

Typing judgement I' - M : A

Terms

M = x| let Mbex. M
| true | false | case M of {true. M, false. M}
| in1 M | inr M | case M of {inl x. M, inr x. M}
| Ax.M | MM

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 3 /69



Equational Laws

We consider the equational theory generated by the gn-laws.

n-law for A — B
Any term I' = M : A — B can be expanded as

Ax.Mx

Anything of function type is a A-abstraction.

n-law for bool
Any term I',z : bool = M : B can be expanded as

case z of {true. M[true/z], false. M[false/z|}

Anything of boolean type is a boolean.

The n-law for sum types is similar.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Denotational semantics in Set

A type denotes a set.

def

[bool] = B = {true,false}
[A+ Bl = [A]l+[B]
[A— B] = [A]—[B]

M
A term I' = M : B denotes a function [I'] Rl [B] .

Substitution Lemma
Giventerms I'x: A M :Band ' N : A

we can obtain [M[N/x]] from [M] and [N]. It is

p— [M](p,x = [N]p)

The denotational semantics validates the 5 and 7 laws. \

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 5/ 69



Call-by-name evaluation of a closed term

In CBN the terminals are true, false, inl M, inr M, Ax.M
To evaluate

true: return true.

Ax.M: return Ax. M.

inl M: return inl M.

let M be x. N: evaluate N[M/x].

case M of {true. N, false. N'}: evaluate M. If it returns true,
evaluate N, but if it returns false, evaluate N'.

e case M of {inl x. N, inr x. N'}: evaluate M. If it returns inl P,
evaluate N|[P/x], but if it returns inr P, evaluate N'[P/x].

e MN: evaluate M. If it returns \x. P, evaluate P[N/x].

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 6 / 69



Call-by-value evaluation of a closed term

CBV terminals 7' ::= true | false | inl 7T | inr T | Ax.M
To evaluate

true: return true.

Ax.M: return \x. M.

inl M: evaluate M. If it returns 7', return inl 7"

let M be x. N: evaluate M. If it returns 7', evaluate N[T'/x].

case M of {true. N, false. N'}: evaluate M. If it returns true,
evaluate N, but if it returns false, evaluate N'.

@ case M of {inl x. N, inr x. N'}: evaluate M. If it returns inl 7,
evaluate N[T'/x|, but if it returns inr 7', evaluate N'[T/x].

@ M N: evaluate M. If it returns \x.[”, evaluate N. If that returns 7',
evaluate P[T/x].

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 7 /69



Adding computational effects

Let £ = {CRASH,BANG, WALLOP} be a set of “errors”. We add

ec

I'-errore: B

To evaluate error e: halt with error message e.

Let A = {a,b,c,d, e} be a set of “characters”. We add

'-M:B

ce A
I'kprintc. M : B

To evaluate print ¢. M: print ¢ and then evaluate M.

A\

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 8/ 69



Exercises

© Evaluate
let (error CRASH) be x. 5

in CBV and CBN

@ Evaluate
(Ax.(x +x))(print "hello". 4)

in CBV and CBN.
© Evaluate

case (print "hello". inr error CRASH) of
{inl x. x+ 1, inr y. 5}

in CBV and CBN.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 9 /69



Big-Step Operational Semantics

We convert our CBV and CBN interpreters into big-step semantics,
defined inductively.
no effects We define a relation M || T' meaning M evaluates to 7.

errors We define a relation M |} T meaning M evaluates to T, and
a relation M 4 e meaning M raises error e.

printing We define a relation M || m,T meaning M prints m € A*
and finally evaluates to 7.

For example, in the case of printing we have rules such as

M | m,true NUm,7T

true |} €, true case M of {true. N, false. N’} { mm’, T

These are proved deterministic and total using Tait's method.

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 10 / 69



Observational equivalence

Two terms I' = M, M’ : B are observationally equivalent
when C[M] and C[M’] have the same behaviour
for every ground (i.e. boolean) context C[].

Same behaviour means: print the same string, raise the same error, return
the same boolean.

We write M ~cgv M’ and M ~cgn M.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 11 / 69



The n-law for boolean type: has it survived?

n-law for bool
Any term I',z : bool = M : B can be expanded as

case z of {true. M[true/z|, false. M[false/z|}

Anything of boolean type is a boolean.

This holds in CBV, because z can only be replaced by true or false.

But it's broken in CBN, because z might raise an error. For example,

true #cBN case z of {true. true, false. true}

because we can apply the context
let error CRASH be z. [/]

Similarly the n-law for sum types is valid in CBV but not in CBN.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



The n-law for functions: has it survived?

n-law for A — B
Any term I' = M : A — B can be expanded as

Ax.Mx

Anything of function type is a function.

This fails in CBV, but it holds in CBN.
Similarly

AX. error e ~ error e
CBN

Ax. print ¢. M ~cBN print c. Ax. M

Yet the two sides have different operational behaviour! What's going on?

In CBN, a function gets evaluated only by being applied.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 13 / 69



The pure calculus satisfies all the 8- and n-laws.
With computational effects,
e CBV satisfies 7 for boolean and sum types, but not function types
@ CBN satisfies i for function types, but not boolean and sum types.
We want denotational semantics that validate the appropriate n-laws.

We'll do CBYV first, as it's easier.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 14 / 69



Denotational Semantics of CBV (Moggi)

Take a (strong) monad T on Set.
o Forerrors: —+ F
e For printing: A* x —

Each type denotes a set (think: semantic domain for terminals)

[bool] = B
[A+B] = [A]+[B]
[A— B] = [A] — T[B]

Each term I' - M : B denotes a Kileisli morphism,

i.e. a function [F]] T[[B]]
To prove the soundness of the denotational semantics, we need a
substitution lemma.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 15 / 69



CBV Substitution Lemma: What Doesn’t Work

Can we obtain [M[N/x]] from [M] and [N]?

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 16 / 69



CBV Substitution Lemma: What Doesn’t Work

Can we obtain [M[N/x]] from [M] and [N]? Not in CBV.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 16 / 69



CBV Substitution Lemma: What Doesn’t Work

Can we obtain [M[N/x]] from [M] and [N]? Not in CBV.

Example that rules out a general substitution lemma

Define x : bool = M, M’ : bool and - N : bool

M
M
N &
[M] =
[M[N/x]] #

true

case x of {true. true, false. true}
error CRASH

[M'] because M = po01 M’
[M'[N/x]]

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016




CBV Substitution Lemma: What Doesn’t Work

Can we obtain [M[N/x]] from [M] and [N]? Not in CBV.

Example that rules out a general substitution lemma

Define x : bool = M, M’ : bool and - N : bool

M = true
M' = case x of {true. true, false. true}
N = error CRASH
[M] = [M] because M = po01 M’
[M[N/=]] # [M'[N/x]]

But we can give a lemma for the substitution of values:

V= true | false | inlV | inr V | Ax.M | x

The terminals are the closed values.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Substitution Lemma For Values

val
Each value T' V' : B denotes a function [I'] M [B] such that

val
] i [B] commutes.

B
Mln[ﬂ

T[B]

Substitution Lemma
Givenaterm I'x: A- M : BandavalueI'-V : A

we can obtain [M[V/x]] from [M] and [V]?". It is

pr— [M](p,x — [V]*p)

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Soundness of CBV Denotational Semantics

o If M | V then [M]e = inl ([V]*?e).
o If M 4 e then [M]e = inr e.

o If M || m,V then [M]e = (m, [V]"'e).

These are straightforward inductions, using the substitution lemma.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 18 / 69



Naive Attempt At CBN: “Carrier” Semantics

Each type denotes a set (think: semantic domain for closed terms).
For example bool — (bool — bool) should denote TB — (TB — T'B).
We define

[bool] = TB
[A+B] = T([A]+[B])
[A—=B] = [Al = [B]

Each term ' = M : B should denote a function [I] N [B] .

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 19 / 69



Carrier Semantics: What Goes Wrong

denotes p — 7

I'+errore: B

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 20 / 69



Carrier Semantics: What Goes Wrong

denotes p — 7

I'+errore: B

Example:
@ suppose B = bool — (bool — bool)
@ then B denotes (B+ F) — ((B+ E) — (B+ E))
@ and error e ~cpN AX. \y. error e
@ so the answer should be Ax. A\y. inr e.

Intuition: go down through the function types until we hit a boolean or
sum type.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 20 / 69



Carrier Semantics: What Goes Wrong

denotes p — 7

I'+errore: B

Example:
@ suppose B = bool — (bool — bool)
@ then B denotes (B+ F) — ((B+ E) — (B+ E))
@ and error e ~cpN AX. \y. error e
@ so the answer should be Ax. A\y. inr e.

Intuition: go down through the function types until we hit a boolean or
sum type.
A similar problem arises with case.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 20 / 69



E-pointed semantics of CBN types

A CBN type should denote a set X (the carrier) with some designated

elements F =% X .

This is called an E-pointed set.
Thus bool denotes B + E with e — inr e.
If [A] = (X, error) and [B] = (Y, error’),

o then A + B denotes (X +Y) + E with e~ inr e
e and A — B denotes X — Y with e — Az. error’(e).

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 21 /69



E-pointed semantics of CBN types

A CBN type should denote a set X (the carrier) with some designated

elements F =% X .

This is called an E-pointed set.
Thus bool denotes B + E with e — inr e.
If [A] = (X, error) and [B] = (Y, error’),
o then A + B denotes (X +Y) + E with e~ inr e
e and A — B denotes X — Y with e — Az. error’(e).

Can we generalize the notion of E-pointed set to other monads on Set?

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 21 /69



Algebras for a Monad

An Eilenberg-Moore algebra for a monad T on Set is

@ a set X (the carrier)

e a function TX —~ X (the structure)

satisfying

X rx Moy

RN

TX

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 22 / 69



Examples of Algebras

An algebra for the — + E monad is an E-pointed set.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 23 /69



Examples of Algebras

An algebra for the — + E monad is an E-pointed set.
An algebra for A* x — is an A-set
i.e. a set X together with a function A x X ——= X .
This is what we need to interpret
'-M:B
I'+kprintec. M : B

ce A

If B denotes (X, *) then print c. M denotes p — cx* ([M]p)

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 23 /69



3 Ways Of Building Algebras

Free Algebras

Given a set X, the free T-algebra on X has carrier T X and structure pX.

Product Algebras

Given a family of T-algebras (X;,6;), the product algebra [[;.; (X, 6;)

has carrier [[,.; X; and structure given pointwise.

Exponential Algebras

Given a set A and a T-algebra (X, 0), the exponential algebra A — (X, 0)
has carrier A — X and structure given pointwise.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 24 / 69



Algebra Semantics For CBN Types

Let T be a monad on Set.

A type denotes a T-algebra.
@ bool denotes the free algebra on B
o If [A] = (X,0) and [B] = (Y, ¢)
o then A + B denotes the free algebra on X +Y
o and A — B denotes the exponential algebra X — (Y, ¢).

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 25 / 69



Algebra semantics for CBN terms

Suppose B denotes the algebra (Y, 6).
Then a term I' = M : B denotes a function between the carrier sets

2Ly

I'M:bool THFN:B THN':B
[t case M of {true. N, false. N'}: B

This term denotes

[T] Y

<id,[[M]]>l 0

Il x TB T xB) — Ty
[~ s LT > B)

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 26 / 69



Soundness of algebra semantics for CBN

o If M | T: B then [M]e = [T]e
o If M 4 e: B then [M]e = error e where [B] = (X, error)

o If M | m,T : B then [M]e = m xx([T]e) where [B] = (X, %)

Straightforward inductive proofs using the substitution lemma.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 27 / 69



Summary

We have a denotational semantics for errors and printing for CBV and
CBN, and shown their correctness.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 28 / 69



Summary

We have a denotational semantics for errors and printing for CBV and
CBN, and shown their correctness.

These are instances of a general recipe using a monad 7" on Set and its
algebras.

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 28 / 69



We have a denotational semantics for errors and printing for CBV and
CBN, and shown their correctness.

These are instances of a general recipe using a monad 7" on Set and its
algebras.

A CBV type denotes a set; a CBN type denotes a T-algebra.

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 28 / 69



We have a denotational semantics for errors and printing for CBV and
CBN, and shown their correctness.

These are instances of a general recipe using a monad 7" on Set and its
algebras.

A CBV type denotes a set; a CBN type denotes a T-algebra.

They are fundamentally different things.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 28 / 69



Semantics of Types, Again

We write ' X for the free T-algebra (T'X, ux) on X

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 29 / 69



Semantics of Types, Again

We write ' X for the free T-algebra (T'X, ux) on X
and U”(X, 0) for the carrier X of a T-algebra (X, 6).

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 29 / 69



Semantics of Types, Again

We write ' X for the free T-algebra (T'X, ux) on X
and U”(X, 0) for the carrier X of a T-algebra (X, 6).

Our CBN semantics of types can be written

[bool] = FT(1+41)
[A+B] = FLUT[A]+UT[B])
[A— B] = U'[A] — [B]

Paul Blain Levy (University of Birmingham)

Call-by-push-value

September 5, 2016 29 / 69



Semantics of Types, Again

We write ' X for the free T-algebra (T'X, ux) on X
and U”(X, 0) for the carrier X of a T-algebra (X, 6).

Our CBN semantics of types can be written

[bool] = FT(1+41)
[A+B] = FLUT[A]+UT[B])
[A— B] = U'[A] — [B]

And our CBV semantics of types can be written

[bool] = 141
[A+B] = [A]+[B]
[A—B] = U'([A] — F'[B])

Paul Blain Levy (University of Birmingham)

Call-by-push-value

September 5, 2016 29 / 69



Call-By-Push-Value Types

Call-by-push-value has
@ value types which (like CBV types) denote sets
e computation types which (like CBN types) denote T-algebras.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 30 / 69



Call-By-Push-Value Types

Call-by-push-value has
@ value types which (like CBV types) denote sets
e computation types which (like CBN types) denote T-algebras.

value type Au= UB|1|AxA|O|A+A | > A

computation type Bu:= FA| A—=B |1y | BuB | [[ . 5,

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 30/



Call-By-Push-Value Types

Call-by-push-value has
@ value types which (like CBV types) denote sets
e computation types which (like CBN types) denote T-algebras.

value type Au= UB|1|AxA|O|A+A | > A

computation type Bu:= FA| A—=B |1y | BuB | [[ . 5,

Strangely function types are computation types, and Ax.M is a
computation.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 30/



Judgements

An identifier gets bound to a value, so it has value type.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 31/ 69



An identifier gets bound to a value, so it has value type.

A context I' is a finite set of identifiers with associated value type

X0 :Agy . Xm—1: Am_1

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 31/ 69



An identifier gets bound to a value, so it has value type.

A context I' is a finite set of identifiers with associated value type

X0 :Agy . Xm—1: Am_1

Judgement for a value: r=v:A

Judgement for a computation: I'kM:B

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



An identifier gets bound to a value, so it has value type.

A context I' is a finite set of identifiers with associated value type

X0 :Agy . Xm—1: Am_1
Judgement for a value: r=v:A
Judgement for a computation: I'kM:B

e Avalue I' -V V : A denotes a function [I'] — i [A]
o If B denotes (X 9), then a computation I' ¢ M : B denotes a

function [[I‘]] —X .

Note From the viewpoint of monad/algebra semantics, there is no
difference between a computation I' = M : B and avalueI' YV : UB.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 31/ 69



F and U

The type FA

A computation in F'A returns a value in A.

THV:A T+ M:FA T,x: AFN:B
I' - return V : FA I'k"M tox. N:B

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 32 /69



The type FA

A computation in F'A returns a value in A.

r="v:A '“M:FA T'x:AF*N:B
' “return V :FA '“M+tox. N:B
The denotation of A/ to x. N uses the structure of [B].

v

The type UB

A value in UB is a thunk of a computation in B.

T'-“M:B rYv:.:uB
I' Y thunk M : UB I' ¢ force V: B

The constructs thunk and force are inverse.
They are invisible in monad/algebra semantics.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Identifiers

An identifier is a value.

'Yv:A I''x: AF*M: B
——(x:A) el .
'H'x: A I'"let Vbex. M:B

We write let to bind an identifier.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 33 /69



L= veA; P V:Y. . ;A T,x:AF M :B Viel)

iel
tel
CH @, V) 0D er A '€ case V of {(i,x).M;}icr : B
rFV:A THV A ' V:AxA T)x:Ay: A M:B
LH (V,V): Ax A I+ case V of (x,y).M : B

The rules for 1 are similar.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 34 /69



Functions

I''x:AF*M: B r-“m:A—-B TH'V:A
'“Xx.M:A— B I'“MV:B
THE M2 B, (Viel) DEM LB
S
TG bier : [LiesBs T HE Mi: By

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 35/ 69



Functions

I''x:AF*M: B r-“m:A—-B TH'V:A
'“Xx.M:A— B I'“MV:B
THE M2 B, (Viel) DEM LB
S
TG bier : [LiesBs T HE Mi: By

It is often convenient to write applications operand-first, as V‘M and 7M.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 35/ 69



Interpreter

The terminals are computations:

return V Ax. M Mi.M;Yier

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 36 / 69



Interpreter

The terminals are computations:

return V Ax. M Mi.M;Yier

To evaluate

@ return V: return return V.

M to x. N: evaluate M. If it returns return 1/, then evaluate
N[V/x].

Ax.IN: return A\x. V.

MYV evaluate M. If it returns \x./V, evaluate N[V/x].
Mi.Nitier: return Mo N, }icr.

Mi: evaluate M. If it returns \{i.V;},c/, evaluate IV;.

let V be x. M: evaluate M[V/x].

force thunk M: evaluate M.

case (i, V) of {(i,x).M;},cr: evaluate M;[V/x|.

case (V, V') of (x,y).M: evaluate M[V/x,V'/y].

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 36 / 69



Decomposing CBV into CBPV

A CBYV type translates into a value type.
A—B — U(A— FB)

ACBVtermx: Ajy: BF M :C translatesasx: A,y: BF* M : FC.

X — return x
Ax. M —  return thunk Ax. M
MN +— Mtof. N toy. ((force f)y)
let Mbex. N +— Mtoy.letybex. N

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Decomposing CBV into CBPV

A CBYV type translates into a value type.
A—B — U(A— FB)

ACBVtermx: Ajy: BF M :C translatesasx: A,y: BF* M : FC.

X — return x
Ax. M —  return thunk Ax. M
MN +— Mtof. N toy. ((force f)y)
let Mbex. N +— Mtoy.letybex. N

or — Mtox. N

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Decomposing CBN into CBPV

A CBN type translates into a computation type.

bool +— F(1+1)
A+B — FUA+UB)
A—-B — UA— B

ACBNtermx: Ajy: BE M : C translatesasx: UA,y: UBF* M : C.

x +— forcex
let M be x. N ~— 1let (thunk M) be x. N
XXM — Ax. M
M N +— M (thunk N)
inl M +~ return inl thunk M

September 5, 2016 38 /69

Paul Blain Levy (University of Birmingham) Call-by-push-value



Summary

We've seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 39 / 69



We've seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

The translations from CBV and CBN into CBPV preserve these semantics.

Paul Blain Levy (University of Birmingham)

Call-by-push-value

September 5, 2016 39 / 69



We've seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 39 / 69



We've seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.
But

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 39 / 69



We've seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.
But

@ the monad/algebra semantics makes thunk and force invisible

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 39 / 69



We've seen the call-by-push-value calculus, its operational and
monad/algebra semantics.

The translations from CBV and CBN into CBPV preserve these semantics.
Moggi's T A is UF A.
But

@ the monad/algebra semantics makes thunk and force invisible

@ we still don't understand why a function is a “computation”.

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 39 / 69



Antecedents: CBV

@ Landin’s ISWIM: CBV A-calculus with effects.
Influenced ML and other languages.

Plotkin: A,-calculus provided equations for CBV with divergence.
Numerous researchers: CPS transforms for CBV.

Felleisen et al: CBV semantics for various effects.

Moggi: Ac-calculus, monads for CBV and monadic metalanguage.
Power and Robinson: Freyd categories for CBV.

Benton and Kennedy: MIL-lite.

Thielecke: thunk and force constructs in CBV with callcc.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 40 / 69



Antecedents: CBN without n-law for functions

Plotkin: CPS transform for CBN without 7-law.
Abramsky and Ong: untyped lazy A-calculus.
Ong: typed lazy A-calculus.

Moggi: monads for CBN without n-law.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 41/



Antecedents: CBN with n-law for functions

Plotkin's PCF, a CBN calculus for recursion.

Hennessy and Ashcroft: recursion and nondeterminism.
O'Hearn: semantics of conditional in Reynolds’ Idealized Algol.
Streicher and Reus: semantics of control effects in CBN.

—— translations of classical logic. Also CBV.

Game semantics. Also CBV.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Calculi combining CBV and CBN

Various calculi based on CPS.
Filinski's Effect-PCF provided the CBPV to construct. U is implicit.

Howard's A** calculus for recursion. U is implicit.

Egger, Mggelberg and Simpson’s Effect Calculus emphasizes
connection to Benton's Linear/Nonlinear Logic. U is implicit.

Marz' SFPL for recursion and sequentiality. F' is implicit.

@ Ehrhard’s variant of call-by-push-value, similar to SFPL. I is implicit.

@ Nygaard and Winskel's HOPLA for recursion and nondeterminism. F
is implicit.

@ Laurent’s LLP has extra type constructors not included in CBPV.

@ Harper, Licata and Zeilberger's Polarized Intuitionistic Logic.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 43 / 69



An operational semantics due to Felleisen and Friedman (1986).
And Landin, Krivine, Streicher and Reus, Bierman, Pitts, . ..

It is suitable for sequential languages whether CBV, CBN or CBPV.
At any time, there's a computation (C) and a stack of contexts (K).
Initially, K is empty.

Some authors make K into a single context, called an “evaluation context”.

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 44 / 69



Transitions for sequencing

To evaluate M to x. N: evaluate M. If it returns return V/, then
evaluate N[V/x].

M tox. N K ~
M tox. N = K
return V tox. N K ~
N[V/x] K

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 45 / 69



Transitions for application

To evaluate V‘M: evaluate M. If it returns \x./V, evaluate N[V/x].

VM K -
M Vi oK
Ax.N Vi K s
N[V/x] K

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 46 / 69



Those function rules again

VM K s
M Vi oK
Ax.N Vi oK s
N[V/x] K

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 47 / 69



Those function rules again

VM K s
M Vi oK
Ax.N Vi oK s
N[V/x] K

We can read V¢ as an instruction “push V".

We can read Ax as an instruction “pop x".

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 47 / 69



Those function rules again

VM K ~
M Vi K
Ax.N Vi K ~
N[V/x] K
We can read V¢ as an instruction “push V".
We can read Ax as an instruction “pop x".
Revisiting some equations:
Vidxx. M = M[V/x]
M = Xx.x‘M (x fresh)
AX. error e = errore
Ax. print ¢. M = print c. Ax.M

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 47 / 69



Values and Computations

A value is, a computation does.

A value of type UB is a thunk of a computation of type B.
A value of type D, ;A; is a pair (i, V).
A value of type A x A’ is a pair (V,V').

A computation of type F'A returns a value of type A.

A computation of type A — B
pops a value of type A
then behaves in B.

A computation of type [, ;B;
pops atagi e [
then behaves in B,.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 48 / 69



What's in a stack?

A stack consists of
@ arguments that are values
@ arguments that are tags

o frames taking the form to x. V.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 49 / 69



Example program of type F' nat

print "helloO".
let 3 be x.
let thunk (
print "hellol".
Az.
print "we just popped "z.
return x+z
) be y.
print "hello2".
( print "hello3".
7
print "we just pushed 7".
force y
) to w.
print "w is bound to " + w.
return w+5

Paul Blain Levy (University of Birmingham)

Call-by-push-value

September 5, 2016 50 / 69



Typing the CK-machine

Initial configuration to evaluate I' =“P: ('

r P C nil C
Transitions

r M tox. N B K (&) ~
r M FA tox. N K C

r return V FA tox. N K C ~
r N[V/x] B K C

Typically I" would be empty and ' = F'bool.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 51 / 69



Typing the CK-machine

Initial configuration to evaluate I' =“P: ('

r P C nil C
Transitions

r M tox. N B K (&) >
r M FA tox. N K C

r return V FA tox. N K C >
r N[V/x] B K c

Typically I would be empty and ' = F'bool. We write

I' X K : B = C to mean that K can accompany a computation of type

B during evaluation.

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 51 / 69



Typing rules, read off from the CK-machine

Typing a stack

Ix:AFM:B THK:B=—C
[+*nil:C = C 't“tox. M K:FA=C
I'*K:B=C , rv:4 THEK:B=C
1€
I‘I—ki::K:HielﬁiﬁQ r+“v:K:A-B=—C

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 52 / 69



Typing rules, read off from the CK-machine

Typing a stack

Ix:AFM:B THK:B=—C
[+*nil:C = C 't“tox. M K:FA=C
I'*K:B=C , THvi4 I'*K:B=C
1€
Fl—ki::K:HielﬁizQ r+“v:K:A-B=—C

Typing a CK-configuration
THM:B T EK:B=C

Ik (M,K):C

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 52 / 69



Special Stacks

A continuation is a stack from an F' type. For example:

'tctox. M= K:FA=—C

It describes what happens next once it receives a value.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 53 / 69



Special Stacks

A continuation is a stack from an F' type. For example:

'tctox. M= K:FA=—C

It describes what happens next once it receives a value.
In CBV, all computations have F' type, so all stacks are continuations.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 53 / 69



Special Stacks

A continuation is a stack from an F' type. For example:
THFtox. M= K:FA=C

It describes what happens next once it receives a value.
In CBV, all computations have F' type, so all stacks are continuations.

Top-Level Stack

The top-level stack is

+knil:C=C

and C' is the top-level type.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 53 / 69



Special Stacks

Continuations

A continuation is a stack from an F' type. For example:
THFtox. M= K:FA=C

It describes what happens next once it receives a value.
In CBV, all computations have F' type, so all stacks are continuations.

| A\

Top-Level Stack
The top-level stack is

+knil:C=C

and C' is the top-level type.
If C'is an F type, then nil is the top-level continuation: it receives a
value and returns it to the user.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 53 / 69



Denotational semantics of stacks

Suppose [C] = (Y, ¢). The behaviour of T' -k (M, K) : C depends on
the environment:
] [ALET 5

to be preserved by each transition.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 54 / 69



Denotational semantics of stacks

Suppose [C] = (Y, ¢). The behaviour of T' -k (M, K) : C depends on
the environment:
M,K
] [(M,K)] v
to be preserved by each transition.
Suppose also [B] = (X,8). A stack I' -k K : B = C transforms
computations to CK-configurations. So we get a function

) x x 2y

homomorphic in its second argument.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 54 / 69



Denotational semantics of stacks

Suppose [C] = (Y, ¢). The behaviour of T' -k (M, K) : C depends on
the environment:
M,K
] [(M,K)] v
to be preserved by each transition.
Suppose also [B] = (X,8). A stack I' -k K : B = C transforms
computations to CK-configurations. So we get a function

) x x 2y

homomorphic in its second argument.

because if M raises an error or prints, then so does M, K.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 54 / 69



Denotational semantics of stacks

Suppose [C] = (Y, ¢). The behaviour of T' -k (M, K) : C depends on
the environment:

[r] [(M,K)] v

to be preserved by each transition.
Suppose also [B] = (X,8). A stack I' -k K : B = C transforms

computations to CK-configurations. So we get a function

) x x 2y

homomorphic in its second argument.
because if M raises an error or prints, then so does M, K.

We assume there's no exception handling.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 54 / 69



Adjunction between values and stacks

We have an adjunction between the category of values (sets and
functions) and the category of stacks (7-algebras and homomorphisms).

FT
Set L Set?

-

UT

This resolves the monad T on Set.

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 55 /



Consider CBPV extended with two storage cells:
1 stores a natural number, and 1’ stores a boolean.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 56 / 69



Consider CBPV extended with two storage cells:
1 stores a natural number, and 1’ stores a boolean.

T M : B T+ M, : B (¥n e N)
neN
'k1:=n.M:B I'F°read 1l as {n. Mp}pen: B

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 56 / 69



Consider CBPV extended with two storage cells:
1 stores a natural number, and 1’ stores a boolean.

T M : B T+ M, : B (¥n e N)
neN
'k1:=n.M:B I'F°read 1l as {n. Mp}pen: B

A stateis 1 — n,1’ — b.

The set of states is S =2 N x B.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 56 / 69



Big-step semantics for state

The big-step semantics takes the form s, M || s',T.
A pair s, M is called an SC-configuration.
We can type these using
'“mM:B
¢ (s,M): B

se S

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 57 / 69



Monad /algebra semantics for state

Moggi's monad for global state is S — (S x —).

We can take algebras for this and obtain a denotational semantics of
CBPV with state.

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 58 / 69



Monad /algebra semantics for state

Moggi's monad for global state is S — (S x —).

We can take algebras for this and obtain a denotational semantics of
CBPV with state.

But it doesn't fit well with SC-configurations.

We'd like a soundness result of the following form:

If s, M | s',T then [s, M]e = [s',T]e

This requires an SC-configuration to have a denotation.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Semantics of SC-configurations

Denotation of A is a semantic domain for values of type A. Like in monad
semantics.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 59 / 69



Semantics of SC-configurations

Denotation of A is a semantic domain for values of type A. Like in monad
semantics.

Denotation of B is a semantic domain for configurations of type B.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 59 / 69



Semantics of SC-configurations

Denotation of A is a semantic domain for values of type A. Like in monad
semantics.

Denotation of B is a semantic domain for configurations of type B.

The behaviour of an SC-configuration I' ¢ (s, M) : B depends on the

environment:
[(s,M)]

[T [B]

September 5, 2016 59 / 69

Paul Blain Levy (University of Birmingham) Call-by-push-value



Semantics of SC-configurations

Denotation of A is a semantic domain for values of type A. Like in monad
semantics.

Denotation of B is a semantic domain for configurations of type B.

The behaviour of an SC-configuration I' ¢ (s, M) : B depends on the

environment:

[(s,M)]

[T [B]

The behaviour of a computation I' =¢ M : B depends on the state and

environment:
[M]

Sx [ —1[8]

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 59 / 69



State: semantics of types

An SC-configuration of type F'A will terminate as s, return V.
[FA] =S x [A]
An SC-configuration of type A — B will pop x : A, then behave in B.
[A— Bl =[Al = [B]
An SC-configuration of type Hiefﬁi will pop ¢ € I, then behave in B,.
[[Hielﬁi]] = Hie][[Bi]]

A value I' Y V : UB can be forced in any state s, giving an
SC-configuration s, force V.

[UB] =5 — [B]

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 60 / 69



State: semantics of types

An SC-configuration of type F'A will terminate as s, return V.
[FA] =S x [A]
An SC-configuration of type A — B will pop x : A, then behave in B.
[A— Bl =[Al = [B]
An SC-configuration of type Hiefﬁi will pop ¢ € I, then behave in B,.
[[Hielﬁi]] = Hie][[Bi]]

A value I' Y V : UB can be forced in any state s, giving an
SC-configuration s, force V.

[UB] =5 — [B]

We recover standard semantics for CBV,
and O’Hearn’s semantics for CBN.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



The SCK-machine

We replace K with F5°k,

rkM:B TI|BHK:C

- ses
(s, M\K): C

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 61 / 69



The SCK-machine

We replace K with F5°k,

rkM:B TI|BHK:C
LH<* (s, M,K): C

se s

The behaviour of an SCK-configuration T' F5° (s, M, K) : C' depends on
the environment:
[(s,M,K)]

[T

to be preserved by each transition.

[€]

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 61 / 69



The SCK-machine

We replace K with 5k

rkM:B TI|BHK:C

- se S
(s, M\K): C

The behaviour of an SCK-configuration T' F5° (s, M, K) : C' depends on

the environment:
[(s,M,K)]

[T

to be preserved by each transition.

[€]

A stack I' FK K : B = C transforms SC-configuration behaviours to
SCK-configuration behaviours:

[K]

[] < [B] —[C]

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 61 / 69



State: the value/stack adjunction

We've seen that a stack F* K : B = C denotes a function

18] e .

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 62 / 69



State: the value/stack adjunction

We've seen that a stack F* K : B = C denotes a function
K]

[B] —1[C] .

We have an adjunction

Sx—
Set 1 Set

- L
S——

between values and stacks.

Paul Blain Levy (University of Birmingham) Call-by-push-value

September 5, 2016 62 / 69



Catching and throwing a stack

We extend CBPV with Crolard'’s instructions for changing the stack.
@ catch a means “let a be the current stack”.

@ throw K means “change the current stack to K.

r catch ao. M B K C|A ~
r MI[K /al B K clA
r throw K. M B’ K’ C|A ~
I M B K C|A

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 63 / 69



Typing judgements for control

The stack context A consists of stack names « : B.

So we have typing judgements:
FrE"Vv:A|lA F'E"M:B|A
During execution, the top-level type C must be indicated:

THV:A[C]A TFM:B[C]A
I'HK:B=C|A TFNMK):C|A

Typically I and A would be empty and C = F bool.

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 64 / 69



Monad /algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 65 / 69



Monad /algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.

Moggi's monad for control operators ( “continuations”) is (— — R) — R.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 65 / 69



Monad /algebra semantics of control

Fix a set R, the semantic domain for CK-configurations.
Moggi's monad for control operators ( “continuations”) is (— — R) — R.

Maybe we can use algebras for this to build a denotational semantics of
control.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 65 / 69



Semantics of control using stacks

The denotation of B is a semantic domain for stacks from B.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 66 / 69



Semantics of control using stacks

The denotation of B is a semantic domain for stacks from B.

The behaviour of a computation I' =€ M : B [C] A depends on the
environment, current stack, top-level stack and stack environment:

[r] x [B] x [C] x [A] 22 R

Avalue I' YV : A [C] A denotes
vl
[C] > [C] x [A] —=[A]
A stack T H* K : B = C | A denotes

[K]
[T] > [€] x [A] —[B]
A CK-configuration I' - (M, K) : C | A denotes

1] x [C] x [A] —22)]

to be preserved by each transition.

R

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Control: semantics of types

A stack from F'A receives a value x : A and then behaves as a
configuration.

[FA] =[A] = R
A stack from A — Bis a pair V :: K.
[A — B] =[A] x [B]

A stack from [],.;B; is a pair i :: K.

[[Hielﬁi]] = Zie[ [[Ez]]

A value of type UB can be forced alongside any stack K, giving a
configuration.

[UB] = [B] = R

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 67 / 69



Control: semantics of types

A stack from F'A receives a value x : A and then behaves as a
configuration.
[FA] =[A] = R

A stack from A — Bis a pair V :: K.

[A— B] = [A]l x [B]
A stack from [],.;B; is a pair i :: K.

[[Hiefﬁi]] = Zie[[[ﬁi]]

A value of type UB can be forced alongside any stack K, giving a
configuration.
[UB] =[B] = R

We recover standard continuation semantics for CBV,
and Streicher and Reus’ semantics for CBN.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Control: the value/stack adjunction

A stack
I'F*K:B=—C A

denotes a function

[r]x[e]x[a] — X

[B]

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 68 / 69



Control: the value/stack adjunction

A stack
I'F*K:B=—C A

denotes a function

el < ia] —E g

So we have an adjunction

1 Set

-

——R

between values and stacks with top-level type.

Paul Blain Levy (University of Birmingham)

Call-by-push-value September 5, 2016 68 / 69



Summary of models

For every monad 7" on Set we have an adjunction

FT
Set 1 Set”
UT

This is useful for modelling CBPV with errors and printing.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Summary of models

For every monad 7" on Set we have an adjunction

FT
Set 1 Set”
UT

This is useful for modelling CBPV with errors and printing.
For a set S we have an adjunction

SX—
Set L Set

S——

This is useful for modelling CBPV with state.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016 69 /



Summary of models

For every monad 7" on Set we have an adjunction

FT
Set 1 Set”
UT

This is useful for modelling CBPV with errors and printing.
For a set S we have an adjunction

SX—
Set L Set

S——

This is useful for modelling CBPV with state.

For a set R we have an adjunction

——R
Set N Set
——R

op

This is useful for modelling CBPV with control.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



Summary of models

For every monad 7" on Set we have an adjunction

FT
Set 1 Set”
UT

This is useful for modelling CBPV with errors and printing.
For a set S we have an adjunction

SX—
Set L Set

S——

This is useful for modelling CBPV with state.

For a set R we have an adjunction

——R
Set N Set
——R

op

This is useful for modelling CBPV with control.

Paul Blain Levy (University of Birmingham) Call-by-push-value September 5, 2016



	Typed -calculus
	Typed -calculus: denotational semantics
	Call-by-push-value
	Stacks
	State
	Control

