
Characterizing Recursive Programs Up To Bisimilarity
Paul Blain Levy

University of Birmingham

Abstract

A recursive program is determined, up to bisimilarity, by the operation of the recursion body on
arbitrary processes, of which it is a fixpoint. The traditional proof of this fact uses Howe’s method,
but that does not tell us how the fixpoint is obtained.

In this paper, we show that the fixpoint may be obtained by a least fixpoint procedure iterated
through the hierarchy of countable ordinals, using Groote and Vaandrager’s notion of nested simula-
tion.

1 Introduction

Recursion is an important programming language feature that provides a fixpoint of an endofunction. But
an endofunction may have many fixpoints, so an important question in semantics is to determine which
is the one calculated by recursion. For example, for both the may-testing and must-testing preorders,
recursion calculates the least pre-fixed point. (In the case of must-testing, we must assume the calculus
uses erratic rather than ambiguous nondeterminism, see e.g. [Las98].)

What if we work modulo bisimilarity? We provide a characterization of the fixpoint calculated by
recursion as follows. First calculate the least pre-fixed point up to similarity. Within this equivalence
class, calculate the least pre-fixed point up to 2-nested similarity. Iterate this procedure through all the
countable ordinals and it converges on a single point: the “nesting fixpoint”. This is the one that recursion
calculates.

In Sect. 2 we introduce the general notions of nested simulation and nesting fixpoints. We illustrate
them in Sect. 3 with the process calculus CCS.

Notation

• We write ω1 for the least uncountable ordinal.

• For any sets X ,Y,Z and relations R ⊆ X×Y and R ′ ⊆ Y ×Z, we write R;R ′ for the composite.

• For any sets X and Y , we write X ⇀ Y for the set of partial functions from X to Y with finite
domain.

• For any set X with preorder 6, and any 6 ∩>-equivalence class U , we write

↓6 (U) def= {x ∈ X | ∃y ∈ X . x 6 y}= {x ∈ X | ∀y ∈ X . x 6 y}

2 Transition systems and ω1-nested preorders

We first recall the basic notions of transition systems.

Definition 1. Let Act be a set of actions, and let S = (X ,→) be an Act-labelled transition system, i.e.
a set X together with a relation→⊆ X×Act×X.

1

Characterizing Recursive Programs Up To Bisimilarity Levy

1. For each x ∈ X and a ∈ Act, we write

succa(P) def= {Q ∈ Prog | P →a Q}

If this set is always countable, S is said to be image-countable.

2. A relation R ⊆ X×X is

• a simulation on S when for all (x,x′) ∈ R and a ∈ Act, if y ∈ succa(x) then there exists
y′ ∈ succa(x′) such that (x′,y′) ∈R.

• a bisimulation on S when both R and its converse are simulations.

3. The greatest bisimulation is called bisimilarity. It is an equivalence relation and written h.

4. Let 6 be a preorder on X. A relation R ⊆ X×X is

• a simulation up to 6 on the right when for all (x,x′) ∈R and a ∈ Act, if y ∈ succa(x) then
there exists y′ ∈ succa(x′) such that (x′,y′) ∈ (R;6)

• a simulation up to 6 when for all (x,x′) ∈R and a ∈ Act, if y ∈ succa(x) then there exists
y′ ∈ succa(x′) such that (x′,y′) ∈ (6;R;6)

Definition 2. [GV92] Let Act be a set, and let S = (X ,→) be an Act-labelled transition system. For
each ordinal α , we shall define a preorder .α , known as α-nested similarity, with the property that any
simulation contained in &α is also contained in .α . We define .α to be

(α = β +1) the greatest simulation contained in .β , or equivalently the greatest simulation contained
in .β ∩&β

(α a limit ordinal) the intersection of .β over all β < α .

Lemma 1. [GV92] Let Act be a set, and let (X ,→) be an Act-labelled transition system.

1. Let β be an ordinal. If R is a simulation up to .β+1 contained in &β , then R is contained in
.β+1.

2. .α contains bisimilarity, for each ordinal α .

3. If (X ,→) is image-countable, then .ω1 is bisimilarity.

We are thus led to the following abstract notion.

Definition 3. Let X be a set. An ω1-nested preorder on X is a sequence of preorders (6α)α6ω1 such that

• (6α+1)⊆ (6α)∩ (>α), for each α < ω1

• (6γ) =
⋂

α<γ(6α), for each limit ordinal γ 6 ω1

It follows that

• (60) is the indiscrete relation

• α 6 β 6 ω1 implies (6β)⊆ (6α)

• α < β 6 ω1 implies (6β)⊆ (>α)

2

Characterizing Recursive Programs Up To Bisimilarity Levy

• (6α) is an equivalence relation, for each limit ordinal α 6 ω1.

In particular, 6ω1 is an equivalence relation, which we write ≡.

Definition 4. Let Act be a set, and let S = (X ,→) be an Act-labelled transition system. We write A(S)
for the ω1-nested preordered set (X ,(.α)α6ω1).

Definition 5. Let A = (X ,(6α)α6ω1 and B = (Y,(6α))α6ω1 be ω1-nested preordered sets. A mono-

tone function A
f // B is a function X

f // Y such that, for every α 6 ω1 (or equivalently: every
successor ordinal α < ω1), if x⊆α

A x′ then f (x)⊆α
B f (x′).

Now we come to our key definition.

Definition 6. Let A = (X ,(6α)α6ω1 be an ω1-nested preordered set, and let f be a monotone endofunc-
tion on A. We shall define a decreasing sequence of subsets (U f

α)α6ω1 of X such that U f
α either is empty

or satisfies the following conditions:

• U f
α is an equivalence class of 6α ∩>α

• f restricts to an endofunction on U f
α and hence on ↓6α (U f

α)

• if x ∈↓6α (U f
α) and f (x) 6α x then x ∈U f

α .

We define U f
α to be

(α = β +1) the set of 6 α-least elements of

{x ∈U f
β
| f (x) 6α x}= {x ∈↓6β (U f

β
) | f (x) 6α x}

(α a limit ordinal) the intersection of U f
β

over all β < α .

The elements of U f
ω1 are called nesting fixpoints of f .

Note that nesting fixpoints are fixpoints up to ≡ and unique up to ≡. But some monotone endofunc-
tions f do not have a nesting fixpoint—i.e. U f

ω1 is empty.

3 CCS and Bisimilarity

Our thesis is that a recursive program in a transition system S is is a nesting fixpoint of the mono-
tone endofunction on A(S) given by the recursion body. To illustrate this, we consider the calculus
CCS [Mil89], over a fixed set Act of actions.

As CCS is untyped, a context Γ is merely a list of distinct identifers. The syntax is given inductively
by the rules in Fig. 1. We write Prog for the set of programs, i.e. closed terms, which forms an Act-
labelled transition system with transition relation → defined inductively by the rules in Fig. 2. This
system is easily shown to be image-countable, and we call it CCS.

Our version of CCS includes parallel composition of any countable arity I, with synchronization
described by a relation V saying when finitely many actions performed by the constituent processes may
cause an action in the combined process. In [Mil89], Act is given by a disjoint union

{a | a ∈ Σ} ∪ {a | a ∈ Σ} ∪ {τ}

where Σ is a set of synchronization actions. The parallel composition, hiding and renaming operators
provided there are subsumed by our parallel composition as follows.

3

Characterizing Recursive Programs Up To Bisimilarity Levy

Γ ` P
a ∈ Act

Γ ` a.P

Γ ` Pi (∀i ∈ I)
I countable

Γ ` ∑i∈IPi

Γ,x ` P

Γ ` rec x. P

x ∈ Γ
Γ ` x

Γ ` Pi (∀i ∈ I)
I countable, V ⊆ (I ⇀fin Act)×Act

Γ `‖Vi∈I Pi

Figure 1: Syntax of CCS

a.P →a P

P̂ı →
a Q

ı̂ ∈ I
∑i∈IPi →a Q

P[rec x. P/x] →a Q

rec x. P →a Q

Pi →
b(i) Qi (∀i ∈ dom b)

(b,a) ∈V

‖Vi∈I Pi →
a ‖Vi∈I

{
Qi (if i ∈ dom b)
Pi (otherwise)

Figure 2: Operational Semantics (Transitions) of CCS

• We express P | Q as ‖V {0 7→ P,1 7→ Q}, with V given by

{({0 7→ a,1 7→ a},τ) | a ∈ Σ} ∪ {({0 7→ a,1 7→ a},τ) | a ∈ Σ}
∪ {({0 7→ a},a) | a ∈ Act} ∪ {({1 7→ a},a) | a ∈ Act}

• Let f : Σ→ Σ be a function. We express P[f] as ‖V {0 7→ P}, with V given by

{({0 7→ a}, f (a)) | a ∈ Σ} ∪ {({0 7→ a}, f (a)) | a ∈ Σ} ∪ {(0 7→ τ,τ)}

• Let L⊆ Σ be a subset. We express P\L as ‖V {0 7→ P}, with V given by

{({0 7→ a},a) | a ∈ Σ\L} ∪ {({0 7→ a},a) | a ∈ Σ\L} ∪ {(0 7→ τ,τ)}

The “synchronization algebras” of [WN95] are likewise expressible.
As explained in [Mil89], we could also incorporate into the language countably mutual recursion.

We have not done so, but our results would go through without difficulty.
The following operations on programs are called the basic operations:

P 7→ a.P for any a ∈ Act

(Pi)i∈I 7→ ∑i∈IPi for any countable I

(Pi)i∈I 7→ ‖Vi∈I Pi for any countable I and V ⊆ (I ⇀fin Act)×Act

Proposition 1. The basic operations preserve α-nested similarity, for every ordinal α , and hence pre-
serves bisimilarity.

Proof. Straightforward induction on α . Preservation of bisimilarity may also be proved directly.

Lemma 2. Let R be a simulation on CCS. Then the relation

{(M[P/x],M[P′/x]) | (P,P′) ∈R,x `M}

is also a simulation.

4

Characterizing Recursive Programs Up To Bisimilarity Levy

Proof. We want to show that if M[P/x] →a Q, then for all P′ such that (P,P′) ∈R we have (R,R′) ∈R
and x ` N such that Q = N[R/x] and M[P′/x] →a N[R′/x]. We proceed by induction on→. We omit the
details.

Proposition 2. (Definable functions are monotone) Let x `M be a term. Then the endofunction on Prog

P 7→M[P/x]

preserves α-similarity, for every ordinal α , and hence preserves bisimilarity.

Proof. By induction on α using Lemma 2. Preservation of bisimilarity also follows directly from
Lemma 2.

Lemma 3. Let 6 be a preorder on Prog that is a simulation and preserved by the basic operations. Let
x `M and P ∈ Prog be such that M[P/x] 6 P. Then the relation

{(N[rec x. M/y],N[P/y]) | y ` N}

is a simulation up to 6 on the right.

Proof. We want to show that if N[rec x. M/y] →a Q then there exists y ` R and Q′ ∈ Prog such that
Q = R[rec x. M/y] and N[P/y] →a Q′ and R[N/y] 6 Q′. We proceed by induction on→.

• Suppose that N = y. Then M[rec x. M/x] →a Q and applying the inductive hypothesis gives
y ` R and Q′ ∈ Prog such that Q = R[rec x. M/y] and M[P/x] →a Q′ and R[N/y] 6 Q′. Since
M[P/x] 6 P and 6 is a simulation we have P →a Q′′ and Q′ 6 Q′′, giving R[N/y] 6 Q′′.

• The other cases are trivial.

Proposition 3. Let x `M be a term. Then rec x. M is a nesting fixpoint of the monotone endofunction
f : P 7→M[P/x] on A(CCS).

Proof. We have to show that rec x. M is in U f
α for each α 6 ω1. The case where α is a limit ordinal is

trivial, so suppose α = β +1. Since rec x.M ∈U f
β

we have

↓6β (U f
β
) = {P ∈ Prog | P .β rec x. M}

We need to show that rec x. M is an .β+1-least element of

{P ∈↓6β (U f
β
) | f (P) .α P}= {P ∈ Prog | P .β rec x. M∧M[P/x] .α P}

It is an element because M[rec x. M/x] h rec x. M. Suppose P is another element. Then

{(N[rec x. M/x],N[P/x]) | x ` N}

is contained in &β and, by Lemma 3, is a simulation up to .α on the right. Lemma 1(1) tells us that it is
contained in .α , so rec x. M .α P as required.

Corollary 1. Let x `M,M′ be terms such that M[P/x] h M′[P/x] for all programs P. Then rec x. M h
rec x. M′.

This result may also be proved using Howe’s method [How96, Lev06].

5

Characterizing Recursive Programs Up To Bisimilarity Levy

4 Conclusions and Further Work

The present paper was greatly inspired by the denotational semantics in [Ros04], where recursion is
interpreted by a “reflected” fixpoint calculated in two steps.

The quotient of CCS by bisimilarity is an image-countable transition system S in which bisimilarity
is discrete. (It can also be described as a final coalgebra [TR98].) Therefore nesting fixpoints in A(S) are
genuine fixpoints and unique. This almost provides a denotational semantics, except that some monotone
endofunctions do not have a nesting fixpoint. Perhaps restricting to the exploratory functions of [LW09]
would be fruitful, as these are all definable in a sufficiently rich calculus.

In [Abr91] a domain theoretic model is provided that captures bisimilarity between processes without
divergences. For general processes it induces a more subtle preorder.

The results of this paper may be adapted to lower (i.e. divergence-insensitive) applicative bisimu-
lation [Abr90] in nondeterministic λ -calculus. However, in this instance Howe’s method is stronger
because it shows applicative bisimilarity to be preserved not only by recursion (Corollary 1) but also by
application.

References
[Abr90] S. Abramsky. The lazy λ -calculus. In Research topics in Functional Programming, pages 65–117.

Addison Wesley, 1990.
[Abr91] S Abramsky. A domain equation for bisimulation. Information and Computation, 92(2), 1991.
[GV92] Jan Friso Groote and Frits Vaandrager. Structured operational semantics and bisimulation as a congru-

ence. Information and Computation, 100(2):202–260, October 1992.
[How96] D J Howe. Proving congruence of bisimulation in functional programming languages. Inf. and Comp.,

124(2), 1996.
[Las98] S B Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis, Univ. of Aarhus,

1998.
[Lev06] P B Levy. Infinitary Howe’s method. In Proc., 8th Intl. Workshop on Coalgebraic Methods in Comp.

Sci., Vienna, volume 164(1) of ENTCS, 2006.
[LW09] Paul Blain Levy and Kidane Yemane Weldemariam. Exploratory functions on nondeterministic strate-

gies, up to lower bisimilarity. Electr. Notes Theor. Comput. Sci, 249:357–375, 2009.
[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Ros04] A W Roscoe. Seeing beyond divergence. presented at BCS FACS meeting “25 Years of CSP”, July

2004.
[TR98] Daniele Turi and Jan J. M. M. Rutten. On the foundations of final coalgebra semantics. Mathematical

Structures in Computer Science, 8(5):481–540, 1998.
[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum,

editors, Handbook of Logic in Computer Science. Oxford University Press, 1995.

6

	Introduction
	Transition systems and 1-nested preorders
	CCS and Bisimilarity
	Conclusions and Further Work

