
Under consideration for publication in Math. Struct. in Comp. Science

Characteristic Formulae for Fixed-Point
Semantics: A General Framework

L U C A A C E T O1 A N N A I N G O L F D O T T I R1

P A U L B L A I N L E V Y2 J O S H U A S A C K1

1 School of Computer Science, Reykjavik University, IS-101 Reykjav́ık, Iceland
2 University of Birmingham, Birmingham B15 2TT, UK

Received 18 August 2010

The literature on concurrency theory offers a wealth of examples of characteristic-formula

constructions for various behavioural relations over finite labelled transition systems and

Kripke structures that are defined in terms of fixed points of suitable functions. Such

constructions and their proofs of correctness have been developed independently, but

have a common underlying structure. This study provides a general view of characteristic

formulae that are expressed in terms of logics with a facility for the recursive definition

of formulae. It is shown how several examples of characteristic-formula constructions

from the literature can be recovered as instances of the proposed general framework, and

how the framework can be used to yield novel constructions. The paper also offers

general results pertaining to the definition of co-characteristic formulae and of

characteristic formulae expressed in terms of infinitary modal logics.

1. Introduction

Various types of automata are fundamental formalisms for the description of the be-
haviour of computing systems. For instance, a widely used model of computation is
that of labelled transition systems (LTSs) (Keller 1976). LTSs underlie Plotkin’s Struc-
tural Operational Semantics (Plotkin 2004) and, following Milner’s pioneering work on
CCS (Milner 1989), are by now the formalism of choice for describing the semantics of
various process description languages.

Since automata like LTSs can be used for describing specifications of process behaviours
as well as their implementations, an important ingredient in their theory is a notion of
behavioural equivalence or preorder between (states of) LTSs. A behavioural equivalence
describes formally when (states of) LTSs afford the same ‘observations’, in some appro-
priate technical sense. On the other hand, a behavioural preorder is a possible formal
embodiment of the idea that (a state in) an LTS affords at least as many ‘observations’
as another one. Taking the classic point of view that an implementation correctly im-
plements a specification when each of its observations is allowed by the specification,
behavioural preorders may therefore be used to establish the correctness of implemen-
tations with respect to their specifications, and to support the stepwise refinement of
specifications into implementations.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 2

The lack of consensus on what constitutes an appropriate notion of observable be-
haviour for reactive systems has led to a large number of proposals for behavioural
equivalences and preorders for concurrent processes. In his by now classic paper (van
Glabbeek 2001), van Glabbeek presented a taxonomy of extant behavioural preorders
and equivalences for processes.

The approach to the specification and verification of reactive systems in which au-
tomata like LTSs are used to describe both implementations and specifications of reactive
systems is often referred to as implementation verification or equivalence checking.

An alternative approach to the specification and verification of reactive systems is
that of model checking (Clarke et al. 1999; Clarke and Emerson 1981; Queille and Sifakis
1981). In this approach, automata are still the formalism of choice for the description
of the actual behaviour of a concurrent system. However, specifications of the expected
behaviour of a system are now expressed using a suitable logic, for instance, a modal
or temporal logic (Emerson 1990; Pnueli 1997). Verifying whether a concurrent process
conforms to its specification expressed as a formula in the logic amounts to checking
whether the automaton describing the behaviour of the process is a model of the formula.

It is natural to wonder what the connection between these two approaches to the
specification and verification of concurrent computation is. A classic, and most satisfy-
ing, result in the theory of concurrency is the characterization theorem of bisimulation
equivalence (Milner 1989; Park 1981) in terms of Hennessy-Milner logic (HML) due to
Hennessy and Milner (Hennessy and Milner 1985). This theorem states that two bisimilar
processes satisfy the same formulae in Hennessy-Milner logic, and if the processes satisfy
a technical finiteness condition, then they are also bisimilar when they satisfy the same
formulae in the logic. This means that, for bisimilarity and HML, the process equivalence
induced by the logic coincides with behavioural equivalence, and that, whenever two pro-
cesses are not equivalent, we can always find a formula in HML that witnesses a reason
why they are not. This distinguishing formula is useful for debugging purposes, and can
be algorithmically constructed for finite processes—see, e.g., (Korver 1991; Margaria and
Steffen 1993).

The characterization theorem of Hennessy and Milner is, however, less useful if we are
interested in using it directly to establish when two processes are behaviourally equivalent
using model checking. Indeed, that theorem seems to indicate that to show that two
processes are equivalent we need to check that they satisfy the same formulae expressible
in the logic, and there are infinitely many such formulae, even modulo logical equivalence.
Is it possible to find a single formula that characterizes the bisimulation equivalence class
of a process p—in the sense that any process is bisimilar to p if, and only if, it affords
that property? Such a formula, if it exists, is called a characteristic formula. When a
characteristic formula for a process modulo a given notion of behavioural equivalence or
preorder can be algorithmically constructed, implementation verification can be reduced
to model checking, and we can translate automata to logic. Indeed, to check whether a
process q is bisimilar to p, say, it would suffice to construct the characteristic formula for
p and verify whether q satisfies it using a model checker. (An investigation of the model
checking problems that can be reduced to implementation verification may, for instance,
be found in the paper (Boudol and Larsen 1992).)

Characteristic Formulae for Fixed-Point Semantics 3

Characteristic formulae provide a very elegant connection between automata and logic,
and between implementation verification and model checking. But, can they be con-
structed for natural, and suitably expressive, automata-based models and known logics
of computation? To the best of our knowledge, this natural question was first addressed in
the literature on concurrency theory in the paper (Graf and Sifakis 1986). In that study,
Graf and Sifakis offered a translation from recursion-free terms of Milner’s CCS (Milner
1989) into formulae of a modal language representing their equivalence class with respect
to observational congruence.

Can one characterize the equivalence class of an arbitrary finite process—for instance
one described in the regular fragment of CCS—up to bisimilarity using HML? The an-
swer is negative because each formula in that logic can only describe a finite fragment of
the initial behaviour of a process—see, for instance, (Aceto et al. 2007) for a textbook
presentation. However, as shown in, e.g., (Ingolfsdottir et al. 1987; Steffen and Ingolfs-
dottir 1994), adding a facility for the recursive definition of formulae to (variants of)
HML yields a logic that is powerful enough to support the construction of characteristic
formulae for various types of finite processes modulo notions of behavioural equivalence
or preorder.

Following on the work presented in those original references, the literature on concur-
rency theory offers by now a wealth of examples of characteristic-formula constructions
for various behavioural relations, over finite labelled transition systems, Kripke structures
and timed automata, that are defined in terms of fixed points of suitable functions. (See,
for instance, the references (Aceto et al. 2000; Browne et al. 1988; Cleaveland and Steffen
1991; Fecher and Steffen 2005; Laroussinie et al. 1995; Larsen and Skou 1992; Müller-Olm
1998).) Such constructions and their proofs of correctness have been developed indepen-
dently, but have a common underlying structure. It is therefore natural to ask oneself
whether one can provide a general framework within which some of the aforementioned
results can be recovered from general principles that isolate the common properties that
lie at the heart of all the specific constructions presented in the literature. Not only do
such general principles allow us to recover extant constructions in a principled fashion,
but they may also yield novel characteristic-formula constructions ‘for free’.

In this study, we offer a general view of characteristic formulae that are expressed in
terms of logics with a facility for the recursive definition of formulae. The proposed frame-
work applies to behavioural relations that are defined as greatest or least fixed points
of suitable monotone endofunctions over complete lattices. Examples of such relations
are those belonging to the family of bisimulation- and simulation-based semantics, which
can all be defined as greatest fixed points of monotone endofunctions over the complete
lattice of binary relations over the set of states of a labelled transition system.

We show that if, in a suitable technical sense defined in Section 2.3, a collection of re-
cursively defined logical formulae expresses the endofunction F underlying the definition
of a behavioural relation, then the greatest interpretation of that collection of formulae
characterizes the behavioural relation that is the greatest fixed point of F . (See Theo-
rem 2.16.) Using this result, we are able to recover, as instances of the proposed general
framework and essentially for free, several examples of characteristic-formula construc-
tions from the literature. In particular, we focus on simulation (Park 1981), bisimula-

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 4

tion (Milner 1989; Park 1981), ready simulation (Bloom et al. 1995; Larsen and Skou
1991), and prebisimulation semantics (Aceto and Hennessy 1992; Milner 1981). In addi-
tion, we show that the framework can be used to yield novel, albeit at times somewhat
expected, constructions. By way of example, we provide characteristic formulae for back
and forth bisimilarity, back and forth bisimilarity with indistinguishable states (Dechesne
et al. 2007), the boolean precongruences introduced in (Levy 2009), conformance sim-
ulation semantics (Fábregas et al. 2009) and extended simulation semantics (Thomsen
1987).

The techniques developed in Section 2.3 do not readily yield characteristic-formula
constructions for the nested simulation semantics from (Groote and Vaandrager 1992)
and for simulation equivalence (or mutual simulation). In Section 4 of the paper, however,
we extend our approach, providing the theoretical tools needed to offer characteristic
formulae for them.

All the behavioural relations mentioned above are obtained as (intersections of) great-
est fixed points of suitable monotone endofunctions. In the main body of the paper, we
also show how to define, in a principled fashion, co-characteristic formulae for such be-
havioural relations. (See Section 5.) The intuition behind the notion of co-characteristic
formula is best understood when focusing on behavioural equivalences. In this setting,
a co-characteristic formula for a process p expresses the property that any process that
is inequivalent to p should satisfy. Least-fixed-point interpretations are the appropriate
ones for the definition of co-characteristic formulae since, to show that two processes are
not equivalent, we need to find some ‘finite observation’ that only one of them affords. As
we show in Section 5, each of the results about characteristic formulae from Section 2.3
has a dual version that applies to co-characteristic formulae.

We trust that the general view of characteristic-formula constructions we provide in
this article will offer a framework for the derivation of many more such results and for
explaining the reasons underlying the success of extant constructions of this kind in the
literature.

Further related work In this paper, we mostly focus on characteristic-formula construc-
tions that are given in terms of logics with a facility for the recursive definition of for-
mulae. The literature on concurrency theory and modal logics, however, also offers char-
acteristic formulae for variations on bisimilarity that employ branching-time temporal
logics or infinitary modal logics.

A classic, early result on characteristic formulae was obtained in the paper (Browne
et al. 1988). That paper shows that each finite Kripke structure can be characterized
by a formula in Computation Tree Logic (CTL) (Clarke et al. 1986) up to the natural
variation on bisimilarity over Kripke structures. Another characteristic formula result
is presented in that paper for an equivalence between states that takes ‘stuttering’ into
account. (This equivalence is closely related to van Glabbeek’s and Weijland’s branching
bisimilarity (van Glabbeek and Weijland 1996), for which logical characterizations have
been offered by De Nicola and Vaandrager in the paper (De Nicola and Vaandrager
1995).) Browne, Clarke and Grümberg show that equivalence classes of states in a finite
Kripke structure modulo stuttering equivalence are completely characterized by next-

Characteristic Formulae for Fixed-Point Semantics 5

time-free CTL formulae. (The absence of the next-time operator is expected in light
of the inability of stuttering equivalence to ‘count’ the number of steps in a stuttering
sequence.) Kučera and Schnoebelen have presented a refinement of the above classic
theorem by Browne, Clarke and Grümberg in the paper (Kucera and Schnoebelen 2006).

Characteristic formulae for bisimilarity, expressed in terms of infinitary modal logic, are
given in (Barwise and Moss 1998, Theorem 3.2) over Kripke structures and in (Barwise
and Moss 1996, Theorem 11.12) over non-wellfounded sets. Such characteristic formulae
rely on the definition of the approximants of bisimilarity and on the non-trivial fact that
the ‘branching degree’ of the process for which one is constructing the formula determines
the approximant one needs to consider and the cardinality of the infinitary conjunctions
and disjunctions in the formula. In the case of image-finite LTSs, this was shown by
van Glabbeek, who proved in (van Glabbeek 1987) that if a process p is image finite
and p and q are related by the ω-approximant of bisimilarity, then p are q are indeed
bisimilar. (This result is a sharpening of a classic theorem by Hennessy and Milner,
who proved it under the assumption that both p and q are image finite.) The proof of
Theorem 11.12 in (Barwise and Moss 1996) relies on an extension of the aforementioned
result of van Glabbeek’s to infinite regular cardinals other than ω due to Barwise and
Moss—see (Barwise and Moss 1996, Lemma 11.13). (In the aforementioned reference,
Barwise and Moss attribute the proof they present to Baltag.) In Section 6 of this study,
we present a general account of the above-mentioned characteristic formula constructions
in terms of infinitary modal logics, as well as of some novel ones.

The theoretical significance of characteristic formulae in infinitary modal logic is ex-
emplified by the developments in (Moss 2007), where Moss uses them to obtain new and
elegant weak completeness and decidability proofs for standard systems of modal logic.

Last, but by no means least, we would be amiss not to mention the use of character-
istic formulae in classic first-order logic. In that setting, they appear under the name
of ‘Hintikka formulae’ and play a role in relating the notion of m-isomorphism with
the equivalence over structures induced by formulae whose quantifier depth is at most
m—see, e.g., (Ebbinghaus et al. 1994; Thomas 1993) for overviews.

Roadmap of the paper The paper is organized as follows. In Section 2 we describe the
theoretical background, as well as the main technical results, the paper relies on. In
particular, in that section we offer our main technical result (Theorem 2.16), which is
at the heart of our general approach to the construction of characteristic formulae for
behavioural semantics defined as greatest fixed points of monotone endofunctions. Sec-
tion 3 is devoted to applications of our main theorem. As remarked earlier, the techniques
developed in Section 2.3 do not readily yield characteristic-formula constructions for be-
havioural relations such as the nested simulation preorders and simulation equivalence.
In Section 4, we provide the theoretical tools needed to offer characteristic formulae for
those relations. Section 5 offers developments related to the above-mentioned notion of
co-characteristic formula. In Section 6, we present a general account of characteristic
formula constructions in terms of infinitary modal logics. Finally, in Section 7 we give
some concluding remarks and present directions for future research.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 6

2. Fixed points and logic

In this section we provide the theoretical background needed in the paper.

2.1. Posets, homomorphisms and fixed points

Definition 2.1.

1 A partially ordered set, or poset, (A,vA) consists of a set A and a partial order vA
over it. Often this poset is denoted simply by the set A and we write v instead of
vA if the meaning is clear from the context.

2 For posets A and B, a function φ : A −→ B is

— monotone if it preserves the order over A, i. e. if x vA y implies φ(x) vB φ(y) for
all x, y ∈ A,

— an isomorphism if it is bijective and both φ and its inverse φ−1 are monotone.

3 If f is a monotone endofunction on a partially ordered set A, that is, a function from
A to itself, then x ∈ A is

— a pre-fixed point of f when f(x) v x,

— a post-fixed point of f when x v f(x), and

— a fixed point of f when f(x) = x, i.e. when x is both a pre-fixed point and a
post-fixed point of f .

We write νf for the greatest post-fixed point and µf for the least pre-fixed point of
f , if they exist.

Note that the greatest or least element of A satisfying any given property is unique if it
exists.

The following result is well known.

Lemma 2.2. Let f be a monotone endofunction on a poset A.

1 If νf exists, then it is the greatest fixed point of f .
2 If µf exists, then it is the least fixed point of f .

The theorem below, albeit simple, is the key to the general theory we present in this
paper.

Theorem 2.3. Let A and B be posets, f and g be monotone endofunctions on A and
B respectively, and φ : A→ B be an isomorphism such that the square

A
f //

φ

��

A

φ

��
B g

// B

commutes. Then the following statements hold:

1 Let x ∈ A. Then x is a post-fixed point (resp. pre-fixed point, fixed point) of f iff
φ(x) is a post-fixed point (resp. pre-fixed point, fixed point) of g.

Characteristic Formulae for Fixed-Point Semantics 7

2 νf exists iff νg exists and we then have φ(νf) = νg.
3 µf exists iff µg exists and we then have φ(µf) = µg.

Definition 2.4. A poset A is a complete lattice when every U ⊆ A has a least upper
bound (lub), written

⊔
U .

Note that the lub of A is the greatest element of A and the lub of ∅ is the least element
of A. Furthermore, if each subset of a poset has a lub then each subset U also has a
greatest lower bound, written

d
U , given by the lub of the set of all of its lower bounds.

It is well known that, for each set A, the collection P(A) of all subsets of A ordered
by inclusion is a complete lattice.

The following theorem is due to Tarski (Tarski 1955).

Theorem 2.5. If A is a complete lattice and f is a monotone endofunction on A, then

— both νf and µf exist,
— νf =

⊔
{a | a v f(a)} and

— µf =
d
{a | f(a) v a}.

For two sets A and I, as usual, we let AI denote the set of all functions from I to A. To
reduce the need to name a function, in what follows, we may often denote a function by
using the notation 7→; for example, i 7→ (a, i) is the function that maps every element i
of its domain into a pair, whose first coordinate is a and second is i.

Lemma 2.6. If A is a poset then AI is a poset under the pointwise ordering given by
σ1 v σ2 iff σ1(i) vA σ2(i) for all i ∈ I. In particular, AI is a complete lattice if A is a
complete lattice.

The following lemma on greatest fixed points will be applied in Sections 3.1.1 and 5.2
below.

Lemma 2.7. Let A be a set and let F be a monotone endofunction on the complete
lattice P(A×A). Let F̃ : S 7→ (F(S−1))−1. Then F̃ is monotone and we have

(νF)−1 = νF̃
(µF)−1 = µF̃ .

2.2. Hennessy-Milner logic with variables and declarations

We recall the standard Hennessy-Milner logic (HML) extended with variables (see, for
instance, (Larsen 1990)). The logic depends on a finite set A, whose elements will be
viewed as actions, and an I-indexed set X = {Xi | i ∈ I} of variables, where I is a finite

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 8

set. We write L(I,A) for the set of formulae given by the following grammar

F ::= Xi (i ∈ I)

|
∧
k∈K Fk (K a finite set)

|
∨
k∈K Fk (K a finite set)

| 〈a〉F (a ∈ A)

| [a]F (a ∈ A).

If the meaning is clear from the context, we often omit I, A or both. As usual, we write
tt for nullary conjunction, ∧ for binary conjunction, ff for nullary disjunction and ∨ for
binary disjunction.

The structures on which we interpret a logic L(I,A) are labelled transition systems.

Definition 2.8. An A-labelled transition system (LTS) is a pair P = (P,−→) consisting
of

— a finite set P, and
— a transition relation −→⊆ P×A×P.

Typically, A is clear from context, and we thus often refer to an A-labelled transition sys-
tem as simply a labelled transition system. As usual, we write p a−→ p′ for (p, a, p′) ∈−→.
We often think of P as a set of processes, A as a set of actions, and p a−→ p′ as a transi-
tion from process p to process p′ via action a. We write p a−→ if there exists a p′ such that
p

a−→ p′, and we write p 6 a−→ if there is no such p′. Although we restrict the sets I, A,
and P to be finite, all the results of Sections 2–5 extend easily to the case where infinite
sets are used by allowing infinite conjunctions and disjunctions over sets of arbitrary
cardinality, and by allowing the sets A and I to be arbitrary as well. In Section 6 of the
paper, we will explicitly consider the version of the logic L(∅,A) with conjunctions and
disjunctions over arbitrary cardinals and over a countable set A.

Fixing A, a formula is interpreted over an A-labelled transition system (P,−→) as the
set of elements from P that satisfy the formula, where satisfaction is generally determined
by either a relation or a function. We will define satisfaction both ways, as the relation
involves a notation that may be more readable when using longer formulae, and the
function involves a notation that may clarify certain relationships among the semantics
of formulae and other concepts. As a formula typically contains variables, it has to
be interpreted with respect to a variable interpretation σ ∈ P(P)I (possibly with a
subscript) that associates to each i ∈ I the set of processes in P that are assumed to
satisfy the variable Xi. We first interpret a formula F ∈ L(I) by means of a satisfaction
relation |= from P(P)I × P to L(I). This relation tells us when a process p satisfies
the formula F under the interpretation σ and is defined by structural recursion on F as

Characteristic Formulae for Fixed-Point Semantics 9

follows.

σ, p |= Xi ⇔ p ∈ σ(i),

σ, p |=
∧
k∈K

Fk ⇔ σ, p |= Fk for all k ∈ K,

σ, p |=
∨
k∈K

Fk ⇔ σ, p |= Fk for some k ∈ K,

σ, p |= 〈a〉F ⇔ there is some p′ ∈ P such that p a−→ p′ and σ, p′ |= F ,

σ, p |= [a]F ⇔ for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F .

Now, for each F ∈ L(I), we define [[F]] : P(P)I → P(P) by

[[F]]σ = {p ∈ P | σ, p |= F}.

In particular [[Xi]]σ = σ(i), [[ff]]σ = ∅ and [[tt]]σ = P for all σ ∈ P(P)I . Moreover,
[[
∧
k∈K Fk]]σ =

⋂
k∈K([[Fk]]σ) and [[

∨
k∈K Fk]]σ =

⋃
k∈K([[Fk]]σ).

Lemma 2.9.

1 For any F ∈ L(I), the function [[F]] : P(P)I → P(P) is monotone.
2 P(P)I is a complete lattice.

Proof. The first claim can be proved easily by structural induction on F ∈ L(I). The
second one follows from Lemma 2.6 and the fact that P(P) is a complete lattice under
inclusion.

As mentioned above, the formulae of L(I) (as well as most variations of this language that
we will consider) include variables indexed by I and can therefore only be interpreted with
respect to a given variable interpretation. Unlike in the classical modal µ-calculus (Kozen
1983), where variables are typically bound by fixed point operators in the language that
will serve to determine the appropriate variable interpretation, we instead adopt the
approach followed in the so-called equational µ-calculus and involve systems of equations
that help induce a unique variable interpretation. Following Larsen (Larsen 1990), we
define systems of equations implicitly using declarations.

Definition 2.10.

— Given index sets I, J and given language L(J), we call a function D : I → L(J) (or
equivalently D ∈ L(J)I) an I-indexed declaration for a language L(J).

— We call a function E : I → L(I) (or equivalently E ∈ L(I)I) an I-indexed endodecla-
ration or an endodeclaration for L(I).

Semantically a declaration D : I → L(J) induces a function [[D]] : P(P)J → P(P)I as
follows.

Definition 2.11. If D : I → L(J) is a declaration then we define [[D]] : P(P)J → P(P)I

by

∀i ∈ I : ([[D]]σ)(i) = [[D(i)]]σ.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 10

If E is an endodeclaration, then [[E]] is an endofunction on the complete lattice P(P)I .
This is significant, since by the next lemma (Lemma 2.12), we will see that [[E]] is mono-
tone, and hence has a greatest and a least fixed point which we refer to as the greatest
and least interpretation of E respectively. This will be the method for inducing a unique
variable interpretation from a system of equations that we use throughout the paper.

Lemma 2.12. If E is an endodeclaration then [[E]] is a monotone endofunction on P(P)I

and therefore ν[[E]] and µ[[E]] exist.

Proof. Assume that σ1, σ2 ∈ P(P)I where σ1 ⊆ σ2. We have to prove that

[[E]]σ1 ⊆ [[E]]σ2,

or equivalently that

([[E]]σ1)(i) ⊆ ([[E]]σ2)(i) for all i ∈ I.
As, by definition, ([[E]]σj)(i) = [[E(i)]]σj for j = 1, 2 the claim follows from Lemma 2.9(1).

We recall that the greatest and the least fixed points of the endofunction [[E]] induced by
an endodeclaration E are elements of P(P)I , i. e. variable interpretations for the logic.

2.3. Characteristic Endodeclarations

The aim of this section is to investigate how we can characterize all processes p ∈ P
up to a binary relation S over processes (such as an equivalence or a preorder) using a
declaration. To achieve this aim, we take I = P in the definitions in the previous section
and consider the logic L(P). We have seen that each endodeclaration E ∈ L(P)P induces
an endofunction [[E]] on the complete lattice of variable interpretations P(P)P. Our goal
is to find an appropriate endodeclaration, such that the greatest fixed point of its induced
endofunction characterizes every process in P.

Definition 2.13. An endodeclaration E for the logic L(P) characterizes S ⊆ P×P iff
for each p, q ∈ P,

(p, q) ∈ S iff q ∈ (ν[[E]])(p).

In many of our examples, we seek declarations that characterize a relation, such as
similarity or bisimilarity, which is of the form ν F , where F is a monotone endofunction
on P(P × P). In what follows, we will describe how we can devise a characterizing
declaration for a relation that is obtained as a fixed point of a monotone endofunction,
which can be expressed in the logic. In Definition 2.15 to follow, we use the notation
introduced in Definition 2.14 below.

Definition 2.14. If S ⊆ P × P we define the variable interpretation σS ∈ P(P)P

associated to S by

σS(p) = {q ∈ P | (p, q) ∈ S}, for each p ∈ P.

Thus σS assigns to p all those processes q that are related to it via S.

Characteristic Formulae for Fixed-Point Semantics 11

Definition 2.15. We say that an endodeclaration E for L(P) expresses a monotone
endofunction F on P(P×P) when

(p, q) ∈ F(S) iff σS , q |= E(p),

for every relation S ⊆ P×P and every p, q ∈ P.

Now we are ready to state the main theorem of this paper to the effect that if a collection
of recursively defined logical formulae expresses an endofunction F , then the greatest
interpretation of that collection of formulae characterizes the greatest fixed point of F .

Theorem 2.16. Let F be a monotone endofunction on P(P×P) and E an endodecla-
ration for L(P) that expresses F . Then E characterizes νF .

We use the following result to prove the theorem. We begin with a definition.

Definition 2.17. Let Φ : P(P×P)→ P(P)P be defined by Φ(S) = σS .

Lemma 2.18. Φ : P(P×P)→ P(P)P is an isomorphism.

Now we are ready to prove Theorem 2.16.

Proof of Theorem 2.16. To prove the theorem, we first show that the following diagram
commutes.

P(P×P) Φ //

F
��

P(P)P

[[E]]

��
P(P×P)

Φ
// P(P)P

(1)

To prove (1), we proceed as follows. Let S ⊆ P×P. Then we have

([[E]] ◦ Φ)(S) = [[E]](Φ(S)) = [[E]]σS ,

and

(Φ ◦ F)(S) = Φ(F(S)) = σF(S).

To prove (1), it is therefore sufficient to prove that [[E]]σS = σF(S). Towards proving this,
assume that p ∈ P. Since E expresses F (in the sense of Definition 2.15),

([[E]]σS)(p) = [[E(p)]]σS = {q | σS , q |= E(p)} = {q | (p, q) ∈ F(S)} = σF(S)(p).

By Lemma 2.18, Φ is an isomorphism. Hence, Theorem 2.3 yields that Φ(νF) = ν[[E]].
As (p, q) ∈ νF iff q ∈ σνF (p) and σνF (p) = Φ(νF)(p), this implies that, for any p, q ∈ P,

(p, q) ∈ νF ⇔ q ∈ (ν[[E]])(p).

Therefore E characterizes νF (in the sense of Definition 2.13).

3. Applications

Our order of business in this section will be to apply Theorem 2.16 to obtain character-
istic formulae for various behavioral relations, which are defined as greatest fixed points

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 12

of monotone endofunctions, over variations on labelled transition systems. Most of the
results we present in this section are known from the literature on concurrency theory.
The characteristic formula constructions presented in Sections 3.1.3, 3.1.4, 3.2.3, 3.2.4,
and 3.4 are, to the best of our knowledge, new.

3.1. Types of similarity

In this section, we give examples of characteristic formulae for various types of similarity.

3.1.1. Simulation (Park 1981) Given an A-labelled transition system P = (P,−→), and
a relation S ⊆ P×P, let Fsim(S) be defined by

(p, q) ∈ Fsim(S) iff for every a ∈ A and p′ ∈ P,

if p
a−→ p′ then there exists a q′ ∈ P such that q

a−→ q′ and (p′, q′) ∈ S.

Fsim is a monotone endofunction on P(P×P) and its greatest fixed point, the simulation
preorder, is denoted by vsim.

Following the recipe of Section 2.3, we seek an endodeclaration Esim over L(P) ex-
pressing Fsim in the sense of Definition 2.15. To this end, assume that S ⊆ P × P and
observe that:

(p, q) ∈ Fsim(S) ⇔ ∀a ∈ A.∀p′ ∈ P. (p a−→ p′ ⇒ ∃q′ ∈ P. q a−→ q′&(p′, q′) ∈ S)

⇔ σS , q |=
∧
a∈A

∧
p′∈P. p a−→p′

〈a〉Xp′ .

This shows that the endodeclaration Esim : p 7→
∧
a∈A

∧
p′∈P. p a−→p′〈a〉Xp′ expresses

Fsim. Therefore the following proposition follows from Theorem 2.16.

Proposition 3.1. The endodeclaration Esim characterizes the preorder vsim.

Next we seek characteristic formulae for vopsim= (vsim)−1. Lemma 2.7 implies that
vopsim= νFopsim where Fopsim : S 7→ (Fsim(S−1))−1. Now we proceed as follows: For
all p, q ∈ P,

(p, q) ∈ Fopsim(S) iff (q, p) ∈ Fsim(S−1) iff for every a ∈ A and q′ ∈ P,

if q
a−→ q′ then there exists some p′ ∈ P such that p

a−→ p′ and (q′, p′) ∈ S−1

or equivalently,
(p, q) ∈ Fopsim(S) iff for every a ∈ A and q′ ∈ P,

if q
a−→ q′ then there exists some p′ ∈ P such that p

a−→ p′ and (p′, q′) ∈ S.

This can be expressed in the logic L(P) in the following way:

(p, q) ∈ Fopsim(S) ⇔ ∀a ∈ A.∀q′ ∈ P. (q a−→ q′ ⇒ ∃p′ ∈ P. p a−→ p′ & (p′, q′) ∈ S))
⇔ σS , q |=

∧
a∈A[a]

∨
p′∈P. p a−→p′ Xp′ .

This shows that the endodeclaration Eopsim : p 7→
∧
a∈A[a]

∨
p′∈P. p a−→p′ Xp′ expresses

Fopsim. Therefore Theorem 2.16 gives us the following:

Proposition 3.2. The endodeclaration Eopsim characterizes the preorder vopsim.

Characteristic Formulae for Fixed-Point Semantics 13

3.1.2. Ready simulation (Bloom et al. 1995; Larsen and Skou 1991) Given an A-labelled
transition system P = (P,−→) and a relation S ⊆ P × P, let FRS(S) be defined such
that

(p, q) ∈ FRS(S) iff for every a ∈ A,

1 if p
a−→ p′ then there exists some q′ ∈ P, such that q

a−→ q′ and (p′, q′) ∈ S, and

2 if q
a−→ then p

a−→.

Note that FRS is monotone; its greatest fixed point is the ready simulation preorder,
which is denoted by vRS .

Seeking a declaration for L(P) that expresses FRS , we reason as follows:

(p, q) ∈ FRS(S) ⇔ ∀a ∈ A.∀p′ ∈ P. (p a−→ p′ ⇒ ∃q′ ∈ P. (q a−→ q′&(p′, q′) ∈ S))&
∀a ∈ A. (p 6 a−→⇒ q 6 a−→)

⇔ σS , q |=
∧
a∈A

∧
p′∈P. p a−→p′〈a〉Xp′ ∧

∧
a∈A. p 6 a−→[a]ff.

Thus the endodeclaration ERS for L(P) given by

ERS : p 7→
∧
a∈A

∧
p′∈P. p a−→p′〈a〉Xp′ ∧

∧
a∈A.p6 a−→[a]ff.

expresses FRS . Therefore Theorem 2.16 gives us the following proposition.

Proposition 3.3. The endodeclaration ERS characterizes the preorder vRS .

3.1.3. Conformance simulation (Fábregas et al. 2009) Given an A-labelled transition
system P = (P,−→) and S ⊆ P×P, let FCS(S) be defined such that

(p, q) ∈ FCS(S) iff for every a ∈ A and q′ ∈ P,

1 if q
a−→ q′ and p

a−→, then there exists p′ ∈ P such that p
a−→ p′ and (p′, q′) ∈ S, and

2 if p
a−→, then q

a−→.

Note that FCS is monotone. Its greatest fixed point is called conformance simulation
preorder and is denoted by wCS .

Seeking a P-indexed declaration that expresses FCS , we reason as follows:

(p, q) ∈ FCS(S) ⇔ ∀a ∈ A.∀q′ ∈ P. (q a−→ q′& p
a−→⇒ ∃p′ ∈ P. (p a−→ p′& (p′, q′) ∈ S))

& ∀a ∈ A. (p a−→⇒ q
a−→)

⇔ σS , q |=
∧
a∈A. p a−→[a]

∨
p′∈P. p a−→p′ Xp′ ∧

∧
a∈A. p a−→〈a〉tt

⇔ σS , q |=
∧
a∈A. p a−→(〈a〉tt ∧ [a]

∨
p′∈P. p a−→p′ Xp′)

Thus the endodeclaration ECS : p 7→
∧
a∈A.p a−→(〈a〉tt ∧ [a]

∨
p′∈P. p a−→p′ Xp′) expresses

FCS . Therefore Theorem 2.16 gives us the following proposition.

Proposition 3.4. The endodeclaration ECS characterizes the preorder wCS .

3.1.4. Extended simulation (Thomsen 1987) We now consider A-labelled transition sys-
tems extended with a preorder relation vA over the set A of labels. Given an extended
A-labelled transition system (P,−→,vA) and S ⊆ P×P, we define Fext such that

(p, q) ∈ Fext(S) iff for every a ∈ A,

if p
a−→ p′ then there exist q′ ∈ P and b ∈ A such that a vA b, q

b−→ q′, and (p′, q′) ∈ S.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 14

We denote the greatest fixed point of Fext by vext.
Seeking a P-indexed endodeclaration that expresses Fext, we reason as follows: For

each S ⊆ P×P and p, q ∈ P,

(p, q) ∈ Fext(S) ⇔ ∀a ∈ A.∀p′ ∈ P.(p a−→ p′ ⇒ ∃b ∈ A.∃q′ ∈ P.(a vA b & q
b−→ q′ & (p′, q′) ∈ S))

⇔ σs, q |=
∧
a∈A

∧
p′∈P.p a−→p′

∨
b∈A.avAb

〈b〉Xp′ .

Thus the endodeclaration Eext : p 7→
∧
a∈A

∧
p′∈P.p a−→p′

∨
b∈A.avAb

〈b〉Xp′ expresses Fext,
and by Theorem 2.16, we have the following proposition.

Proposition 3.5. The endodeclaration Eext characterizes the preorder vext.

3.2. Types of bisimilarity

In this section, we provide examples of characteristic formulae for various types of bisim-
ilarity.

3.2.1. Strong bisimulation (Park 1981; Milner 1989) Given an A-labelled transition sys-
tem P = (P,−→) and a relation S ⊆ P×P, let Fbisim(S) be defined by

(p, q) ∈ Fbisim(S) iff for every a ∈ A,

1 if p
a−→ p′, then there exists some q′ ∈ P such that q

a−→ q′ and (p′, q′) ∈ S, and

2 if q
a−→ q′, then there exists some p′ ∈ P such that p

a−→ p′ and (p′, q′) ∈ S.

Fbisim is a monotone endofunction on P(P × P). Its greatest fixed point, known as
bisimulation equivalence, is denoted by ∼bisim.

Toward finding a declaration that expresses Fbisim, we observe in the following lemma
that if we have declarations expressing the monotone endofunctions F1 and F2, we can
obtain one expressing S 7→ F1(S)∩F2(S). This generalizes to arbitrary intersections, as
follows.

Lemma 3.6. Let {Fj}j∈J be a family of monotone endofunctions on P(P × P). For
each j ∈ J , let Ej be a P-indexed endodeclaration expressing Fj . Then the P-indexed
declaration p 7→

∧
j∈J Ej expresses S 7→

⋂
j∈J Fj(S).

We note that

Fbisim : S 7→ Fsim(S) ∩ Fopsim(S)

and observe that since Esim and Eopsim express Fsim and Fopsim respectively, then
p 7→ Esim(p)∧Eopsim(p) expresses S 7→ Fsim(S)∩Fopsim(S). Thus the endodeclaration
for L(P) given by

Ebisim : p 7→

 ∧
a∈A

∧
p′∈P. p a−→p′

〈a〉Xp′

 ∧
 ∧
a∈A

[a]
∨

p′∈P. p a−→p′

Xp′


expresses Fbisim. The following proposition now follows from Theorem 2.16.

Proposition 3.7. The endodeclaration Ebisim characterizes the equivalence ∼bisim.

The endodeclaration Ebisim is exactly the one proposed in (Ingolfsdottir et al. 1987).

Characteristic Formulae for Fixed-Point Semantics 15

3.2.2. Weak bisimulation (Milner 1989) Let P = (P,−→) be an A-labelled transition
system with one label τ ∈ A to be viewed as a silent step. We derive a family { a⇒}a∈A
of transition relations over P as follows:

— τ⇒ is the reflexive transitive closure τ−→
∗

of τ−→, and
— a⇒ is the composition τ⇒ ◦ a−→ ◦ τ⇒, for a 6= τ . †

We consider a variation of the language of HML, where the family of modal operators
〈a〉 and [a] are replaced with the family of modal operators 〈〈a〉〉 and [[a]] for the derived
relations a⇒, with a ∈ A. Thus the semantics is:

σ, p |= 〈〈a〉〉F1 iff σ, p′ |= F1 for some p′ for which p
a⇒ p′

σ, p |= [[a]]F1 iff σ, p′ |= F1 for all p′ for which p
a⇒ p′.

Let Fwbsm(S) be defined such that
(p, q) ∈ Fwbsm(S) iff for every a ∈ A,

1 if p
a⇒ p′, then there exists q′ ∈ P such that q

a⇒ q′ and (p′, q′) ∈ S, and

2 if q
a⇒ q′, then there exists p′ ∈ P such that p

a⇒ p′ and (p′, q′) ∈ S.

As Fwbsm is monotone, it has a greatest (post-)fixed point, which is the seminal notion
of weak bisimulation equivalence that we denote by ∼wbsm.

Note that Fwbsm is defined exactly as Fbisim, but with relations a−→ replaced by
derived relations a⇒. As [[a]] and 〈〈a〉〉 are the corresponding modalities for the derived
symbols, we replace every instance of [a] and 〈a〉 in Ebisim by [[a]] and 〈〈a〉〉. Thus the
endodeclaration for L(P) given by

Ewbsm : p 7→

 ∧
a∈A

∧
p′∈P.p a⇒p′

〈〈a〉〉Xp′

 ∧
 ∧
a∈A

[[a]]
∨

p′∈P. p a⇒p′

Xp′


expresses Fwbsm, and hence by Theorem 2.16, we have the following proposition.

Proposition 3.8. The endodeclaration Ewbsm characterizes the equivalence ∼wbsm.

Note that since q τ⇒ q holds for each q, unlike in the case for Ebisim, the formula for
Ewbsm can never have conjuncts of the form [[τ]]ff .

3.2.3. Back and forth bisimulation In this section we will introduce a new semantic equiv-
alence. This is a variant of the back and forth bisimulation equivalence introduced in (De
Nicola et al. 1990) that allows for several possible past states. The semantics introduced
in (De Nicola et al. 1990) assumes that the past is unique and consequently the derived
equivalence coincides with the standard strong bisimulation equivalence. This is not the
case for the multiple possible past semantics considered here. The introduction of this
behavioural equivalence serves as a stepping stone towards the one introduced in the
subsequent section.

Given P = (P,−→) and S ⊆ P×P, let Fbfb(S) be defined such that
(p, q) ∈ Fbfb(S) iff (p, q) ∈ Fbisim(S) and for every a ∈ A

† Composition ◦ between relations S and R is defined as R ◦ S = {(x, z) | there is y such that (x, y) ∈
R & (y, z) ∈ S}.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 16

1 ∀p′ ∈ P. p′
a−→ p⇒ ∃q′ ∈ P. q′

a−→ q and (p′, q′) ∈ S and

2 ∀q′ ∈ P. q′
a−→ q ⇒ ∃p′ ∈ P. p′

a−→ p and (p′, q′) ∈ S.

Fbfb is a monotone endofunction on P(P ×P), and its greatest fixed point, called back
and forth bisimulation equivalence, is denoted by ∼bfb.

To express such behaviour in the logical language considered so far, we add two oper-
ators 〈a〉 and [a] to it for every a ∈ A. The semantics for these is given by

σ, p |= 〈a〉F1 iff σ, p′ |= F1 for some p′ for which p′
a−→ p and

σ, p |= [a]F1 iff σ, p′ |= F1 for all p′ for which p′
a−→ p.

Clearly [[F]] is monotone for each F in the extended language.
Toward finding an endodeclaration that expresses ∼bfb, we reason similarly to the way

we did for finding an endodeclaration that express ∼bisim, and observe the following
equivalence:

(p, q) ∈ Fbfb(S) ⇔ σS , q |= Ebisim(p) ∧

 ∧
a∈A

∧
p′∈P. p′ a−→p

〈a〉Xp′

 ∧
 ∧
a∈A

[a]
∨

p′∈P. p′ a−→p

Xp′

 .

Then the endodeclaration given by

Ebfb : p 7→ Ebisim(p) ∧

 ∧
a∈A

∧
p′∈P. p′ a−→p

〈a〉Xp′

 ∧
 ∧
a∈A

[a]
∨

p′∈P. p′ a−→p

Xp′


expresses Fbfb, and hence, by Theorem 2.16, we have the following proposition.

Proposition 3.9. The endodeclaration Ebfb characterizes the equivalence ∼bfb.

3.2.4. Back and forth bisimulation with indistinguishable states (Dechesne et al. 2007)
In this section we consider a version of the back and forth bisimulation from the previous
section where some of the states are considered indistinguishable by some external agents.
For this purpose we augment our notion of labelled transition systems with a set I of
identities (or agents) and a family of equivalence relations { i· · · ⊆ P × P | i ∈ I}.
Intuitively p

i· · · q means that agent i cannot distinguish p from q. Such a structure is
called an annotated labelled transition system (Dechesne et al. 2007).

Given such a structure, let Fbfbid(S) be defined such that

(p, q) ∈ Fbfbid(S) iff (p, q) ∈ Fbfb(S) and for every a ∈ A and i ∈ I,

1 ∀p′ ∈ P. p
i· · · p′ ⇒ ∃q′ ∈ P. q

i· · · q′ and (p′, q′) ∈ S and

2 ∀q′ ∈ P. q
i· · · q′ ⇒ ∃p′ ∈ P. p

i· · · p′ and (p′, q′) ∈ S.

We denote the greatest fixed point of Fbfbid by ∼bfbid. We use the logical language for
back and forth bisimulation from Section 3.2.3 and add to it the operators 〈i〉 and [i] for
each i ∈ I. The semantics for these operators is given by

σ, p |= 〈i〉F1 iff σ, p′ |= F1 for some p′ for which p
i· · · p′ and

σ, p |= [i]F1 iff σ, p′ |= F1 for all p′ for which p
i· · · p′.

Clearly [[F]] is monotone for each F in the extended language.

Characteristic Formulae for Fixed-Point Semantics 17

Toward finding an endodeclaration that expresses ∼bfbid, we reason similarly to the
way we did for finding an endodeclarations that express ∼bfb and ∼bisim, and observe
the following equivalence:

(p, q) ∈ Fbfb(S) ⇔ σS , q |= Ebfb(p) ∧

∧
i∈I

∧
p′∈P. p i···p′

〈i〉Xp′

 ∧
∧
i∈I

[i]
∨

p′∈P. p i···p′

Xp′

 .

Then the endodeclaration given by

Ebfbid : p 7→ Ebfb(p) ∧

∧
i∈I

∧
p′∈P. p i···p′

〈i〉Xp′

 ∧
∧
i∈I

[i]
∨

p′∈P. p i···p′

Xp′


expresses ∼bfbid, and hence we have the following proposition.

Proposition 3.10. The endodeclaration Ebfbid characterizes the equivalence ∼bfbid.

As an immediate consequence of the existence of this characteristic formula, we obtain
a behavioural characterization of the equivalence over states in an annotated labelled
transition system induced by the epistemic logic studied in (Dechesne et al. 2007). (More
precisely, the logic we study in this section may be seen as the positive version of the
one studied in (Dechesne et al. 2007), where we use the modal operator [i] in lieu of
Ki, read “agent i knows”, and its dual.) This solves a problem that was left open in the
aforementioned reference.

Theorem 3.11. Let p, q ∈ P. Then p ∼bfbid q if, and only if, p and q satisfy the same
formulae expressible in the logic considered in this section.

Proof. The implication from left to right may be shown using standard lines. The one
from right to left is an immediate consequence of Proposition 3.10.

3.3. Transition Systems with Divergence

We frequently wish to consider systems in which some processes may diverge. We write
p ⇑ to indicate that p may diverge.

Definition 3.12. An A-labelled transition system with divergence consists of

— a set P of processes,
— a transition relation −→⊆ P×P
— and a predicate ⇑⊆ P

We write p ⇑ for p ∈⇑ and p 6⇑ for p 6∈⇑.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 18

We define Hennessy-Milner logic with divergence as follows. For a set I, we write L(I)
for the set of formulae given by

F ::= Xi (i ∈ I)

|
∧
k∈K Fk (K a finite set)

|
∨
k∈K Fk (K a finite set)

|⇑
|6⇑
| 〈a〉F (a ∈ A)

| 〈a〉∧⇑F (a ∈ A)

| 〈a〉∧6⇑F (a ∈ A)

| 〈a〉∨⇑F (a ∈ A)

| 〈a〉∨6⇑F (a ∈ A)

| [a]F (a ∈ A)

| [a]∧⇑F (a ∈ A)

| [a]∧6⇑F (a ∈ A)

| [a]∨⇑F (a ∈ A)

| [a]∨6⇑F (a ∈ A)

Let P = (P,−→,⇑) be an A-labelled transition system with divergence. We then define
a satisfaction relation |= from P(P)I×P to L(I) in the following inductive manner. Here
σ ∈ P(P)I and p ∈ P.

σ, p |= Xi ⇔ p ∈ σ(i)

σ, p |=
∧
k∈K Fk ⇔ σ, p |= Fk for all k ∈ K

σ, p |=
∨
k∈K Fk ⇔ σ, p |= Fk for some k ∈ K

σ, p |= ⇑ ⇔ p ⇑
σ, p |= 6⇑ ⇔ p 6⇑
σ, p |= 〈a〉F ⇔ there is p′ ∈ P such that p a−→ p′ and σ, p′ |= F

σ, p |= 〈a〉∧⇑F ⇔ p ⇑ and there is p′ ∈ P such that p a−→ p′ and σ, p′ |= F

σ, p |= 〈a〉∧6⇑F ⇔ p 6⇑ and there is p′ ∈ P such that p a−→ p′ and σ, p′ |= F

σ, p |= 〈a〉∨⇑F ⇔ p ⇑ or there is p′ ∈ P such that p a−→ p′ and σ, p′ |= F

σ, p |= 〈a〉∨6⇑F ⇔ p 6⇑ or there is p′ ∈ P such that p a−→ p′ and σ, p′ |= F

σ, p |= [a]F ⇔ for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F

σ, p |= [a]∧⇑F ⇔ p ⇑ and for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F

σ, p |= [a]∧6⇑F ⇔ p 6⇑ and for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F

σ, p |= [a]∨⇑F ⇔ p ⇑ or for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F

σ, p |= [a]∨6⇑F ⇔ p 6⇑ or for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F

Characteristic Formulae for Fixed-Point Semantics 19

Occasionally, we want to consider transition systems in which not only divergence is
possible but also other behaviours such as deadlock or crash (Aceto and Hennessy 1992).
In general, we have a finite set E which contains all these erroneous behaviours.

Definition 3.13. Let E be a finite set. An A-labelled transition system with E-errors
consists of

— a finite set P of processes,
— a transition relation −→⊆ P×A×P, and
— an error relation ⊆ P×E.

An ordinary transition system corresponds to the case E = ∅. A transition system with
divergence corresponds to the case E = {⇑}.

We define Hennessy-Milner logic with E-errors as follows. For a set I, we write L(I)
for the set of formulae given by

F ::= Xi (i ∈ I)

|
∧
k∈K Fk (K a finite set)

|
∨
k∈K Fk (K a finite set)

| OD (D ⊆ P(E))

| 〈a〉DD′F (a ∈ A and D,D′ disjoint subsets of P(E))

| [a]DD′F (a ∈ A and D,D′ disjoint subsets of P(E))

Let P = (P,−→,) be an A-labelled transition system with E-errors. We then define a
relation |= from P(P)I ×P to L(I) in the following inductive manner. Here σ ∈ P(P)I

and p ∈ P, and we write Errors(p) = {e ∈ E | p e}.

σ, p |= Xi ⇔ p ∈ σ(i)

σ, p |=
∧
k∈K Fk ⇔ σ, p |= Fk for all k ∈ K

σ, p |=
∨
k∈K Fk ⇔ σ, p |= Fk for some k ∈ K

σ, p |= OD ⇔ Errors(p) ∈ D
σ, p |= 〈a〉DD′F ⇔ Errors(p) ∈ D, or

Errors(p) 6∈ D′ and there is p′ ∈ P such that p a−→ p′ and σ, p′ |= F

σ, p |= [a]DD′F ⇔ Errors(p) ∈ D, or

Errors(p) 6∈ D′ and for all p′ ∈ P such that p a−→ p′, we have σ, p′ |= F

Informally, for the modalities ♦DD′ and �DD′ , the superscript indicates which processes
automatically ‘go to heaven’ and the subscript indicates which processes automatically
‘go to hell’. If p is a process which is not automatically assigned, then its fate depends
on its actions.

It is easy to see that Hennessy-Milner logic with E-errors reduces to ordinary Hennessy-
Milner logic if E is empty, and to Hennessy-Milner logic with divergence if E is a singleton.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 20

Dualization is defined as follows:

Xi = Xi∧
k∈K

Fk =
∨
k∈K

Fk

∨
k∈K

Fk =
∧
k∈K

Fk

OD = O(P(E))\D

〈a〉DD′F = [a]D
′

D F

[a]DD′f = 〈a〉D
′

D F

All the previously mentioned results about substitution and about characteristic formulae
adapt without difficulty to Hennessy-Milner logic with E-errors. (The same holds true for
the results on dualization and co-characteristic formulae to be presented in Section 5.)

3.4. Divergence and Simulation

Let P = (P,−→,⇑) be an A-labelled transition system with divergence. There are several
different kinds of simulation on P . For a relation S ⊆ P × P, we define the following
relations.

— (p, p′) ∈ Flower(S) when for every a ∈ A and q ∈ P such that p a−→ q, there exists
some q′ ∈ P such that p′ a−→ q′ and (q, q′) ∈ S. (This is the same as Fsim(S), for the
transition system (P,−→).)

— (p, p′) ∈ Fincl(S) when both the following hold:

– for every a ∈ A and q ∈ P such that p a−→ q, there exists some q′ ∈ P such that
p′

a−→ q′ and (q, q′) ∈ S and
– if p ⇑ then p′ ⇑.

— (p, p′) ∈ Fupper(S) when p 6⇑ implies that both the following hold:

1 p′ 6⇑ and
2 for all a ∈ A and q′ ∈ P such that p′ a−→ q′, there exists some q ∈ P, such that

p
a−→ q and (q, q′) ∈ S.

— (p, p′) ∈ Fsmash(S) when p 6⇑ implies that all the following hold:

1 p′ 6⇑,
2 for all a ∈ A and q ∈ P such that p a−→ q, there exists some q′ ∈ P such that

p′
a−→ q′ and (q, q′) ∈ S, and

3 for all a ∈ A and q′ ∈ P such that p′ a−→ q′, there exists some q ∈ P, such that
p

a−→ q and (q, q′) ∈ S.

— Fconvex(S) = Flower(S) ∩ Fupper(S)

A lower simulation is a post-fixed point for Flower, and we likewise define inclusion
simulation, upper simulation, smash simulation and convex simulation (also known as a
prebisimulation or partial bisimulation) (Lassen 1998; Milner 1981; Moran 1998; Pitcher
2001; Stirling 1987; Ulidowski 1992).

Characteristic Formulae for Fixed-Point Semantics 21

For each of these functions, we can find an endodeclaration that expresses it in Hennessy-
Milner logic with divergence. For example, Flower is expressed—just like Fsim in Sec-
tion 3.1.1—by

Elower : p 7→
∧
a∈A

∧
q∈P. p a−→q

〈a〉Xq

and Fupper is expressed by

Eupper : p 7→ 6⇑ ∧
∧
a∈A[a]

∨
q∈P. p a−→qXq (p 6⇑)

7→ tt (p ⇑).

Supposing that A is nonempty, we can equivalently write this endodeclaration as follows

Eupper : p 7→
∧
a∈A[a]∧6⇑

∨
q∈P. p a−→qXq (p 6⇑)

7→ tt (p ⇑).

Lemma 3.6 then tells us that Fconvex is expressed by

Econvex : p 7→
∧
a∈A

∧
q∈P. p a−→q〈a〉Xq

∧
∧
a∈A[a]∧6⇑

∨
q∈P. p a−→qXq (p 6⇑)

7→
∧
a∈A

∧
q∈P. p a−→q〈a〉Xq (p ⇑)

We can treat these examples, and others such as those in (Aceto and Hennessy 1992),
in a systematic manner by using the following concepts, taken from (Levy 2009).

Notation for Disjoint Union Let {Ai}i∈I be a family of sets. Then we write the disjoint
union as follows: ∑

i∈I
Ai = {(i, a) | i ∈ I, a ∈ Ai}

For the binary case, let A and B be sets. Then we write

A+B = {inl a | a ∈ A} ∪ {inr b | b ∈ B}

where we define inl a = (1, a) and inr b = (2, b).

Definition 3.14. Let E be a finite set. We write B = {t, f} for the set of booleans.

1 We define the conditional on P(B + E) to be the following ternary operation:

P(B + E) × (P(B + E))B −→ P(B + E)

K +D, f 7→
⋃
b∈K f(b) ∪ {inr e | e ∈ D}

2 A nondeterministic boolean precongruence (NDBP) for E-errors is a preorder on
{U ⊆ B + E | U 6= ∅} making the conditional operation monotone.

It is shown in (Levy 2009) that, if v is a NDBP for E-errors, then

— ∪ is monotone with respect to v, and
— v has a unique extension to P(B + E) making the conditional operation monotone.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 22

INCONSISTENT

{t}={f}={t,f}

EQUALITY

{t} {f} {t,f}

INCLUSION

{t} {f}

{t,f}

REFINEMENT

{t} {f}

{t,f}

Fig. 1. All the NDBPs for no errors

Some examples of NDBPs are displayed in Figures 1–3, taken from (Levy 2009).

There are many different notions of simulation on an A-labelled transition system
P = (P,−→,). In order for p′ to simulate p, we need three kinds of conditions:

1 The errors of p and the errors of p′ must be suitably related. For example, in smash
simulation, if p does not diverge then neither does p′.

2 In some circumstances (depending on the errors), whatever transition p can do can
also be done by p′, up to simulation. For example, in smash simulation this is so if p
does not diverge.

3 In some circumstances (depending on the errors), whatever transition p′ can do can
also be done by p, up to simulation. For example, in smash simulation this is so if p
does not diverge.

The precise conditions are determined by a NDBP in the following manner.

Definition 3.15. Let E be a finite set, and let v be a NDBP for E-errors. For any
relation S ⊆ P×P, we define a relation Fv(S) as follows: (p, p′)Fv(S) when

— {t}+ Errors(p) v {t}+ Errors(p′)
— if {t, f} + Errors(p) 6v {t} + Errors(p′) then for every a ∈ A and q ∈ P such that

p
a−→ q, there exists some q′ ∈ P such that p′ a−→ q′ and (q, q′) ∈ S

— if {t} + Errors(p) 6v {t, f} + Errors(p′) then for every a ∈ A and q′ ∈ P such that
p′

a−→ q′, there exists some q ∈ P such that p a−→ q and (q, q′) ∈ S.

A post-fixed point of Fv is called a v simulation, and the greatest one is called v
similarity.

Note that each of the five kinds of simulation from the start of Section 3.4 arises from
the corresponding NDBP shown in Figure 2.

Theorem 3.16. Let E be a finite set and let v be a NDBP for E-errors.The P-indexed

Characteristic Formulae for Fixed-Point Semantics 23

{t} {f} {t,f} {d} {t,d} {f,d} {t,f,d}

EQUALITY

{d} {t}={t,d} {f}={f,d} {t,f}={t,f,d}

{d}={t,d}={f,d}={t,f,d} {t} {f} {t,f}

{t,f} ={t,f,d}

{t}={t,d} {f}={f,d}

{d} {d}={t,d}={f,d}={t,f,d}

{t,f}

{t} {f}

{d}={t,d}={f,d}={t,f,d}

{t,f}{t} {f}

{d}

{t}={t,d} {f}={f,d}

{t,f}={t,f,d}

{d}={t,d}={f,d}={t,f,d}

{t,f}

{t} {f}

{d}={t,d}={f,d}={t,f,d}

{t} {t,f} {f}

{d}
{t,d} {f,d}

{t,f,d}

{t} {t,f} {f}

{d}
{t,d} {f,d}

{t,f,d}

{t} {t,f} {f}

{t} {d}{f}

{t,f} {t,d} {f,d}

{t,f,d} {d} {t,d} {f,d} {t,f,d}

{t} {f} {t,f}

{t} {f} {d}

{t,f} {t,d} {f,d}

{t,f,d}

{t} {f} {t,f}

{d} {t,d} {f,d} {t,f,d}

{t} {f} {t,f}

{t,f,d}

{t,d} {f,d}

{d}

{t} {f} {t,f}

{d}

{t,d} {f,d}

{t,f,d}

{t,f,d}

{t,d} {t,f} {f,d}

{t} {d} {f}

{t} {d} {f}
{t,d} {t,f} {f,d}

{t,f,d}

LOWER UPPER SMASH

OP-LOWER OP-UPPER OP-SMASH

CONVEX INCLUSION SESQUI INCLUSION

OP-CONVEX REFINEMENT SESQUI REFINEMENT

PLUCKED STUNTED LOWER CONGRUENCE

OP-PLUCKED OP-STUNTED UPPER CONGRUENCE

INCONSISTENT

{t}={f}={t,f}={d}={t,d}={f,d}={t,f,d}

Fig. 2. All the NDBPs for divergence (d)

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 24

{d}={d,c}

{t,d}=t,d,c}
{f,d}={f,d,c}

{t,f,d}={t,f,d,c}

{c}

{t} {t,c}

{t,f} {t,f,c}

{f} {f,c}

ACETO-HENNESSY

Fig. 3. NDBP for divergence (d) and deadlock (c) used in (Aceto and Hennessy 1992)

endodeclaration

Ev : p 7→ O{C⊆E|{t}+Errors(p)v{t}+C}

∧
∧
a∈A

∧
q∈P. p a−→q

〈a〉{C⊆E|{t,f}+Errors(p)v{t}+C}
{C⊆E|{t}+Errors(p)6v{t}+C} Xq

∧
∧
a∈A

[a]{C⊆E|{t}+Errors(p)v{t,f}+C}
{C⊆E|{t}+Errors(p)6v{t}+C}

∨
q∈P. p a−→q

Xq

expresses Fv.

Proof. The proof is straightforward.

It follows that Ev characterizes v similarity.

Remark Although there are various equivalent ways of presenting Ev, we have chosen
a formulation that uses only the positive modalities of v, in the sense of (Levy 2009).

4. Extensions of the approach

All the applications of the general theory developed so far in the paper dealt with re-
lations that were defined as greatest fixed points of monotone endofunctions over the
complete lattice of binary relations over P. In this setting, Theorem 2.16 allowed us to
characterize those relations logically by exhibiting an endodeclaration that expressed the
relevant endofunction. Sometimes, however, Theorem 2.16 is not readily applicable in or-
der to yield characteristic-formula constructions for behavioral relations. In this section,
we present two such examples of relations, namely mutual similarity (i.e., simulation
equivalence) and the 2-nested simulation preorder. We also extend our approach, provid-
ing the theoretical tools needed to offer characteristic formulae for them. The notion of
formula with endodeclaration, which we now proceed to define, provides the underlying
framework for the subsequent developments in the section.

Characteristic Formulae for Fixed-Point Semantics 25

4.1. Formula with endodeclaration

Definition 4.1.

1 A formula with endodeclaration is a pair (F,E), where F ∈ L(I) is a formula and
E ∈ L(I)I is an endodeclaration, for some set I.

2 A formula with endodeclaration (F,E) characterizes process p ∈ P up to a relation
S ⊆ P×P if

(p, q) ∈ S iff ν[[E]], q |= [[F]]

or equivalently, if

(p, q) ∈ S iff q ∈ [[F]](ν[[E]]).

Note that, for a declaration E, the following are equivalent:

— E characterizes S
— for each p ∈ P, the formula with endodeclaration (Xp, E) characterizes p up to S.

4.1.1. Substitution We describe the notion and properties of substitution, which will be
used in Section 4.2 and extensively in Section 6.

For any formula F ∈ L(I) and declaration D : I → L(J), we write F [D] ∈ L(J) for
the substitution of D within F , defined by induction on F as follows:

Xı̂[D] = D(̂ı)

(
∧
k∈K

Fk)[D] =
∧
k∈K

(Fk[D])

(
∨
k∈K

Fk)[D] =
∨
k∈K

(Fk[D])

(〈a〉F)[D] = 〈a〉(F [D])

([a]F)[D] = [a](F [D]).

Likewise, given declarations D : I → L(J) and D′ : J → L(H) we define the substitution
D[D′] : I → L(H) to be the declaration i 7→ D(i)[D′].

Lemma 4.2. Substitution satisfies the following properties.

1 For any formula F ∈ L(I), we have F [i 7→ Xi] = F .
2 For any formula F ∈ L(I) and declarations D : I → L(J) and D′ : J → L(H), we

have (F [D])[D′] = F [D[D′]].
3 For any formula F ∈ L(I) and declaration D : I → L(J), the following diagram

commutes:

P(P)J
[[D]] //

[[F [D]]] $$IIIIIIIII
P(P)I

[[F]]

��
P(P)

Proof. All by induction on F .

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 26

4.2. Adding variables

It is useful to note that a characteristic formula remains so when we add variables to the
language and extend the declaration in an arbitrary manner. Lemma 4.4 below will be
used in the proof of this fact, as well as in the proof of Theorem 4.10 in Section 4.4 to
follow.

Definition 4.3. Let A, B, and C be sets, F : A × B → C, and a ∈ A. Then we write
Fa : B → C for the function mapping b to F (a, b).

It is clear that if A, B and C are posets and F : A×B → C is monotone, then Fa is also
monotone for each a ∈ A.

Lemma 4.4. Let A and B be posets, and let F : A → A and G : A × B → B be
monotone functions. Suppose νF exists. Define H : A×B → A×B by

(a, b) 7→ (F (a), G(a, b))

Then νH exists iff νGνf does, in which case

νH = (νF, νGνF)

The above result, whose proof is provided in Appendix A, is a special case of Bekic’s
lemma.

We now proceed to define formally the extension of a declaration.

Definition 4.5. Let I and J be sets, and m : I −→ J an injection. Let E be an I-
indexed endodeclaration and D : (J \ range(m))→ L(J) a declaration. The extension of
E by D, written EmD, is the J-indexed endodeclaration

m(i) 7→ E(i)[i 7→ Xm(i)] (i ∈ I)

j 7→ D(j) (j ∈ J \ range(m))

Lemma 4.6. Let (F,E) be a formula with endodeclaration. Let m : I −→ J an injection
and D : (J \ range(m)) → L(J) a declaration. For any relation S ⊆ P × P and process
p ∈ P, the following statements are equivalent:

— (F,E) characterizes p up to S.
— (F [i 7→ Xm(i)], EmD) characterizes p up to S.

Proof. We abbreviate I ′ = J \ range(m). Let θ : P(P)I × P(P)I
′ → P(P)J be the

isomorphism mapping (σ, σ′) to

m(i) 7→ σ(i) (i ∈ I)

j 7→ σ′(j) (j ∈ I ′)

and define the endofunction Gν[[E]] on P(P)I
′

to map σ to [[D]]θ(ν[[E]], σ), and the endo-
function H on P(P)I ×P(P)I

′
to map (σ, σ′) to ([[E]]σ, [[D]]θ(σ, σ′)). Since [[D]] is mono-

tone, so is Gν[[E]], and hence νGν[[E]] exists. Then by Lemma 4.4, νH = (ν[[E]], νG[[E]]).

Characteristic Formulae for Fixed-Point Semantics 27

By the definitions, the following commutes:

P(P)I × P(P)I
′ H //

θ

��

P(P)I × P(P)I
′

θ

��
P(P)J

[[EmD]]
// P(P)J

(2)

as θ(H(σ, σ′)) = θ([[E]]σ, [[D]]θ(σ, σ′) is the function that

m(i) 7→ ([[E]]σ)(i) (i ∈ I)
j 7→ [[D(j)]]θ(σ, σ′) (j ∈ I ′) ,

and [[EmD]]θ(σ, σ′) is the function that

m(i) 7→ [[EmD(m(i))]]θ(σ, σ′) =
[[E(i)[i 7→ Xm(i)]]]θ(σ, σ′) = ([[E]]σ)(i) (i ∈ I)

j 7→ [[EmD(j)]]θ(σ, σ′) = [[D(j)]]θ(σ, σ′) (j ∈ I ′)
.

Thus Theorem 2.3(2) gives us ν[[EmD]] = θ(ν[[E]], νGν[[E]]). We calculate

[[F [i 7→ Xm(i)]]](ν[[EmD]]) = [[F]](i 7→ [[Xm(i)]](ν[[EmD]]))

= [[F]](i 7→ (ν[[EmD]])m(i))

= [[F]](i 7→ (θ(ν[[E]], νGν[[E]]))m(i))

= [[F]](i 7→ (ν[[E]])i)

= [[F]](ν[[E]])

giving the required result.

To illustrate the use of Lemma 4.6, we use the following notions.

Definition 4.7. Let p ∈ P be a process.

1 A subsystem of P is a subset Q ⊆ P such that if p ∈ Q and p
a−→ p′ then p′ ∈ Q.

2 We write reach(p) for the set of processes q ∈ P reachable from p, i.e. the least
subsystem containing p.

3 p is image finite (resp. image countable) when for each q ∈ P and a ∈ A, the set
{r ∈ P | q a−→ r} is finite (resp. countable).

Let p ∈ P and let E be a P-indexed declaration. We write E � reach(p) for the re-
striction of E to a reach(p)-indexed declaration. By way of example, take E = Esim.
Then Lemma 4.6 tells us that (Xp, Esim � reach(p)) is characteristic for p up to vsim.
To see why this is advantageous, suppose that p is image countable. Then, since A is
assumed countable, reach(p) must be countable, and each formula in the declaration
Esim � reach(p) uses only conjunctions and disjunctions of countable arity. This will be
the case even if P contains other processes that are not image countable.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 28

4.3. Mutual simulation

We now proceed to develop the general theory that will allow us to provide characteristic-
formula constructions for relations that, like mutual similarity, are obtained as intersec-
tions of relations for which we already have characteristic formulae with declarations.

If we know how to find characteristic formulae up to S1 and up to S2, then we can find
them up to S1 ∩ S2. This generalizes to arbitrary intersections, in the following manner.

Lemma 4.8. Let {Sj}j∈J be a family of binary relations from P to P, and let p ∈ P.
For each j ∈ J , let Ej be an Ij-indexed endodeclaration, and let Fj be such that (Fj , Ej)
characterizes p up to Sj . Let E be the

∑
j∈J Ij-indexed endodeclaration given by

(j, i) 7→ Ej(i)[i 7→ X(j,i)]

Then

(
∧
j∈J

Fj [i 7→ X(j,i)], E)

characterizes p up to
⋂
j∈J Sj .

Proof. For each ĵ ∈ J , Lemma 4.6 tells us that (F
ĵ
[i 7→ X(j,i)], E) characterizes p up

to S
ĵ
. The result follows.

We write ∼sim for mutual similarity, i.e. the intersection of vsim and vopsim. This can
be treated using Lemma 4.8. We define Esimeq to be the P + P indexed declaration

inl p 7→
∧
a∈A

∧
q∈P. p a−→q

〈a〉Xinl q

inr p 7→
∧
a∈A

[a]
∨

q.p
a−→q

Xinr q

Then the formula with endodeclaration (Xinl p ∧ Xinr p, Esimeq) characterizes p up to
∼sim.

4.4. Nested simulation (Groote and Vaandrager 1992)

Let P = (P,−→) be an A-labelled transition system. A relation S ⊆ (P×P) is a 2-nested
simulation when it is a simulation contained in vopsim. The greatest 2-nested simulation
is called 2-nested similarity and denoted by v2sim. Theorem 2.16 is not applicable in
this case, so we need to develop a suitable generalization.

Definition 4.9. Let A be a complete lattice, let f be a monotone endofunction on A

and let a ∈ A. We write a u f for the endofunction x 7→ a ∧ f(x) on A.

Theorem 4.10. Let P = (P,−→) be an A-labelled transition systems, let F be a
monotone endofunction on P(P × P), and let R ⊆ P × P be a relation. Let E be an
I-indexed endodeclaration and D : P→ L(I) a declaration such that, for each p ∈ P, the
formula with endodeclaration (D(p), E) characterizes p up to R. Let E′ be a P-indexed

Characteristic Formulae for Fixed-Point Semantics 29

endodeclaration expressing F . Let E′′ be the I + P indexed declaration

inl i 7→ E(i)[i′ 7→ Xinl i′]

inr p 7→ F (p)[i′ 7→ Xinl i′] ∧ E′(p)[p′ 7→ Xinr p′]

Let p ∈ P. Then (Xp, E
′′) characterizes p up to ν(R u F).

Proof. Let h : P(P)I → P(P×P) be the monotone function mapping each σ to

{(q, q′) ∈ P×P | q′ ∈ [[D(q)]]σ}.

LetH be the monotone endofunction on P(P)I×P(P×P) mapping (σ, S) to ([[E]]σ, h(σ)∩
F(S)). Lemma 4.4 gives us

ν H = (ν[[E]], ν(h(ν[[E]]) u F))

Now

(p, p′) ∈ h(ν[[E]]) ⇔ p′ ∈ [[D(p)]](ν[[E]]) by definition

⇔ (p, p′) ∈ R since (D(p), E) characterizes p up to R

Therefore h(ν[[E]]) = R and so ν H = (ν[[E]], ν(R u F)). By calculation, the following
diagram commutes:

P(P)I × P(P×P) τ //

H

��

P(P)I+P

[[E′′]]

��
P(P)I × P(P×P) τ

// P(P)I+P

where τ is the isomorphism mapping (σ, S) to the environment

inl i 7→ σi

inr p 7→ {p′ ∈ P | (p, p′) ∈ S}

So Lemma 2.3(2) gives τ ν H = ν[[E′′]]. Hence

[[Xinr p]](ν[[E′′]]) = (ν[[E′′]])(inr p)

= (τ ν H)(inr p)

= (τ(ν[[E]], ν(R u F)))(inr p)

= {p′ ∈ P | (p, p′) ∈ ν(R u F)}

as required.

It is easy to see that Theorem 2.16 corresponds to the special case of Theorem 4.10 given
by

R = P×P

I = ∅
F : p 7→ tt

We are now able to put together the characteristic formulae for vopsim and the dec-
laration expressing Fsim, both given in Section 3.1.1. Let E2sim be the P + P indexed

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 30

declaration

inl p 7→
∧
q∈A

[a]
∨

q∈P. p a−→q

Xinl q

inr p 7→ Xinl p ∧
∧
a∈A

∧
q∈P. p a−→q

〈a〉Xinr q.

For any p ∈ P, Theorem 4.10 tells us that (Xinr p, E2sim) characterizes p up to v2sim.

5. Co-characteristic formulae

5.1. Dualization

For any formula F ∈ L(I) we write F ∈ L(I) for the de Morgan dual of F , defined by
induction on F as follows.

Xi = Xi∧
k∈K

Fk =
∨
k∈K

Fk

∨
k∈K

Fk =
∧
k∈K

Fk

〈a〉F = [a]F

[a]f = 〈a〉F

Likewise, for a declaration D : I → L(J) we define the dual D : I → L(J) to be the
declaration i 7→ D(i).

Before giving the properties of dualization, it will be helpful to introduce the following
notion.

Definition 5.1. For posets A and B, an anti-isomorphism ψ : A → B is a bijective
function such that x vA y iff ψ(x) wB ψ(y).

Theorem 5.2. Let A and B be posets, f and g be monotone endofunctions on A and B
respectively and ψ : A→ B an anti-isomorphism such that ψ ◦ f = g ◦ψ, or equivalently
such that the square

A
f //

ψ

��

A

ψ

��
B g

// B

commutes. Then the following statements hold:

1 If f(x) = x then g(ψ(x)) = ψ(x) (ψ maps fixed points for f into fixed points for g).
2 If νf exists then µg exists and ψ(νf) = µg (ψ maps the greatest fixed point for f into

the least fixed point for g).
3 If µf exists then νg exists and ψ(µf) = νg (ψ maps the least fixed point for f into

the greatest fixed point for g).

Characteristic Formulae for Fixed-Point Semantics 31

Proof. This theorem is equivalent to Theorem 2.3, because an anti-isomorphism from
A to B is just an isomorphism from A to the dual of B.

Lemma 5.3. Dualization satisfies the following properties.

1 For any formula F ∈ L(I), we have F = F .
2 Let us write χ : P(P) → P(P) for the anti-isomorphism mapping U to P \ U , and

χI : P(P)I → P(P)I for the anti-isomorphism mapping σ to i 7→ (P \ σ(i)). For any
formula F ∈ L(I), the following diagram commutes:

P(P)I
[[F]] //

χI

��

P(P)

χ

��
P(P)I

[[F]]

// P(P)

Proof. Both statements can be shown by induction on F .

5.2. Co-characteristic formulae: theory and examples

We now introduce the notion of a co-characteristic formula, which for each p ∈ P is a
formula Fp such that for some fixed variable interpretation σ and each q ∈ P,

σ, q |= Fp iff (q, p) 6∈ S.

Definition 5.4. Let S ⊆ P×P be a relation.

1 An endodeclaration E co-characterizes S iff

(q, p) 6∈ S iff q ∈ (µ[[E]])(p).

2 A formula with endodeclaration (F,E) co-characterizes process p ∈ P up to S if

(q, p) 6∈ S iff µ[[E]], p 6|= [[F]]

or equivalently if

(q, p) 6∈ S iff p ∈ [[F]](µ[[E]]).

Note that, for a declaration E, the following are equivalent:

— E co-characterizes S
— for each p ∈ P, the formula with endodeclaration (Xp, E) co-characterizes p up to S.

To find a co-characteristic formula up to a given a binary relation S, we simply take a
characteristic formula up to S−1 and dualize it.

Lemma 5.5. Let S ⊆ P×P be a relation.

1 Let E be an endodeclaration for L(P). Then the following statements are equivalent:

— E characterizes S−1, and

— E co-characterizes S.

2 Let p ∈ P, and let (F,E) be a formula with endodeclaration. Then the following
statements are equivalent:

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 32

— (F,E) characterizes p up to S−1, and

— (F ,E) is co-characterizes p up to S.

Proof. We just prove part (2), as part (1) is a special case. Lemma 5.3(2) tells us that

P(P)I

χI

��

[[E]] // P(P)I

χI

��
P(P)I

[[E]]

// P(P)I

commutes, and Theorem 5.2(2) tells us that µ[[E]] = χI(ν[[E]]). We apply Lemma 5.3(2)
again to obtain

[[F]](µ[[E]]) = χ([[F]](ν[[E]]))

= P \ [[F]](ν[[E]]).

The result follows.

Here are some examples.

1 We obtain co-characteristic formulae for vsim by dualizing the characteristic formulae
for vopsim. Thus the endodeclaration E′sim, where

E′sim : p 7→
∨
a∈A

〈a〉
∧

q∈P. p a−→q

Xq

co-characterizes vsim.

2 We obtain co-characteristic formulae for vopsim by dualizing the characteristic for-
mulae for vsim. Thus the endodeclaration E′opsim, where

E′opsim : p 7→
∨
a∈A

∨
q∈P. p a−→q

[a]Xq

co-characterizes vopsim.

3 We obtain co-characteristic formulae for ∼bisim by dualizing its characteristic formu-
lae. Thus E′bisim, where

E′bisim : p 7→

 ∨
a∈A

〈a〉
∧

q∈P. p a−→q

Xq

 ∨
 ∨
a∈A

∨
q∈P.p a−→q

[a]Xq


co-characterizes ∼bisim.

4 Let E be a finite set and let v be a NDBP for E-errors. We obtain co-characteristic
formulae for v similarity by dualizing the characteristic formulae for its inverse (see

Characteristic Formulae for Fixed-Point Semantics 33

Theorem 3.16). The P-indexed endodeclaration

E′v : q 7→ O{C⊆E|{t}+C 6v{t}+Errors(q)}

∨
∨
a∈A

〈a〉{C⊆E|{t}+C 6v{t}+Errors(q)}
{C⊆E|{t,f}+Cv{t}+Errors(q)}

∧
q′∈P. q a−→q′

Xq′

∨
∨
a∈A

∨
q′∈P. q a−→q′

[a]{C⊆E|{t}+C 6v{t}+Errors(q)}
{C⊆E|{t}+Cv{t,f}+Errors(q)}Xq′

co-characterizes vsim.

Note that

— for vsim, both the characteristic and the co-characteristic formulae use only the 〈a〉
modalities.

— for vopsim, both the characteristic and the co-characteristic formulae use only the [a]
modalities.

— the characteristic and co-characteristic formulae for∼bisim use both 〈a〉 and [a] modal-
ities.

For each of our results about characteristic formulae, there is a dual result about
co-characteristic formulae. As an illustration, we give the dual of the key results in
Section 2.3.

Definition 5.6. (dual of Definition 2.15) Let F be a monotone endofunction on P(P×
P). A P-indexed endodeclaration E is said to co-express F when

(q, p) 6∈ F(S) ⇔ σ(P×P)\S−1 , q |= E(p)

for every relation S ⊆ P×P and every p, p′ ∈ P.

Lemma 5.7. Write ϕ′ : P(P×P)→ P(P)P for the anti-isomorphism mapping a relation
S to the environment σ(P×P)\S−1 Let F be a monotone endofunction on P(P×P), and
let E be a P-indexed endodeclaration. Then E co-expresses F iff the following commutes:

P(P×P)
ϕ′ //

F
��

P(P)P

[[E]]

��
P(P×P)

ϕ′
// P(P)P

(3)

Theorem 5.8. (dual of Theorem 2.16) Let F be a monotone endofunction on P(P×P),
and let E be a P-indexed endodeclaration co-expressing F . Then E co-characterizes νF .

As defined in Lemma 2.7, given an endofunction F on P(P × P), let F̃ : S 7→
(F(S−1))−1. To obtain a declaration expressing F , we take a declaration co-expressing
F̃ and dualize it.

Lemma 5.9. Let F be a monotone endofunction on P(P×P). Then the following are
equivalent:

— E expresses F̃ .

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 34

— E co-expresses F .

In particular,

— the endodeclaration E′sim co-expresses Fsim,
— the endodeclaration E′opsim co-expresses F̃sim, and
— the endodeclaration E′bisim co-expresses Fbisim.
— the endodeclaration E′v co-expresses Fv.

6. Closed Formulae

In this section, we consider L(I,A) with A countable, and with disjunctions and con-
junctions over arbitrary cardinals, interpreted over A-labelled transition systems with
sets of processes of arbitrary cardinality. As previously mentioned, all the definitions and
results in Sections 2.2 through 4.4 extend easily to this language.

A formula F ∈ L(∅) is called a closed formula. We call a declaration E : I → L(∅) a
closed declaration. We write ε ∈ P(P)∅ for the empty environment.

Although we have defined what it means for a formula with endodeclaration to charac-
terize a process p, when involving closed formulae, the declaration need not be specified,
as in the following definition.

Definition 6.1. Let S ⊆ P×P be a relation. A closed formula F characterizes p up to
S when, for all p′ ∈ P, we have ε, p′ |= F iff (p, p′) ∈ S.

This is equivalent to the formula with endodeclaration (F,E∅) characterizing p up to S,
where E∅ is the ∅-indexed endodeclaration.

We now proceed to show how to find characteristic closed formulae up to a relation S
defined as a greatest fixed point, using transfinite induction. We write On for the class
of ordinals.

Definition 6.2. Let f be a monotone endofunction on a complete lattice A. We define
a decreasing sequence (fα)α∈On in A as follows:

fα+1 = f(fα).

For λ a limit ordinal, fλ =
d
α<λ f

α (the greatest lower bound of the set {fα}α<λ).

In particular, f0 = > (the top element).

Since A is a set, this sequence reaches its greatest lower bound, which is νf . The corre-
sponding construction for a declaration is as follows.

Definition 6.3. Let E be an I-indexed endodeclaration. For each ordinal α, we define
closed declarations Eα : I → L(∅) as follows:

Eα+1 : i 7→ E(i)[Eα].

For λ a limit ordinal, Eλ : i 7→
∧
α<λE

α(i) (the conjunction of all the Eα(i) with α < λ).

In particular, E0 : i 7→ tt.

Characteristic Formulae for Fixed-Point Semantics 35

The following lemma establishes the connection between the approximants of [[E]] given
in Definition 6.2 and the syntactic approximants to E presented in Definition 6.3.

Lemma 6.4. Let E be an I-indexed endodeclaration. For each ordinal α, we have

[[Eα]]ε = [[E]]α.

Proof. Induction on α, using Lemma 4.2(3) for the successor case.

We note that Eα(i) is unchanged when we add more variables to the declaration E,
in the manner of Definition 4.5.

Lemma 6.5. Let I and J be sets, and m : I −→ J an injection. Let E be an I-indexed
endodeclaration and D : (J \ range(m))→ L(J) a declaration. Let α be an ordinal. Then
for any i ∈ I we have

(EmD)α(m(i)) = Eα(i). (4)

Proof. Induction on α: the limit case is trivial and the successor case is as follows.
Suppose (4) holds for all i ∈ I. For any ı̂ ∈ I we have

(EmD)α+1(m(̂ı)) = EmD[(EmD)α]m(̂ı) (by definition)

= EmD(m(̂ı))[(EmD)α] (by definition)

= E(̂ı)[i 7→ Xm(i)][(EmD)α] (definition of EmD)

= E(̂ı)[i 7→ Xm(i)[(EmD)α]] (by Lemma 4.2(2))

= E(̂ı)[i 7→ (EmD)α(m(i))] (by definition)

= E(̂ı)[i 7→ Eα(i)] (by inductive hypothesis)

= E[i 7→ Eα(i)](̂ı) (by definition)

= Eα+1(̂ı) (by definition)

as required.

Lemma 6.6. Suppose A and B are complete lattices and φ is an isomorphism. Then,
for each X ⊆ A,

φ(
l
X) =

l
φ(X) =

l
{φ(x) | x ∈ X}.

Lemma 6.7. (analog of Theorem 2.3) Let A and B be complete lattices, f and g mono-
tone endofunctions on A and B respectively, and φ : A→ B an isomorphism, such that
φ ◦ f = g ◦ φ. Then for each ordinal α, we have that φ(fα) = gα.

Proof. The statement is shown by ordinal induction, using Lemma 6.6 for a limit
ordinal.

Once again, we assume that P = (P,−→) is an A-labelled transition system.

Lemma 6.8. Suppose that F is a monotone endofunction on P(P × P), and E is a
P-indexed endodeclaration expressing F . Let α be an ordinal and p ∈ P a process with
the following property: for any p′ ∈ P, if (p, p′) ∈ Fα then (p, p′) ∈ νF (the converse is
automatic). Then the closed formula Eα(p) characterizes p up to νF .

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 36

Proof. Since E expresses F , then following an argument given in the proof of Theorem
2.16, we know that (1) commutes. Then by Lemma 6.7, for any ordinal β, we have
Φ(Fβ) = [[E]]β , where Φ is the isomorphism P(P × P) → P(P)P mapping a relation S

to σS (see Definition 2.17). For any p′ ∈ P, we reason as follows:

ε, p′ |= Eα(p) ⇔ p′ ∈ ([[Eα]]ε)(p)

⇔ p′ ∈ [[E]]α(p) (from Lemma 6.4)

⇔ p′ ∈ (Φ(Fα))(p) (from Lemma 6.7)

⇔ (p, p′) ∈ Fα

⇔ (p, p′) ∈ νF (by the property in the statement of the lemma)

as required.

To illustrate how Lemma 6.8 can be applied, we use the following results from the liter-
ature.

Definition 6.9. A regular cardinal is a cardinal κ for which given any I with cardinality
< κ and given any sets {αi}i∈I , each with cardinality < κ, then

⋃
i∈I αi has cardinality

< κ.

Definition 6.10. Let κ be an infinite regular cardinal.

1 A process p ∈ P is image κ-bounded when for each a ∈ A the set {q ∈ P | p a−→ q}
has cardinality < κ.

2 P is an image κ-bounded A-labelled transition system when,each p ∈ P is image
κ-bounded.

3 A formula F ∈ L(I) is κ-bounded when all the conjunctions and disjunctions in it
are of arity < κ.

In particular, κ = ω gives image finiteness (Hennessy and Milner 1985), and κ = ω1 (the
smallest uncountable ordinal) gives image countability.

Theorem 6.11. Let κ be an infinite regular cardinal. Suppose that p ∈ P is image
κ-bounded.

1 Suppose p′ ∈ P is image κ-bounded. Then p vsim p′ iff (p, p′) ∈ Fκsim.
2 Let p′ ∈ P. Then p vopsim p′ iff (p, p′) ∈ Fκopsim.
3 Let p′ ∈ P. Then p ∼bisim p′ iff (p, p′) ∈ Fκbisim.
4 Suppose p′ ∈ P is image κ-bounded. Then p v2sim p′ iff (p, p′) ∈ (vopsim uFsim)κ.

Proof. In the case κ = ω, statements (1)–(2) and (4) are proved by the same method
as one found in (Hennessy and Milner 1985). Statement (3) was proved in (van Glabbeek
1987). The general case is similar. A detailed proof may be found in Appendix B.

In the sequel, we write κ+ for the successor cardinal of κ.

Corollary 6.12. Let κ be an infinite regular cardinal.

1 Suppose that P is an image κ-bounded system, and let p ∈ P. Then the closed formula
(Esim)κ(p) is κ+-bounded and characterizes p up to vsim.

Characteristic Formulae for Fixed-Point Semantics 37

2 Suppose that p ∈ P is image κ-bounded. Then the closed formula (Eopsim)κ(p) is
κ+-bounded and characterizes p up to vopsim.

3 Suppose that p ∈ P is image κ-bounded. Then the closed formula (Ebisim)κ(p) is
κ+-bounded and characterizes for p up to ∼bisim.

In each case, the characteristic formula is κ+-bounded.

Proof. We prove only statement (3) as this is the most difficult. For each ordinal α,
Lemma 6.5 gives us

(Ebisim)α(p) = (Ebisim � reach(p))α(p)

Since A is assumed countable, the formulae in Ebisim � reach(p) are κ+-bounded (indeed
κ-bounded if κ > ℵ0). Therefore, for α 6 κ, the formula (Ebisim � reach(p))α(p) is
κ+-bounded, by induction on α.

Lemma 6.8 and Theorem 6.11(1) and (2)–(3) tell us that (Ebisim)κ characterizes p up
to ∼bisim.

Corollary 6.12(3) gives Baltag’s construction described in (Barwise and Moss 1996),
Theorem 11.12.

We now embark on the construction of closed characteristic formulae for v2sim using
Theorem 6.11(4).

To apply Theorem 6.11(4), we use the following fact.

Lemma 6.13. Let R ⊆ P×P, and let E : P→ L(∅) be a closed declaration such that,
for each p ∈ P, the closed formula E(p) characterizes p up to R. Let Ê : P → L(P) be
endodeclaration defined by p 7→ E(p). Then the following hold.

1 The endodeclaration Ê expresses the constant endofunction S 7→ R on P(P×P).
2 Let F be a monotone endofunction on P(P×P), and let D be a P-indexed endodec-

laration expressing F . Then the declaration

p 7→ E(p) ∧D(p)

expresses R u F .

Proof.

1 Obvious.
2 Follows from (1) and Lemma 4.8.

Corollary 6.14. For any ordinal α, let E2sim(α) be the P-indexed endodeclaration

p 7→ (Eopsim)α(p) ∧ Esim(p)

Let κ be an infinite regular cardinal, and suppose that P is image κ-bounded. Let p ∈
Proc. Then the closed formula (E2sim(κ))κ(p) is κ+-bounded and characterizes p up to
v2sim.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 38

Proof. By Corollary 6.12(2) and Lemma 6.13(2), E2sim(κ) expresses vopsim uFsim.
Then Lemma 6.8 and Theorem 6.11(4) tell us that (E2sim(κ))κ(p) characterizes p up to
v2sim. The bound on conjunctions and disjunctions is obvious.

7. Conclusion

This paper provides a general view of characteristic formulae for suitable behavioural
relations. The relations of interest are those that can be defined by greatest or least fixed
points of monotone endofunctions over the complete lattice of binary relations over the
set of processes of a labelled transition system, which can be expressed by declarations
over a given language. Theorem 2.16 shows that the greatest interpretation of an endo-
declaration that expresses such a function can be viewed as the characteristic formula
for the greatest fixed point of the function. We have explored a number of applications
of this theorem, some in recovering characteristic formulae already discovered, and some
being novel constructions. Moreover, we have shown how our technical developments and
results can be extended to yield characteristic-formula constructions for the two-nested
simulation preorder from (Groote and Vaandrager 1992) and for simulation equivalence
(or mutual simulation).

All the behavioural relations we consider in Section 3 are greatest fixed points of suit-
able monotone endofunctions. However, Theorem 5.8 allows us to define in a principled
and general fashion co-characteristic formulae for behavioural relations. (See Section 5.)
For a behavioural equivalence, a co-characteristic formula for a process p expresses the
property that any process should satisfy in order for it not to be equivalent to p. Least-
fixed-point interpretations are the appropriate ones for defining such co-characteristic
formulae since, in order to show that two processes are not equivalent, we need to find
some finite ‘observation’ that only one of them affords.

Overall, this study provides a collection of ‘tools’ that one may use to define charac-
teristic formulae for processes with respect to one’s own favourite notion of behavioural
relation defined as a fixed point of a monotone endofunction. Formally, the main tools we
offer for constructing characteristic formulae in a principled fashion are given in Theo-
rem 2.16, Lemmas 3.6 and 4.8, and Theorem 4.10. We trust that the variety of examples
of applications of the ‘toolbox’ we present in the paper witnesses the usability of the
framework we have developed.

There are several possible avenues for further work based on the approach and on the
results we present in this paper. For instance, there are still many other relations that
are defined as greatest fixed points of monotone endofunctions that may lead to appli-
cations of our results. Examples include weak bisimulation congruence (Milner 1989),
branching bisimulation equivalence (van Glabbeek and Weijland 1996), resource bisim-
ulation equivalence (Corradini et al. 1999), g-bisimulation equivalence (de Rijke 2000)
and probabilistic bisimulation equivalence (Larsen and Skou 1992). A general view of
characteristic formulae for behavioural equivalences such as resource bisimulation and
probabilistic bisimulation equivalence may require, however, a further generalization of
our results.

It would also be interesting to develop a general view of characteristic formulae for

Characteristic Formulae for Fixed-Point Semantics 39

behavioural relations over timed automata, such as those offered in (Aceto et al. 2000;
Laroussinie et al. 1995), as well as of the characteristic-formula constructions for bisimulation-
based relations in terms of temporal logics like CTL, such as those offered in (Browne et
al. 1988). We leave these further developments for future work.

Appendix A. Proof of Lemma 4.4

Suppose νH exists, and put (â, b̂) = νH. Then

(â, b̂) = H(â, b̂)

= (F (â), G(â, b̂)).

So â is a fixed point of F , giving â v νF , and

b̂ = G(â, b̂)

v G(νF, b̂)

= GνF (b̂),

yielding that b̂ is a post-fixed point of GνF . If b is a post-fixed point of GνF then

(νF, b) v (F (νF), GνF (b))

= (F (νF), G(νF, b))

= H(νF, b).

So (νF, b) is a post-fixed point of H, giving b v b̂ because (â, b̂) = νH is the greatest
post-fixed point of H. Thus b̂ is the greatest post-fixed point of GνF .

Conversely, suppose νGνF exists. Then

H(νF, ν(GνF)) = (F (νF), G(νF, νGνF))

= (F (νF), GνF (νGνF))

= (νF, ν(GνF)),

so (νF, νGνF) is a fixed point of H. If (a, b) is a post-fixed point of H, then

(a, b) v H(a, b)

= (F (a), G(a, b))

so a is a post-fixed point of f giving a v νf , and

b v G(a, b)

v G(νF, b)

= GνF (b)

so b is a post-fixed point of GνF giving b v νGνF . Thus (νf, νGνF) is a greatest post-fixed
point of H, which was to be shown. �

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 40

Appendix B. Proof of Theorem 6.11

Given A-labelled transition systems Q = (Q,−→) and Q′ = (Q′,−→), we define three
monotone endofunctions

FQ,Q
′

sim , FQ,Q
′

opsim, FQ,Q
′

bisim

on P(Q×Q′), just as in Sections 3.1.1 and 3.2.1. Using these, we define relations

vQ,Q
′

sim , vQ,Q
′

opsim, vQ,Q
′

bisim, vQ,Q
′

2sim

each a subset of Q × Q′, just as in Sections 3.1.1, 3.2.1 and 4.4. We shall show the
following:

Theorem B.1. Let Q = (Q,−→) and Q′ = (Q′,−→) be A-labelled transition systems.
Let κ be an infinite regular cardinal.

1 If Q′ is κ-bounded then vQ,Q
′

sim = (FQ,Q
′

sim)κ.
2 If Q is κ-bounded then vQ,Q

′

opsim= (FQ,Q
′

opsim)κ.

3 If Q is κ-bounded then vQ,Q
′

bisim= (FQ,Q
′

bisim)κ.
4 If Q′ is κ-bounded then vQ,Q

′

2sim= (vQ,Q
′

opsim ∩F
Q,Q′

sim)κ.

To see that this implies Theorem 6.11, we reason as follows.

Lemma B.2. Let P = (P,−→) be an A-labelled transition system, and let Q,Q′ be
subsystems (in the sense of Definition 4.7(1)) of P , giving systems Q = (Q,−→) and
Q′ = (Q′,−→). Then we have

vQ,Q
′

sim = vsim ∩(Q×Q′) (5)

vQ,Q
′

opsim = vopsim ∩(Q×Q′) (6)

vQ,Q
′

bisim = vbisim ∩(Q×Q′) (7)

vQ,Q
′

2sim = v2sim ∩(Q×Q′ (8)

and for any ordinal α we have

(FQ,Q
′

sim)α = Fαsim ∩ (Q×Q′) (9)

(FQ,Q
′

opsim)α = Fαopsim ∩ (Q×Q′) (10)

(FQ,Q
′

bisim)α = Fαbisim ∩ (Q×Q′) (11)

(vQ,Q
′

opsim ∩F
Q,Q′

sim)α = (vopsim ∩Fsim)α ∩ (Q×Q′) (12)

Proof. (9)–(11) are proved by induction on α, and we deduce (5)–(7). Then (12) is
proved by induction on α, using (6), and we deduce (8).

(We could also prove (5)–(8) directly from Lemma 4.4, in the same way that we proved
Lemma 4.6.)

Using Lemma B.2, Theorem 6.11 follows immediately from Theorem B.1, by setting
Q = reach(p) and Q′ = reach(p′). We shall now prove Theorem B.1, and we shall often
omit the superscripts Q,Q

′
.

Characteristic Formulae for Fixed-Point Semantics 41

Definition B.3. Let κ be an infinite regular cardinal. A poset U is downwards κ-directed
when every V ⊆ U of size < κ has a lower bound.

For example, U is downwards ℵ0-directed when it is nonempty and any two elements
have a lower bound.

Lemma B.4. Let κ be an infinite regular cardinal, and let A and B be complete lattices.
For any function f : A −→ B, the following statements are equivalent.

1 For every downwards κ-directed U ⊆ A, we have f(
d
a∈U a) =

d
a∈U f(a).

2 f is monotone; and for every downwards κ-directed U ⊆ A, we have f(
d
a∈U a) wd

a∈U f(a).

Proof.

(1) ⇒ (2)For monotonicity, suppose a v b ∈ A. Then {a, b} is downwards κ-directed
(as a is a least element). So

f(a) = f(a u b) = f(a) u f(b) v f(b)

(2) ⇒ (1)Let U ⊆ A. For each a ∈ U we have f(
d
a∈U a) v f(a) by monotonicity. So

f(
d
a∈U a) v

d
a∈U f(a).

We say that a function f : A −→ B preserves κ-directed meets when it satisfies the
conditions of Lemma B.4.

Preservation of κ-directed meets has the following application.

Lemma B.5. Let κ be an infinite regular cardinal. Let f be an endofunction on a
complete lattice A that preserves κ-directed meets. Then νf = fκ.

Proof. The set {fα}α<κ is downwards κ-directed, since κ is regular. So

f(fκ) = f(
l

α<κ

fα)

=
l

α<κ

f(fα)

=
l

α<κ

fα+1

= fκ

Lemma B.6. Let A and B be complete lattices, and let κ be an infinite regular cardinal.

1 For each i ∈ I, let fi : A → B be a κ-directed meet preserving function. Then the
function A −→ B mapping a to

d
i∈I fi(a) preserves κ-directed meets.

2 Let b ∈ B. Then the constant function A −→ B mapping any a to b preserves
κ-directed meets.

3 Let b ∈ B and let f : A −→ B be a function preserving κ-directed meets. Then the
function b u f : A −→ B preserves κ-directed meets.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 42

Proof.

1 Trivial.
2 This follows from the fact that a downwards κ-directed set must be nonempty.
3 This follows from parts (1)–(2).

Lemma B.7. Let C and D be sets, and let κ be an infinite regular cardinal. For any
function f : P(C) −→ P(D), the following statements are equivalent.

1 f preserves κ-directed meets.
2 For any M ⊆ C and d ∈ D, if d 6∈ f(M) then there is some N ⊆ C, disjoint from M

and of size < κ, such that, for any M ′ ⊆ C disjoint from N , we have d 6∈ f(M ′).

Proof.

(1) ⇒ (2)The set {C \N | N ⊆ A,N ∩M = ∅, |N | < κ} is downwards κ-directed (be-
cause κ is regular), and its intersection is M . So we have

f(M) = f(
⋂

N ⊆ A
N ∩M = ∅, |N | < κ

(C \N))

=
⋂

N ⊆ A
N ∩M = ∅, |N | < κ

f(C \N)

Suppose d 6∈ f(M). Then there is N ⊆ A, disjoint from M and of size < κ, such that
d 6∈ f(C \N). For any M ′ ⊆ A disjoint from N , we have M ′ ⊆ C \N , so monotonicity
of f gives f(M ′) ⊆ f(C \N). Hence d 6∈ f(M ′).

(2) ⇒ (1)To show f monotone, suppose M ′ ⊆ M ⊆ C. If d 6∈ f(M), then there exists
N ⊆ C, disjoint from M and of size < κ, such that, for any M ′′ ⊆ C disjoint from N ,
we have d 6∈ f(M ′′). In particular M ′ is disjoint from N , so d 6∈ f(M). We conclude
that f(M ′) ⊆ f(M).
Let U ⊆ P(C) be downwards κ-directed. If d 6∈ f(

⋂
u∈U u) then there is N ⊆ C,

disjoint from
⋂
u∈U u and of size < κ, such that, for any M ′ ⊆ C disjoint from N ,

we have d 6∈ f(M ′). For each a ∈ N pick ua ∈ U such that a 6∈ ua. We know that
{ua | a ∈ N} has a lower bound u′ ∈ U , so for each a ∈ N we have a 6∈ u′, i.e.
u′ is disjoint from N , so d 6∈ f(u′) and hence d 6∈

⋂
u∈U f(u). We conclude that⋂

u∈U f(u) ⊆ f(
⋂
u∈U u).

Remark Lemma B.7 is an easy equivalent (by duality) of the following well-known result:
a function g : P(C) −→ P(D) preserves κ-directed joins iff, for every M ⊆ C and d ∈ D,
if d ∈ g(M) then there is N ⊆ M of size < κ such that, for every M ′ ⊆ C such that
N ⊆M ′, we have d ∈ g(M ′).

Lemma B.8. Let Q = (Q,−→) and Q′ = (Q′,−→) be A-labelled transition systems.
Let κ be an infinite regular cardinal.

Characteristic Formulae for Fixed-Point Semantics 43

1 If Q′ is image κ-bounded, then FQ,Q
′

sim preserves κ-directed meets.
2 If Q is image κ-bounded, then FQ,Q

′

opsim preserves κ-directed meets.
3 If Q and Q′ are both image κ-bounded, then Fbisim preserves κ-directed meets.
4 If Q′ is image κ-bounded, then vQ,Q

′

opsim ∩F
Q,Q′

sim preserves κ-directed meets.

Proof.

1 We use Lemma B.7. Suppose R ⊆ Q×Q′ and (p, p′) 6∈ Fsim(R). Then there is a ∈ A
and q ∈ Q such that p a−→ q but there does not exist any q′ ∈ Q′ such that p′ a−→ q′

and (q, q′) ∈ R. Put N = {(q, q′) | p′ a−→ q′}. We know that N is disjoint from R,
and it has size < κ because Q′ is κ-bounded. For any R′ ⊆ Q ×Q′, if R′ is disjoint
from N then there does not exist q′ ∈ Q′ such that p′ a−→ q′ and (q, q′) ∈ R′, so
(p, p′) 6∈ Fsim(R′). This establishes the required condition.

2 The dual result.
3 Similar argument.
4 This follows from part (1) and Lemma B.6(3).

Using Lemma B.5, we deduce parts (1), (4) and (4) of Theorem B.1 from Lemma B.8.
But part (3) requires a more subtle argument.

Definition B.9. Let A and B be sets. A relation R ⊆ A× B is difunctional when, for
all a1, a2 ∈ A and b1, b2 ∈ B, if (a1, b1) ∈ R and (a1, b2) ∈ R and (a2, b1) ∈ R we have
(a2, b2) ∈ R. We write Difun(A,B) for the poset of difunctional relations from A to B,
ordered by inclusion.

We note that an intersection of difunctional relations is also difunctional, so Difun(A,B)
is a complete lattice.

Lemma B.10. Let Q = (Q,−→) and Q′ = (Q′,−→) be A-labelled transition systems.
Let R be a difunctional relation from Q to Q′. Then FQ,Q

′

bisim(R) is also difunctional.

Proof. Suppose (p1, p
′
1), (p1, p

′
2), (p2, p

′
1) ∈ Fbisim(R). If p2

a−→ q2, then

— (p2, p
′
1) ∈ Fbisim(R) gives q′1 ∈ Q such that p′1

a−→ q′1 and (q2, q
′
1) ∈ R

— (p1, p
′
1) ∈ Fbisim(R) gives q1 ∈ Q such that p1

a−→ q1 and (q1, q
′
1) ∈ R

— (p1, p
′
2) ∈ Fbisim(R) gives q′2 ∈ Q such that p′2

a−→ q′2 and (q1, q
′
2) ∈ R

so difunctionality of R gives (q2, q
′
2) ∈ R. We conclude that (p2, p

′
2) ∈ Fbisim(R). Straight-

forward.

We write GQ,Q′ for the restriction of FQ,Q
′

bisim to an endofunction on Difun(Q,Q′). This
will enable us to replace Lemma B.8(3) with one in which Q′ need not be κ-bounded.
We first give a useful fact.

Lemma B.11. Let κ be an infinite regular cardinal, and let C be a set of size < κ. Then
any U ⊆ P(C) that is downwards κ-directed has a least element.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 44

Proof. For each c ∈ C \
⋂
u∈U u, pick uc ∈ U such that c 6∈ uc. Then the set

{uc | c ∈ C \
⋂
u∈U u} has a lower bound u′ ∈ U . If c ∈ u′ \

⋂
u∈U u then c 6∈ uc, contra-

dicting u ⊆ uc. Hence u′ =
⋂
u∈U u.

Lemma B.12. Let κ be an infinite regular cardinal. Let Q = (Q,−→) and Q′ = (Q′,−→
) be A-labelled transition systems, with Q image κ-bounded. Then GQ,Q′ preserves κ-
directed meets.

Proof. The monotonicity of G is inherited from that of Fbisim.
Let U be a downwards κ-directed subset of Difun(Q,Q′). We have⋂

R∈U G(R) ⊆
⋂
R∈U Fopsim(R)

= Fopsim(
⋂
R∈U R) (by Lemma B.8(2))

We need only prove ⋂
R∈U
G(R) ⊆ Fsim(

⋂
R∈U

R) (13)

for then we can conclude⋂
R∈U
G(R) ⊆ Fsim(

⋂
R∈U

R) ∩ Fopsim(
⋂
R∈U

R)

= G(
⋂
R∈U

R)

Suppose that (p, p′) ∈
⋂
R∈U G(R) and p

a−→ q. Let B = {r ∈ P | p a−→ r}. We define a
function H : U → P(B) mapping R to

{r ∈ B | ∃q′ ∈ Q′. (q, q′) ∈ R, (r, q′) ∈ R}

H is monotone, so the set L = {H(R) | R ∈ U} is downwards κ-directed; and by Lemma B.11
has a least element, since B has size < κ. We pick some S ∈ U such that H(S) is the
least element of L.

Now suppose p a−→ q and (p, p′) ∈
⋂
R∈U G(R). We know that there is q′ ∈ Q′ such

that p′ a−→ q′ and (q, q′) ∈ S.
For any R ∈ U , pick a lower bound R′ ∈ U for R and S. There is r ∈ Proc such that

p
a−→ r and (r, q′) ∈ R′. Since (r, q′) ∈ S, we have r ∈ H(S) = H(R′). So there exists

r′ ∈ Q such that (q, r′) ∈ R′ and (r, r′) ∈ R′. Difunctionality of R′ gives (q, q′) ∈ R′,
hence (q, q′) ∈ R. Thus (q, q′) ∈

⋂
R∈U R. We conclude that (p, p′) ∈ Fsim(

⋂
R∈U R).

Proof of Theorem B.1(3)). By induction on α ∈ On, we have (Fbisim)α = Gα, and
Lemma B.5 and Lemma B.12 tell us that Gα)α∈On reaches its infimum at κ.

Acknowledgements The work of Luca Aceto, Anna Ingolfsdottir and Joshua Sack has
been partially supported by the projects ‘New Developments in Operational Semantics’
(nr. 080039021) and ‘Processes and Modal Logics’ of the Icelandic Research Fund. Joshua
Sack has been further supported by a grant from Reykjavik University’s Development
Fund. Paul Blain Levy has been supported by the ESPRC Advanced Research Fellowship
EP/E056091/1.

Characteristic Formulae for Fixed-Point Semantics 45

References

Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. Journal of the

ACM, 39(1):147–187, 1992.

Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen, and Jǐŕı Srba. Reactive Systems: Modelling,

Specification and Verification. Cambridge University Press, 2007.

Luca Aceto, Anna Ingolfsdottir, Mikkel Lykke Pedersen, and Jan Poulsen. Characteristic for-

mulae for timed automata. RAIRO, Theoretical Informatics and Applications, 34(6):565–584,

2000.

Jon Barwise and Lawrence Moss. Vicious Circles, volume 60 of CSLI Lecture Notes. CSLI

Publications, Stanford, CA, 1996. On the mathematics of non-wellfounded phenomena.

Jon Barwise and Lawrence S. Moss. Modal correspondence for models. J. Philos. Logic,

27(3):275–294, 1998.

Bard Bloom, Sorin Istrail, and Albert Meyer. Bisimulation can’t be traced. Journal of the ACM,

42(1):232–268, 1995.

Gérard Boudol and Kim G. Larsen. Graphical versus logical specifications. Theoretical Computer

Science, 106(1):3–20, 30 November 1992.

M.C. Browne, E.M. Clarke, and O. Grümberg. Characterizing finite Kripke structures in propo-

sitional temporal logic. Theoretical Computer Science, 59(1,2):115–131, 1988.

E.C. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Transactions on Programming Languages

and Systems, 8(2):244–263, 1986.

Ed Clarke, Orna Gruemberg, and Doron Peled. Model Checking. MIT Press, December 1999.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using branch-

ing time temporal logic. In D. Kozen, editor, Proceedings of the Workshop on Logics of

Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag,

1981.

Rance Cleaveland and Bernhard Steffen. Computing behavioural relations, logically. In

J. Leach Albert, B. Monien, and M. Rodŕıguez, editors, Proceedings 18th ICALP, Madrid,

volume 510 of Lecture Notes in Computer Science, pages 127–138. Springer-Verlag, 1991.

Flavio Corradini, Rocco De Nicola, and Anna Labella. Graded modalities and resource bisimu-

lation. In C. Pandu Rangan, Venkatesh Raman, and Ramaswamy Ramanujam, editors, Foun-

dations of Software Technology and Theoretical Computer Science, 19th Conference, Chennai,

India, December 13-15, 1999, Proceedings, volume 1738 of Lecture Notes in Computer Science,

pages 381–393. Springer-Verlag, 1999.

Rocco De Nicola, Ugo Montanari, and Frits Vaandrager. Back and forth bisimulations. In

CONCUR’ 90 (Amsterdam, 1990), volume 458 of Lecture Notes in Comput. Sci., pages 152–

165. Springer, Berlin, 1990.

Rocco De Nicola and Frits W. Vaandrager. Three logics for branching bisimulation. Journal of

the ACM, 32(2):458–487, 1995.

M. de Rijke. A note on graded modal logic. Studia Logica, 64(2):271–283, 2000.

Francien Dechesne, MohammadReza Mousavi, and Simona Orzan. Operational and epistemic

approaches to protocol anlaysis: Bridging the gap. In Proceedings of the 14th International

Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR’07), vol-

ume 4790 of Lecture Notes in Artificial Intelligence, pages 226–241. Springer-Verlag, 2007.

H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Undergraduate Texts in

Mathematics. Springer-Verlag, New York, second edition, 1994. Translated from the German

by Margit Meßmer.

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 46

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,

Vol. B, pages 995–1072. Elsevier, Amsterdam, 1990.

Ignacio Fábregas, David de Frutos-Escrig, and Miguel Palomino. Non-strongly stable orders

also define interesting simulation relations. In Alexander Kurz, Marina Lenisa, and Andrzej

Tarlecki, editors, Algebra and Coalgebra in Computer Science, Third International Conference,

CALCO 2009, Udine, Italy, September 7–10, 2009. Proceedings, volume 5728 of Lecture Notes

in Computer Science, pages 221–235. Springer-Verlag, 2009.

Harald Fecher and Martin Steffen. Characteristic µ-calculus formula for an underspecified tran-

sition system. In EXPRESS’04, volume 128 of Electronic Notes in Theoretical Computer

Science, pages 103–116. Elsevier Science Publishers, 2005.

R. van Glabbeek. Bounded nondeterminism and the approximation induction principle in pro-

cess algebra. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, editors,

STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer Science, Passau, Ger-

many, February 19–21, 1987, Proceedings, volume 247 of Lecture Notes in Computer Science,

pages 336–347. Springer-Verlag, 1987.

R. van Glabbeek. The linear time–branching time spectrum. I. The semantics of concrete,

sequential processes. In Jan Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook

of Process Algebra, pages 3–99. Elsevier, 2001.

R. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation semantics.

Journal of the ACM, 43(3):555–600, 1996.

S. Graf and J. Sifakis. A modal characterization of observational congruence on finite terms of

CCS. Information and Control, 68(1–3):125–145, January/February/March 1986.

Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimulation

as a congruence. Information and Computation, 100(2):202–260, 1992.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of

the ACM, 32(1):137–161, 1985.

Anna Ingolfsdottir, Jens Christian Godskesen, and Michael Zeeberg. Fra Hennessy-Milner logik

til CCS-processer. Master’s thesis, Department of Computer Science, Aalborg University,

1987. In Danish.

R.M. Keller. Formal verification of parallel programs. Communications of the ACM, 19(7):371–

384, 1976.

H. Korver. Computing distinguishing formulas for branching bisimulation. In K.G. Larsen

and A. Skou, editors, Proceedings of the Third Workshop on Computer Aided Verification,

Aalborg, Denmark, July 1991, volume 575 of Lecture Notes in Computer Science, pages 13–

23. Springer-Verlag, 1992.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–354,

1983.

Antońın Kucera and Ph. Schnoebelen. A general approach to comparing infinite-state systems

with their finite-state specifications. Theoretical Computer Science, 358(2–3):315–333, 2006.

F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic - and back. In Jiŕı

Wiedermann and Petr Hájek, editors, Mathematical Foundations of Computer Science 1995,

20th International Symposium, volume 969 of Lecture Notes in Computer Science, pages 529–

539, Prague, Czech Republic, 28 August–1 September 1995. Springer.

Kim Guldstrand Larsen. Proof systems for satisfiability in Hennessy–Milner logic with recursion.

Theoretical Computer Science, 72(2–3):265–288, 23 May 1990.

Kim Gulstrand Larsen and A. Skou. Bisimulation through probabilistic testing. Information

and Computation, 94(1):1–28, 1991.

Characteristic Formulae for Fixed-Point Semantics 47

Kim Guldstrand Larsen and A. Skou. Compositional verification of probabilistic processes. In

Rance Cleaveland, editor, Proceedings CONCUR 92, Stony Brook, NY, USA, volume 630 of

Lecture Notes in Computer Science, pages 456–471. Springer-Verlag, 1992.

S B Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis, Univ. of

Aarhus, 1998.

P. B. Levy. Boolean precongruences. journal submission, 2009.

Tiziana Margaria and Bernhard Steffen. Distinguishing formulas for free. In Proc. EDAC–

EUROASIC’93: IEEE European Design Automation Conference, Paris (France). IEEE Com-

puter Society Press, February 1993.

R. Milner. A modal characterisation of observable machine behaviour. In E. Astesiano and

C. Böhm, editors, CAAP ’81: Trees in Algebra and Programming, 6th Colloquium, volume

112 of Lecture Notes in Computer Science, pages 25–34. Springer-Verlag, 1981.

R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,

1989.

A. K. Moran. Call-by-name, Call-by-need, and McCarthy’s Amb. PhD thesis, Department

of Computing Science, Chalmers University of Technology and University of Gothenburg,

Gothenburg, Sweden, September 1998.

Lawrence S. Moss. Finite models constructed from canonical formulas. J. Philos. Logic,

36(6):605–640, 2007.

Markus Müller-Olm. Derivation of characteristic formulae. In MFCS’98 Workshop on Concur-

rency (Brno, 1998), volume 18 of Electron. Notes Theor. Comput. Sci., page 12 pp. (elec-

tronic). Elsevier, Amsterdam, 1998.

D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, 5th GI

Conference, Karlsruhe, Germany, volume 104 of Lecture Notes in Computer Science, pages

167–183. Springer-Verlag, 1981.

C Pitcher. Functional Programming and Erratic Non-Determinism. PhD thesis, Oxford Univ.,

2001.

Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and

Algebraic Programming, 60–61:17–139, 2004.

Amir Pnueli. The temporal logic of programs. In Proceedings 18 th Annual Symposium on

Foundations of Computer Science, pages 46–57. IEEE, 1977.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In

Proceedings of the 5th International Symposium on Programming, volume 137 of Lecture Notes

in Computer Science, pages 337–351. Springer-Verlag, 1981.

Bernhard Steffen and Anna Ingolfsdottir. Characteristic formulae for processes with divergence.

Information and Computation, 110(1):149–163, 1994.

Colin Stirling. Modal logics for communicating systems. Theoret. Comput. Sci., 49(2-3):311–347,

1987. Twelfth international colloquium on automata, languages and programming (Nafplion,

1985).

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Math-

ematics, 5:285–309, 1955.

Wolfgang Thomas. On the ehrenfeucht-fräıssé game in theoretical computer science. In Marie-

Claude Gaudel and Jean-Pierre Jouannaud, editors, TAPSOFT, volume 668 of Lecture Notes

in Computer Science, pages 559–568. Springer, 1993.

B. Thomsen. An extended bisimulation induced by a preorder on actions. Master’s thesis,

Aalborg University Centre, 1987.

I. Ulidowski. Equivalences on observable processes. In Andre Scedrov, editor, Proceedings of

L. Aceto, A. Ingolfsdottir, P.B. Levy and J. Sack 48

the 7th Annual IEEE Symposium on Logic in Computer Science, pages 148–161, Santa Cruz,

CA, June 1992. IEEE Computer Society Press.

