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Abstract
What is the right notion of "isomorphism" between types, in a
simple type theory? The traditional answer is: a pair of terms that
are inverse, up to a specified congruence. We firstly argue that, in
the presence of effects, this answer is too liberal and needs to be
restricted, using Führmann’s notion of thunkability in the case of
value types (as in call-by-value), or using Munch-Maccagnoni’s
notion of linearity in the case of computation types (as in call-by-
name). Yet that leaves us with different notions of isomorphism for
different kinds of type.

This situation is resolved by means of a new notion of “contex-
tual” isomorphism (or morphism), analogous at the level of types to
contextual equivalence of terms. A contextual morphism is a way
of replacing one type with the other wherever it may occur in a
judgement, in a way that is preserved by the action of any term
with holes. For types of pure λ-calculus, we show that a contextual
morphism corresponds to a traditional isomorphism. For value types,
a contextual morphism corresponds to a thunkable isomorphism,
and for computation types, to a linear isomorphism.

Categories and Subject Descriptors F.3.2 [Semantics of Program-
ming Languages]

Keywords isomorphism, contextual equivalence, computational
effects, call-by-push-value

1. Introduction
1.1 Question
Suppose we have a typed programming language, equipped with a
suitable congruence ≡. When can we treat two types A and B as
essentially the same?

In Sections 1.2 and 1.3 we consider two answers to this question
that on the face of it are entirely different. Yet as we explain in
Section 1.4, they amount to the same thing.

1.2 Map-Based Isomorphisms
Let us begin with the traditional answer to this question (Di Cosmo
1995; Fiore et al. 2002; Soloviev and Di Cosmo 2005): A and B are
essentially the same when there is a pair of maps f : A→ B and
g : B → A such that f ; g ≡ idA and g; f ≡ idB . We call this a
“map-based” isomorphism.

[Copyright notice will appear here once ’preprint’ option is removed.]

x : bool `
case x of {
true.

read l as v.

l := 2 ∗ v.
sole

false.

read l as v.

l := 2 ∗ v + 1.

sole

} : unit

x : unit `
read l as u.

case u of {
2 ∗ w.
l := w.

true

2 ∗ w + 1.

l := w.

false

} : bool

Figure 1. Isomorphism bool ∼= unit in a call-by-value language
with mutable state

Although this answer works well for a purely functional pro-
gramming language, it is too liberal for a language that includes
computational effects, such as mutable state or exceptions. We look
at two examples.

1. Consider a call-by-value language with a memory location
l storing a natural number. Then the types bool and unit—
ground types with two values and one value respectively—are
isomorphic (Fig. 1). This may seem surprising, but can be
understood using denotational semantics. Each type A denotes
a set [[A]]. A ground type with I values denotes a set with I
elements. A map A → B denotes not a function [[A]] → [[B]],
as it would if the language were pure, but rather a function
N × [[A]] → N × [[B]], indicating the initial and final state
associated with a function call. Fig. 1 denotes the bijection

N× [[bool]] ∼= N× [[unit]]

i.e. N× {true, false} ∼= N× {sole}
(k, true) 7→ (2k, sole)

(k, false) 7→ (2k + 1, sole)

2. Consider a call-by-name language where an exception e, car-
rying a natural number value, can be raised and handled. Then
the types unit and empty—ground types with one value and no
values respectively—are isomorphic (Fig. 2). For convenience
we combine case-analysis and exception handling in a single
try−case construct, cf. (Benton and Kennedy 2001). Again,
this isomorphism may seem surprising but can be understood
using denotational semantics. Each type denotes a N-pointed set,
i.e. set X with a sequence of distinguished elements (cn)n∈N
representing the exceptional behaviours. A ground type with I
values denotes (I + N, (inr n)n∈N). A map A → B denotes
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x : unit `
try−case x of {
sole.

raise (e, 0)

catch (e, v).

raise (e, v+1)

} : empty

x : empty `
try−case x of {
catch (e, u).

case u of {
0.

sole

w+1.

raise (e, w)

}
} : unit

Figure 2. Isomorphism unit ∼= empty in a call-by-name language
with exceptions

a function U [[A]] → U [[B]], where we write U for the carrier
(underlying set) of a N-pointed set. Fig. 2 denotes the bijection

U [[unit]] ∼= U [[empty]]

i.e. {sole}+ N ∼= ∅+ N
inl sole 7→ inr 0

inr n 7→ inr n+ 1

Let us consider these examples more carefully.
In the call-by-value setting (1), computations are interpreted

in the Kleisli category for the state monad N → (N × −) on
Set (Moggi 1991). Our isomorphism bool ∼= unit reflects the
fact that [[bool]] and [[unit]] are isomorphic in the Kleisli category,
although they are not isomorphic sets. Intuitively, this makes it a
bad isomorphism.

Principle 1. A “good” isomorphism of call-by-value types should
denote an isomorphism of sets—not merely an isomorphism in the
Kleisli category.

In the call-by-name setting (2), types denote algebras. (In this
example, algebras for a signature consisting of N many constants.)
Our isomorphism unit ∼= empty reflects the fact that [[unit]] and
[[empty]] have isomorphic carriers, although they are not isomorphic
algebras. Intuitively, this makes it a bad isomorphism.

Principle 2. A “good” isomorphism of call-by-name types should
denote an isomorphism of algebras—not merely an isomorphism of
carriers.

We can obtain a more fine-grained picture of these issues in call-
by-push-value (Levy 2004). This is a calculus that has both value
types, which correspond to call-by-value types and denote sets, and
computation types (usually underlined), which correspond to call-by-
name types and denote algebras. In particular the computation type
FA denotes the free algebra on [[A]], and the value type UB denotes
the carrier of the algebra [[B]]. Following the above principles, we
distinguish between A ∼= B and FA ∼= FB, and between A ∼= B
and UA ∼= UB.

To sum up: the common notion of isomorphism of sets or of
algebras should be carried over to types that denote these things.
However, this does not answer the question in Section 1.1. The
language there was not equipped with a denotational semantics. It
was merely equipped with a congruence≡. So we need to formulate
“goodness” of an isomorphism in terms of ≡.

• For value types (or call-by-value types), we want to say that
a good isomorphism performs no effects, and for this we use
Führmann’s notion of thunkability (Führmann 1999). This can

be formulated in call-by-push-value, and also in call-by-value
languages provided they include nullary function types. A
composite of thunkable maps is thunkable, as is the inverse
of a thunkable map if it exists.
• For computation types (or call-by-name types), we want to say

that a good isomorphism preserves algebra structure, and for
this we use Munch-Maccagnoni’s notion of linearity (Munch-
Maccagnoni 2014). This can be formulated in call-by-push-
value, and also in call-by-name languages provided they include
unary sum types. The composite of linear maps is linear, as is
the inverse of a linear map if it exists.

We conclude: value types should be considered essentially the
same when they are related by a thunkable isomorphism, and
computation types when they are related by a linear isomorphism.
But this means that, unhappily, we have three different notions of
map-based isomorphism (unrestricted, thunkable, linear) appropriate
in different settings (pure language, value types, computation types).
We would prefer a single notion that is appropriate in all settings.

1.3 Contextual Morphisms and Isomorphisms
Leaving the previous section aside, we shall give in this section an
entirely different answer to our question, one that makes no mention
of a map A→ B or a map B → A.

Consider the corresponding problem for terms. When should
two terms (of the same type) be regarded as essentially the same?
A well-known answer (Morris, Jr. 1968) is the notion of contextual
equivalence, also called observational equivalence. It is based on
the premise that we can recognize the “observable behaviour” of
a program, a closed term of ground type. A pair of terms M and
M ′ are contextually equivalent when, for any program with a hole
N [·], the programs N [M ] and N [M ′] have the same observable
behaviour.

We tackle our question in a similar spirit. Instead of a notion of
“observable behaviour”, we have a congruence ≡. (This congruence
might itself be contextual equivalence, but that is irrelevant.) If types
A andB are “essentially the same”, then surely any≡-class of terms

x : bool + (nat→ A), y : A→ A `M : A→ nat

should correspond to an ≡-class of terms

x : bool + (nat→ B), y : B → B `M : B → nat

So, considering the judgement with a type-hole1

x : bool + (nat→ [··]), y : [··]→ [··] ` [··]→ nat

it does not matter whether [··] is filled with A or B. In general, each
≡-class of terms Γ[A] `M : C[A] should correspond to an≡-class
of terms Γ[B] ` θ(M) : C[B].

So we want a bijection θ on ≡-classes of terms, for each
judgement with a type-hole. But that is not enough; we also want
each term constructor of the language, such as application or λ-
abstraction, to preserve θ. Saying that application preserves θ means
that for any terms

Γ[A] `M : C[A]→ D[A] Γ[A] ` N : C[A]

we have
(θ(M))(θ(N)) ≡ θ(MN)

Similarly, saying that λ-abstraction preserves θ means that for any
term

Γ[A], x : C[A] `M : D[A]

we have
λx.θ(M) ≡ θ(λx.M)

1 Because our type syntax does not include any binding, the distinction
between type-holes and type identifiers is immaterial.

Contextual Isomorphisms 2 2016/11/28



More generally, a term with holesN [·h]h∈H preserves θ when

N [θ(Mh)]h∈H = θ(N [Mh]h∈H)

(The precise typing assumptions will be given in Section 2.) Clearly
if every term constructor preserves θ, then, by induction, so does
every term with holes. This requirement can be understood as saying
that θ is “invisible” to the syntax.

To summarize: a contextual isomorphism A ∼= B provides, for
each judgement with a hole, a bijection on ≡-classes of terms,
preserved by every term constructor or, equivalently, by every term
with holes. If, rather than a bijection, we have merely a function
sending each ≡-class of terms Γ[A] ` M : C[A] to an ≡-class of
terms Γ[B] ` θ(M) : C[B], we call that a contextual morphism.

As we shall see in Section 8–9, there is no contextual isomor-
phism bool ∼= unit in call-by-value with state, nor unit ∼= empty
in call-by-name with exceptions.

1.4 Map-based vs Contextual Isomorphisms
Map-based and contextual isomorphism appear to be very different
notions, but it turns out that in many settings they correspond.

1. In pure λ-calculi, under reasonable assumptions on≡, contextual
morphisms correspond to unrestricted map-based isomorphisms.

2. In call-by-push-value calculi, under reasonable assumptions on
≡, contextual morphisms between value types correspond to
thunkable isomorphisms, and those between computation types
correspond to linear isomorphisms.

3. In effectful λ-calculi that include nullary function types, un-
der assumptions on ≡ that are reasonable for call-by-value se-
mantics, contextual morphisms correspond to thunkable isomor-
phisms.

4. In effectful λ-calculi that include unary sum types, under as-
sumptions on ≡ that are reasonable for call-by-name semantics,
contextual morphisms correspond to linear isomorphisms.

Each of these statements implies that every contextual morphism is
an isomorphism, a surprising fact in itself which does not hold in all
languages2.

The importance of the above correspondences is that each notion
of isomorphism—contextual and map-based—has an advantage
over the other. On the one hand, contextual isomorphism provides a
single, a priori notion of essential sameness that is appropriate for
any typed calculus equipped with a congruence, unlike map-based
isomorphism, which as mentioned above has a different variant
(unrestricted, thunkable or linear) for different settings. On the other
hand, it is too complicated to present a isomorphism A ∼= B in
contextual form, for the same reason that it is difficult to prove
a contextual equivalence, viz. the quantification over all contexts.
Instead we may present the corresponding map-based isomorphism,
for which we need only exhibit two terms and check that they are
mutually inverse and, in the effectful setting, thunkable or linear.

1.5 Structure of Paper
Whereas the above introduction discussed map-based isomorphism
before contextual morphism, the paper will treat contextual mor-
phism first since it is the main contribution. Although this work
is applicable to all kinds of effects, we highlight state and excep-
tions since they illustrate well the distinction between good and bad
isomorphisms.

For λ-calculus, whether pure or effectful, we define

• contextual morphism in Section 2;

2 For example, in a pure language of arithmetic with no identifiers and only
ground types, there would be a unique contextual morphism empty→ unit
but none in the opposite direction.

• map-based isomorphism in Section 3.

We then study

• pure λ-calculus (Section 4)
• call-by-push-value (Section 5–8)
• call-by-value and call-by-name (Section 9).

In each case we present the correspondence between contextual
morphisms and map-based isomorphisms. We give examples and
non-examples in Sections 8–9.

1.6 Related work
Type isomorphisms for general references have been studied
in (Clairambault 2011), for classical logic in (Laurent 2005; Lau-
rent et al. 2005) and for polarized systems in (Munch-Maccagnoni
2013)[Section IV.5.3]. Type isomorphisms have been studied in
the setting of game semantics in (Clairambault 2011; de Lataillade
2008; Laurent 2005). Functoriality in thunkable maps has appeared
in (Führmann 1999; Selinger 2001). A connection between para-
metricity in isomorphisms and a result that every morphism is an
isomorphism is explored in (Freyd et al. 1992; Robinson 1994)

1.7 Conventions
In a category C, an isomorphism is a morphism with a (necessarily
unique) inverse. The isomorphisms of C form a groupoid, written
Isos (C), e.g. Isos (Set) is the groupoid of sets and bijections.

On a typed calculus, a congruence is an equivalence on typed
terms in context, preserved by every term constructor and by
weakening, i.e. if Γ ⊆ Γ′ then Γ ` M ≡ N : C implies
Γ′ `M ≡ N : C. We writeQ≡(Γ ` C) for the set of≡-classes of
terms Γ `M : C. A particular ≡-class is written (Γ `M : C)≡.

2. Contextual Equivalence and Morphisms
We first reprise the notion of contextual equivalence, taking care
to spell out the typing assumptions involved, and then proceed by
analogy to define contextual morphism and isomorphism.

These are general definitions that make sense in any typed
calculus with term judgement Γ `M : C.

2.1 Contextual Equivalence
Contextual equivalence involves the notion of a term with a hole
(also known as a context), given by the typing judgement

N : (Γ ` C) // (∆ ` D)

which says thatN is a term in context ∆ of typeD that may contain
occurrences of a hole [·] to be replaced by a term Γ `M : C. More
generally, we can consider terms with several holes: the typing
judgement

N : (Γh ` Ch)h∈H // (∆ ` D) (1)

says that N is a term in context ∆ of type D that may contain
occurrences of a hole [·h], to be replaced by a term Γh `Mh : Ch,
for each h ∈ H . The typing rules for terms with holes are the same
as those for ` e.g.

N : (Γh ` Ch)h∈H // (∆, x : B ` D)

λx.N : (Γh ` Ch)h∈H // (∆ ` B → D)

(x : B) ∈ ∆
x : (Γh ` Ch)h∈H // (∆ ` B)

with the additional axiom

h ∈ H,Γh ⊆ Γ′

[·h] : (Γh ` Ch)h∈H // (Γ′ ` Ch)
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As explained in (Pitts 1997), we do not identify terms with holes
that are α-equivalent, e.g. λx.[·] and λy.[·] cannot be identified.

For a term with holes

N : (Γh ` Ch)h∈H // (∆ ` D)

we obtain from any family of terms M = (Γh ` Mh : Ch)h∈H
a term ∆ ` N [M] : D, by induction on N in the evident way. It
is Mh, using weakening, in the case N = [·h]. Likewise, for any
congruence ≡, we obtain a functionN≡Q

h∈H Q
≡(Γh ` Ch) → Q≡(∆ ` D)

(Γh `Mh : Ch)≡h∈H 7→ (∆ ` N [Mh]h∈H : D)≡

We can now reprise the definition of contextual equivalence.
Assume a set of ground types, and for each ground type D

• a set 〈〈D〉〉 of meanings
• for each term `M : D (called a program) a meaning 〈〈M〉〉 ∈
〈〈D〉〉.

We call this collection of data an observation system.

Definition 1. Two terms Γ ` M,M ′ : C are contextually equiva-
lent, wrt a specified observation system, when for any ground type
D and any program with a holeN : (Γ ` C) // (` D) we
have 〈〈N [M ]〉〉 = 〈〈N [M ′]〉〉.

2.2 Contextual Morphisms
We now have to extend each part of our syntax to incorporate a
type-hole. More generally, K type holes, where K is a set; we take
K = 1 if just one type-hole is desired.

• Types with K type-holes are defined by the usual syntax for
types, extended with type-holes

C ::= · · · | [··k] (k ∈ K)

• A typing context with K type-holes is a finite set of identifiers,
each assigned a type with K type-holes, written x : A.
• A judgement with K type-holes, written Γ ` C, consists of

a typing context Γ with K type-holes

and a type C with K type-holes.
• We define a typing judgement for terms with type-holes and

holes

N : (Γh ` Ch)h∈H
K

// (∆ ` D) (2)

where (Γh ` Ch)h∈H is a family of judgements with K type-
holes, and (∆ ` D) a judgement with K type-holes. The typing
rules for (2) are just the same as those given for (1) in Section 2.1.

Given an K-indexed family of types A = (Ak)k∈K , we define

• for each type C with K type-holes, a type C[A] by induction
on C–it is Ak in the case C = [··k]

• for each typing context Γ with type-hole, a typing context

Γ[A]
def
= (x : C[A])(x:C)∈Γ

• for each judgement Γ ` C with type-hole, a judgement

(Γ ` C)[A]
def
= (Γ[A] ` C[A])

• for each term with type-hole and holes (2) a term with holes

N [A] : ((Γh ` Ch)[A])h∈H // (∆ ` D)[A]

by induction onN .

Q
h∈H Q

≡((Γh ` Ch)[A])

Q
h∈H θΓh`Ch

��

N [A]≡ // Q≡((∆ ` D)[A])

θ∆`D

��Q
h∈H Q

≡((Γh ` Ch)[B])
N [B]≡

// Q≡((∆ ` D)[B])

Figure 3. θ must be preserved byN

Whereas contextual equivalence is defined wrt an observation
system, contextual isomorphism (or morphism) is defined wrt a
congruence.

Definition 2. Let A and B be types. A contextual morphism
θ : A → B, with respect to a congruence ≡, consists of a
function

θΓ`C : Q≡((Γ ` C)[A]) → Q≡((Γ ` C)[B])

for each judgement with a type-hole Γ ` C, where θ is preserved
by every term with type-hole and holes

N : (Γh ` Ch)h∈H
1

// (∆ ` D)

i.e. Figure 3 commutes. θ is a contextual isomorphism when each
function θΓ`C is a bijection.

Remark 1. As stated in Section 1.3, it suffices for θ to be preserved
by every term constructor. Figure 3 then follows by induction onN .

The category of types and contextual morphisms will be written
Con1 (with the subscript explained in the next section). We take ≡
to be fixed. The groupoid of types and contextual isomorphisms is
precisely Isos (Con1).

2.3 Families of Terms, Families of Types
So far we have considered contextual equivalence betweeen terms
and contextual morphisms between types. These notions can be
generalized to families of terms or of types.

Let (Γh ` Ch)h∈H be a family of judgements. Then two
families of terms

M = (Γh `Mh : Ch)h∈H

M′ = (Γh `M ′h : Ch)h∈H

are said to be contextually equivalent wrt a specified observation
system when for any ground type D and program with a holeN :
(Γh ` Ch)h∈H // (` D) we have 〈〈N [M]〉〉 = 〈〈N [M′]〉〉.

We proceed likewise for families of types. Let K be a set. We
form a category ConK , in which an object is an K-indexed family
of types A = (Ak)k∈K . A morphism θ : A→ B is a contextual
morphism wrt ≡, i.e. a function

θΓ`C : Q≡((Γ ` C)[A]) → Q≡((Γ ` C)[B])

for each judgement with K type-holes Γ ` C, where θ is preserved
by every term with type-holes and holes

N : (Γh ` Ch)h∈H
K

// (∆ ` D)

i.e. Figure 3, with A and B replaced by A and B, commutes.

3. Map-based Isomorphisms
We begin by recalling the traditional notion of isomorphism of types.

Consider any typed calculus that includes the following typing
rules:

(x : A) ∈ Γ
Γ ` x : A

Γ `M : A Γ, x : A ` N : B

Γ ` letM be x. N : B
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let y be x. M ≡ M [y/x]

letM be x. x ≡ M

letM be x. let N be y. P ≡
let (letM be x. N) be y. P

Figure 4. Some basic laws (with typing and freshness assumptions
omitted)

Here letM be x. N can be taken either as primitive or to abbreviate
(λx.N)M .

Let≡ be a congruence that includes the laws of Fig. 4, and hence
is preserved by renaming. These laws are reasonable regardless of
whether the language is pure, call-by-value effectful or call-by-name
effectful. We form the category Map in which

• an object is a type
• a morphism A −→ B is a map, i.e. an ≡-class of terms
x : A `M : B

• the identity on A is (x : A ` x : A)≡

• the composite of (x : A `M : B)≡ and (x : B ` N : C)≡ is
(x : A ` letM be x. N : B)≡.

A map-based isomorphism is an isomorphism in Map.

4. Pure λ-Calculus
We come to our first main result. For simply typed λ-calculus, with a
congruence≡ that includes the β- and η-laws, the category Con1 is
isomorphic to Isos (Map), This justifies a posteriori the traditional
notion of isomorphism. More generally, we shall see that ConK is
isomorphic to Isos (Map)K .

4.1 Syntax and Laws
Suppose a set of base types is given. Then our types are inductively
defined:

A ::= b (base type) | 0 | A+A | 1 | A×A | A→ A

Suppose a set of typed constants3 is also given. Then our terms are
inductively defined:

M ::= c (constant) | x | letM be x. N

| caseM of { } | inlM | inrM
| caseM of {inl x. M, inr x. M}
| 〈 〉 | 〈M,M〉 | πM | π′M
| λxM | MM

We omit the evident typing rules. Let ≡ be a congruence that
includes all the laws in Fig. 5, and hence is preserved by substitution.
All these laws are reasonable for pure λ-calculus, though in the
presence of effects they would not be.

4.2 Functoriality and Naturality in Isomorphisms
It is well known (Lambek and Scott 1986) that the category Map is
bicartesian closed. For any such category C, both × and + are
functors C × C → C. By contrast, → is contravariant on the
left: it forms a functor C

op

× C → C. Figure 6 displays these
functors for Map.. The mixed variance does not trouble us, since
we use only isomorphisms. Every type C with K type-holes gives
a (covariant) functor Isos (Map)K → Isos (Map), by induction

3 More generally, we could consider binding operations rather than constants,
but that extra generality is redundant since we have included product and
function types.

letM be x. N ≡ N [M/x]

case (inlM) of {inl x. N, inr y. N ′} ≡ N [M/x]

case (inrM) of {inl x. N, inr y. N ′} ≡ N ′[M/y]

π〈M,M ′〉 ≡ M

π′〈M,M ′〉 ≡ M ′

(λx.M)N ≡ M [N/x]

N [M/z] ≡ caseM of { }
N [M/z] ≡ caseM of {inl x. N [inl x/z],

inr x. N [inr x/z]}
M ≡ 〈 〉
M ≡ 〈πM, π′M〉
M ≡ λx.(Mx)

Figure 5. β- and η-laws (with typing and freshness assumptions
omitted)

on C. It sends an object A ∈MapK to C[A], and is defined on an
isomorphism σ : A ∼= B as follows.

b[σ]
def
= idb

[··k][σ]
def
= σk

0[σ]
def
= id0

(C +D)[σ]
def
= C[σ] +D[σ]

1[σ]
def
= id1

(C ×D)[σ]
def
= C[σ]×D[σ]

(C → D)[σ]
def
= C[σ]−1 → D[σ]

Thus types are functorial in isomorphisms. We next show that
judgements are too, but this time the functors are to Set. Recall that
any category C has a hom functor C

op

× C → Set, sending

• an object, i.e. a pair (X,Y ) of C-objects, to C(X,Y ), the set of
morphisms X → Y

• a morphism (X,Y ) → (X ′, Y ′), i.e. a pair of C-morphisms
f : X ′ → X and h : Y → Y ′, to the function
C(X,Y )→ C(X ′, Y ′) sending g to the composite

X ′
f // X

g // Y
h // Y ′

The following is a variant of the hom functor for Map.

Definition 3. Let U = {y0, . . . , yn−1} be a finite set of identifiers.
We define a functor

Q≡(` ) : (Map
op

)U ×Map→ Set

as follows.

• An object is a judgement Γ ` C where the domain of Γ is U . It
is sent to the set (Γ ` C)≡.
• A morphism ((y : Ay)y∈U ` C) → ((y : By)y∈U ` D),

consists of an equivalence class (x : By ` Ny : Ay)
≡ for each

y ∈ U and another equivalence class (x : C ` P : D)≡. It is
sent to the function

Q≡((y : Ay)y∈U ` C)→ Q≡((y : By)y∈U ` D)

sending ((y : Ay)y∈U `M : C)≡ to

((y : By)y∈U ` P [M [Ny[y/x]/y]y∈U/x] : D)≡
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(x : A `M : B)≡ + (x : C ` N : D)≡
def
= (x : A+ C ` case x of {inl x. inlM, inr x. inr N} : B +D)≡

(x : A `M : B)≡ × (x : C ` N : D)≡
def
= (x : A× C ` 〈M [πx/x], N [π′x/x]〉 : B ×D)

≡

(x : B `M : A)≡ → (x : C ` N : D)≡
def
= (x : A→ C ` λy. N [(x(M [y/x]))/x] : B → D)≡

Figure 6. The functors +, × and→ applied to morphisms of Map

Hence, for each judgement with K type-holes Γ ` C, we obtain
a functor

Q≡((Γ ` C)[··]) : Isos (Map)K → Set (3)

It sends an object A ∈ MapK to Q≡((Γ ` C)[A]), and an
isomorphism σ : A ∼= B to

Q≡((y : D[σ]−1)(y:D)∈Γ ` C[σ])

Finally, every term with type-holes and holes is natural in isomor-
phisms.

Proposition 1. Let N : (Γh ` Ch)h∈H
K

// (∆ ` D). For

every isomorphism σ : A ∼= B in MapK the following square in
Set commutes.Q

h∈H Q
≡((Γh ` Ch)[A])

Q
h∈H Q

≡((Γh`Ch)[σ])

��

N [A]≡ // Q≡((∆ ` D)[A])

Q≡((∆`D)[σ])

��Q
h∈H Q

≡((Γh ` Ch)[B])
N [B]≡

// Q≡((∆ ` D)[B])

Proof. Induction onN .

4.3 Characterizing Contextual Morphisms
Let K be a set.

Definition 4. Let σ : A ∼= B in MapK . We write Gσ for the
following contextual isomorphism A → B. For each judgement
Γ ` C with K type-holes,

(Gσ)Γ`C : Q≡((Γ ` C)[A])→ Q≡((Γ ` C)[B])

isQ≡((Γ ` C)[σ]).

The required commutativity of Fig. 3 follows from Prop. 1. We
therefore obtain an identity-on-objects functor G : Isos (Map)K →
ConK . It preserves identities and composition because (3) does.
Our goal is to show that it is an isomorphism of categories. The
proof resembles that of the Yoneda Lemma.

First, a trivial observation.

Lemma 2. For any type C,

C[··] : Isos (Map)K → Isos (Map)

is the constant functor to C.

Proof. Induction on C.

Next we describe how to recover σ and σ−1 from Gσ.

Lemma 3. Let σ : A ∼= B in MapK .

For each k ∈ K σk = (Gσ)x:Ak`[··k] idA (4)

σ−1
k = (Gσ)x:[··k]`Ak

idA (5)

Proof. σk must be of the form (x : Ak `M : Bk)≡. For (4),

RHS = Q≡((x : Ak ` [··k])[σ]) idA

= Q≡(x : Ak[σ]−1 ` [··k][σ]) idA

= Q≡(x : idAk ` σk) idA

by Lemma 2
= (x : Ak `M [x[x/x]/x] : Bk)≡

= σk

(5) is proved similarly.

Theorem 4. G is an isomorphism of categories Isos (Map)K ∼=
ConK .

Proof. Given a contextual morphism θ : A→ B, we must show
θ = Gσ for a unique σ : A ∼= B in Map.

For each k ∈ K, set σk
def
= θx:Ak`[··k] idA

σ−1
k

def
= θx:[··k]`Ak

idA

By Lemma 3 this is the only possibility. Preservation of θ by

let [·0] be x. [·1]

: (x : Ak ` [··k]), ([··k] ` Ak)
K

// (x : Ak ` Ak)

applied to idAk , idAk gives

σ;σ−1 = θx:Ak`Ak (x : A ` let x be x. x : A)≡

= θx:Ak`Ak idA

Preservation of θ by

x :
K

// (x : Ak ` Ak)

applied to nothing gives

idA = θx:Ak`Ak idA

so σk;σ−1
k = idAk . By a similar argument σ−1

k ;σk = idBk . So σ
and σ−1 are inverse.

Next we show that for every type C with K type-holes,

C[σ] = θx:C[A]`C idC[A]

C[σ]−1 = θx:C`C[A idC[A]

by induction on C. The case where C = [··k] is trivial, and each
type constructor case involves one appeal to θ-preservation.

Finally, given a judgement Γ ` D with K type-holes and
ω ∈ Q≡((Γ ` D)[A]), we wish to show

θΓ`D ω = Q≡((Γ ` D)[σ])ω (6)

Pick M ∈ ω and an enumeration Γ = y0 : C0, . . . , yn−1 : Cn−1.
Then preservation of θ by

let (let y0 be x. [·0]) be y0.

· · ·
let (let yn−1 be x. [·n−1]) be yn−1.

letM be x. [·n]

: (x : Ci ` Ci[A])i<n, (x : D[A] ` D)
K

// (Γ ` D)
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applied to idC0 , . . . , idCn−1 , idD gives (6).

Corollary 5. Every contextual morphism, i.e. every morphism in
ConK , is an isomorphism.

5. Call-by-Push-Value
5.1 The Calculus
We now turn from pure to effectful λ-calculus, specifically call-
by-push-value. In this section, we give the definition of contextual
morphism, but referring only to computations, not values.

We briefly recall call-by-push-value; for details, see (Levy 2004).
Suppose a set of value base types (b) and a set of computation base
types (b) are given. Then our types are inductively defined:

Value types A ::= b | UB | 0 | A+A | 1 | A×A | nat
Computation types B ::= b | FA | 1Π | B ΠB | A→ B

Computation types are often underlined. UB is the type of thunks
of computations in B, whilst FA is the type of computations whose
goal is to return a value of type A. Functions are computations
(unlike in call-by-value) so function types are computation types. A
typing context Γ is a finite set of identifiers, each assigned a value
type, written x : A. There are two typing judgements: Γ `v V : A
for values and Γ `c M : B for computations.

Suppose a set of typed value constants and a set of typed
computation constants are given. The typing rules are shown in
Fig. 7. Sequencing is represented asM to x. N . For typing contexts
Γ and ∆, a substitution k : Γ→ ∆ associates to each (x : A) ∈ Γ
a value ∆ `v k(x) : A. This induces a substitution function k∗

from terms in context Γ to terms in context ∆. A congruence is an
equivalence relation on computations in context Γ `c M ≡ N : B
and on values in context Γ `v V ≡W : A that is preserved by each
term constructor and by weakening.

Note that we disallow pattern-matching into values. This is to
avoid the operational complication of values needing to be evaluated,
so-called complex values. However, somewhat inconsistently and
purely to keep the examples easy, we have included some complex
values: V + 1, 2 ∗ V and V = W .

A strong monad T on a suitable category V gives a denotational
semantics of call-by-push-value, where a value type denotes a V-
object and a computation type denotes an (Eilenberg-Moore) T -
algebra. In particular [[UB]] is the carrier of [[B]], and [[FA]] the
free T -algebra on [[A]]. A typing context Γ denotes

Q
(x:A)∈Γ[[A]].

A value Γ `v V : B denotes a V-morphism [[Γ]] → [[B]], and a
computation Γ `c M : B denotes a V-morphism [[Γ]]→ the carrier
of [[B]].

To translate to call-by-push-value, a call-by-value type A is
mapped to a value type Av, and a call-by-value term Γ `M : B to
a computation (x : Av)(x:A)∈Γ `c M v : FBv. In particular:

x
v = return x

(letM be x. N)v = M v
to x. N v

A call-by-name type A is mapped to a computation type An,
and a call-by-name term Γ ` M : B to a computation (x :
UAn)(x:A)∈Γ `c Mn : Bn. In particular:

x
n = force x

(letM be x. N)n = let thunkMn
be x. Nn

5.2 Contextual Morphisms
In call-by-push-value, when we define contextual morphism A→
B, we do not want A to be replaceable by B in all judgements, only
in computation judgements. For example, we want an isomorphism
0× 0 ∼= 0, yet there is no value x : 0× 0 `v V : 0 because of our
disallowance of pattern-matching into values.

Remark 2. Readers who prefer to include pattern-matching into
values would have a value x : 0 × 0 `v case x of {} : 0,
so they should instead consider the following example. In call-
by-push-value with type recursion, we want an isomorphism x :
recX. 1×X ∼= 0, yet there is no value x : recX. 1×X `v V : 0.

We write Q≡(Γ `c C) for the set of ≡-classes of computations
Γ `c M : C. A particular ≡-class is written (Γ `c M : C)≡. Any
computation with computation holes

N : (Γh `c Ch)h∈H → (∆ `c D)

gives rise to a functionN≡Q
h∈H Q

≡(Γh `c Ch) → Q≡(∆ `c D)

(Γh `c Mh : Ch)≡h∈H 7→ (∆ `c N [Mh]h∈H : D)≡

Definition 5. Let K and L be sets. Types with K value and L
computation type-holes are defined by the syntax

A ::= b | UB | 0 | A+A

| 1 | A×A | nat | [··k] (k ∈ K)

B ::= b | FA | 1Π | B ΠB | A→ B | [·· l] (l ∈ L)

We then define in the evident way:

• typing context with K value and L computation type-holes
• value judgement (or computation judgement) with K value and
L computation type-holes
• value with type-holes and holes, writen

V : (Γh `c Ch)h∈H
K,L

// (∆ `v D)

• computation with type-holes and holes, written

N : (Γh `c Ch)h∈H
K,L

// (∆ `c D)

Let A and B be value types. A contextual morphism θ : A→
B, with respect to a congruence ≡, consists of a function

θΓ`cC : Q≡((Γ `c C)[A]) → Q≡((Γ `c C)[B])

for each computation judgement with a value type-hole Γ `c C,
such that θ is preserved by every computation with a value type-hole
and computation holes

N : (Γh `c Ch)h∈H
1,0

// (∆ `c D)

i.e. Fig. 8 commutes. θ is a contextual isomorphism when every
function θΓ`cC is a bijection.

Remark 3. By contrast with Remark 1, we cannot meaningfully
say that every θ is preserved by every term constructor, because it is
given only on computation judgements.

The category of value types and contextual morphisms is written
Con1,0. We likewise define the category Con0,1 of computation
types and contextual morphisms. We can generalize both these
categories by working with families of types, as in Section 2.3. Let
K and L be sets; then we define a category ConK,L, in which an
object

A = ((Ak)k∈K , (Al)l∈L))

consists of an K-indexed family of value types and a L-indexed
family of computation types. A morphism θ : A → B is a
contextual morphism, which consists of a function

θΓ`cC : Q≡((Γ `c C)[A]) → Q≡((Γ `c C)[B])
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(c:A value constant)
Γ `v c : A

(c:B computation constant)
Γ `c c : B

Γ `v V : A Γ, x : A `c M : B

Γ `c
let V be x. M : B

Γ `v V : A

Γ `c
return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `v V : A Γ `c M : A→ B

Γ `c M V : B

(x : A) ∈ Γ
Γ `v

x : A

Γ `c M : B

Γ `v
thunkM : UB

Γ `v V : UB

Γ `c
force V : B

Γ `v V : A

Γ `v
inl V : A+A′

Γ `v V : A′

Γ `v
inr V : A+A′

Γ `v V : A+A′ Γ, x : A `c M : B Γ, y : A′ `c M ′ : B

Γ `c
case V of {inl x.M, inr y.M ′} : B Γ `v 〈 〉 : 1

Γ `v V : 1 Γ `c M : B

Γ `c
split V as 〈 〉. M : B

Γ `v V : A Γ `v V ′ : A′

Γ `v 〈V, V ′〉 : A×A′
Γ `v V : A×A′ Γ, x : A, y : A′ `c M : B

Γ `c
split V as 〈x, y〉. M : B Γ `c≺� : 1Π

Γ `v V : 0

Γ `c
case V of { } : B

Γ `c M : B Γ `c M ′ : B′

Γ `c≺M,M ′� : B ΠB′

Γ `c M : B ΠB′

Γ `c πM : B

Γ `c M : B ΠB′

Γ `c π′M : B′

Natural numbers

n ∈ N
Γ `v

constn : nat

Γ `v V : nat

Γ `v V+1 : nat

Γ `v V : nat Γ `c M : B Γ, x : nat `c M ′ : B

Γ `v
case V as {0.M, x+1.M ′} : B

Γ `v V : nat Γ `v V ′ : nat

Γ `v V = V ′ : 1 + 1

Γ `v V : nat

Γ `v
2 ∗ V : nat

Γ `v V : nat Γ, x : nat `c M : B Γ, y : nat `c M ′ : B

Γ `v
case V as {2 ∗ x.M, 2 ∗ y + 1.M ′} : B

State
Γ, x : nat `c M : B

Γ `c
read l as x. M : B

Γ `v V : nat Γ `c M : B

Γ `v
l := V. M : B

Exceptions
Γ `v V : nat

Γ `c
raise (e, V ) : B

Γ `v M : FA Γ, x : A `c N : B Γ, y : nat ` N ′ : B

Γ `c
tryM{ to x. N, catch (e, y). N ′} : B

Figure 7. Terms of call-by-push-value

Q
h∈H Q

≡((Γh `c Ch)[A])

Q
h∈H θΓh`cCh

��

N [A]≡ // Q≡((∆ `c D)[A])

θ∆`cD

��Q
h∈H Q

≡((Γh `c Ch)[B])
N [B]≡

// Q≡((∆ `c D)[B])

Figure 8. θ must be preserved byN

for each computation judgement with K value and L computation
type-holes Γ `c C, such that θ is preserved by every computation
with type-holes and computation holes

N : (Γh `c Ch)h∈H
K,L

// (∆ `c D)

The isomorphisms in ConK,L are precisely the contextual isomor-
phisms.

6. Thunkability and Linearity
Our aim is to characterize contextual morphisms by analogy with
Section 4.3: a contextual morphism between value types corresponds
to a thunkable isomorphism, and a contextual morphism between

computation types to a linear isomorphism. Before doing this we
need to explain thunkability and linearity and their properties. Let
≡ be a congruence that includes all the laws of Fig. 9–10; hence it
is preserved by substitution of values into computations.

Definition 6. 1. A computation Γ `c M : FA is thunkable up to
≡ when

Γ `c return thunkM ≡
M to x. return thunk return x : FUFA

(7)

2. A computation Γ, u : UB `c M : C is linear in u up to ≡ when

Γ, z : UFUB `c force z to u. M ≡
let thunk (force z to w. force w) be u. M : C

(8)

Equation (7) is intended to express the idea that M is effect-free,
and equation (8) is intended to say that M is effect-preserving. We
explain these in terms of the semantics given by a strong monad.
Thunkability A monad T is of codescent type when the fork

1V
η // T

Tη //

ηT
// T 2

is an equalizer (Bucalo et al. 2003). This is equivalent to ηX being
a regular monomorphism for all X (Barr and Wells 1985)[Lemma
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let V be x. M ≡ M [V/x]

(return V ) to x. M ≡ M [V/x]

force thunkM ≡ M

case (inl V ) of {inl x. M, inr y. M ′} ≡ M [V/x]

case (inr V ) of {inl x. M, inr y. M ′} ≡ M ′[V/y]

split 〈 〉 as 〈 〉. M ≡ M

split 〈V, V ′〉 as 〈x, y〉. M ≡ M [V/x, V ′/y]

π ≺M,M ′� ≡ M

π′ ≺M,M ′� ≡ M ′

(λx.M)V ≡ M [V/x]

M ≡ M to x. return x

V ≡ thunk force V

M [V/z] ≡ case V of { }
M [V/z] ≡ case V of {inl x. M [inl x/z], inr y. M [inr y/z]}
M [V/z] ≡ split V as 〈 〉. M [〈 〉/z]

M [V/z] ≡ split V as 〈x, y〉. M [〈x, y〉/z]

M ≡ ≺�
M ≡ ≺πM, π′M�
M ≡ λx.(M x)

(P to x. M) to y. N ≡ P to x. (M to y. N)

≺� ≡ P to x. ≺�
≺P to x. M, P to x. M ′� ≡ P to x. ≺M,M ′�

λy.(P to x. M) ≡ P to x. λy.M

Figure 9. Laws of call-by-push-value (typing and freshness assumptions omitted)

6, p. 110]. Every monad on Set satisfies it, except for those
isomorphic to the monad X 7→ 1 or to the monad X 7→
∅ (X = ∅)
1 otherwise . Thunkability of Γ `c M : FA says that the

diagram [[Γ]]
[[M ]] //

[[M ]]

��

T [[A]]

Tη[[A]]

��
T [[A]]

ηT [[A]]
// T 2[[A]]

commutes. So if T is of code-

scent type, there is a unique V-morphism f : [[Γ]] → [[A]] such
that [[Γ]]

f

��

[[M ]]

""EE
EE

EE
EE

[[A]]
η[[A]]

// T [[A]]

This precisely says that M returns a value

without performing effects.
Linearity Let T be a monad with strength t. For a V-object X
and T -algebras (Y, θ) and (Z, φ), a T -algebra homomorphism
(Y, θ)

X
// (Z, φ) is a V-morphism f : X × Y → Z

satisfying

X × TY
tX,Y //

X×θ

��

T (X × Y )
Tf // TZ

φ

��
X × Y

f
// Z

Linearity of Γ, u : UB `c M : C in u says that [[M ]] is a T -algebra
homomorphism [[B]]

[[Γ]]

// [[C]] .

Remark The above account is intended to give a basic grasp of
thunkability and linearity, but there are more general models of
call-by-push-value given not by a monad but by an adjunction
F a U : D → C. In such models, thunkable maps correspond
to C-morphisms only if the adjunction is of codescent type; linear
maps correspond toD-morphisms only if it is of descent type. Many
models of interest enjoy these properties, and any model can be
completed to one that enjoys them (Munch-Maccagnoni 2014).

An elegant and useful characterization of thunkability and lin-
earity in terms of associativity between call-by-value composition
(to) and call-by-name composition (let thunk) was presented
in (Munch-Maccagnoni 2014).

Proposition 6. 1. A computation Γ `c M : FA is thunkable iff
for every substitution k : Γ → ∆ and two computations
∆, x : A `c N : B and ∆, u : UB `c P : C we have

∆ `c k∗M to x. (let thunk N be u. P ) ≡
let thunk (k∗M to x. N) be u. P : C

(9)

2. A computation Γ, u : UB `c P : C is linear in y iff for every
substitution k : Γ→ ∆ and two computations ∆ `c M : FA
and ∆, x : A `c N : B we have

∆ `c M to x. (let thunk N be u. k∗P ) ≡
let thunk (M to x. N) be u. k∗P : C

(10)
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Natural numbers constn + 1 ≡ constn+1

2 ∗ constn ≡ const2n

(constn = constn) ≡ inl 〈 〉
(constm = constn) ≡ inr 〈 〉 (m 6= n)

case 0 as {0.M, y+1.M ′} ≡ M

case V+1 as {0.M, y+1.M ′} ≡ M ′[V/y]

M [V/z] ≡ case V as {0.M [0/z], y+1.M [y+1/z]}
case 2 ∗ V as {2 ∗ x.M, 2 ∗ y + 1.M ′} ≡ M [V/x]

case 2 ∗ V + 1 as {2 ∗ x.M, 2 ∗ y + 1.M ′} ≡ M ′[V/y]

M [V/z] ≡ case V as {2 ∗ x.M [2 ∗ x/z], 2 ∗ y + 1.M [2 ∗ y + 1/z]}
State (Plotkin and Power 2002)

(read l as x.M) to y. N ≡ read l as x. (M to y. N)

(l := V.M) to y. N ≡ l := V. (M to y. N)

read l as x. M ≡ read l as x. l := x, M

l := V. read l as x.M ≡ l := V.M [V/x]

l := V. l := W.M ≡ l := W.M

Exceptions (Levy 2006a)
try (return V ){ to x.M, catch (e, y). N} ≡ M [V/x]

try (raise (e,W )){ to x.M, catch (e, y). N} ≡ N [W/y]

M to x. N ≡ tryM{ to x. N, catch (e, y). raise (e, y)}

 
M

(
to x. N

catch y. N ′

!(
to z. P

catch w. P ′
≡ M

8>>>><>>>>:
to x. N

(
to z. P

catch w. P ′

catch y. N ′

(
to z. P

catch w. P ′

≺� ≡ P{ to x. ≺�, catch y. ≺�}

≺P

(
to x. M

catch y ∈ N
, P

(
to x. M ′

catch y ∈ N ′
� ≡ P

(
to x. ≺M,M ′�
catch y. ≺N,N ′�

λz.

 
P

(
to x. M

catch y. N

!
≡ P

(
to x. λz.M

catch y. λz. N

Figure 10. Laws of natural numbers, state and exceptions (typing and freshness assumptions omitted)

The following property of thunkable computations is called
“centrality” in (Power and Robinson 1997).

Proposition 7. If Γ `c M : FA is thunkable then for all
Γ `c N : FB and Γ, x : A, y : B `c P : C we have

M to x. N to y. P ≡ N to y. M to x. P

Proposition 8. 1. The following computations are thunkable. Typ-
ing assumptions are omitted.

return V

k∗M if M is thunkable
M to x. N if M and N are thunkable

case V of { }
case V of {inl x. M, inr y. M ′}

if M and M ′ are thunkable
split V as 〈 〉.M if M is thunkable

split V as 〈x, y〉.M if M is thunkable
case V of {0.M, y+1.M ′}

if M and M ′ are thunkable

case V of {2 ∗ x.M, 2 ∗ y + 1.M ′}
if M and M ′ are thunkable

2. The following computations are linear in u. Typing assumptions
are omitted, but u must be fresh for V , N and k.

force u

k∗M if M is linear in u

let thunkM be v. N if M is linear in u and N in v

case V of { }
case V of {inl x′ M, inr y. M ′}

if M and M ′ are linear in u

split V as 〈 〉.M if M is linear in u

split V as 〈x, y〉.M if M is linear in u

case V of {0.M, y+1.M ′}
if M and M ′ are linear in u

case V of {2 ∗ x.M, 2 ∗ y + 1.M ′}
if M and M ′ are linear in u

≺�
≺M,M ′� if M and M ′ are linear in u
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πM if M is linear in u

π′M if M is linear in u

λx.M if M is linear in u

M V if M is linear in u

N to x. M if N is thunkable and M linear in u

M to x. N if M is linear in u

Proposition 9. 1. Let Γ, x : A `c M : FB be thunkable. Let
Γ, y : B `c N : FA be an inverse of M , i.e.

Γ, x : A `c M to y. N ≡ return x : FA

Γ, y : B `c N to x. M ≡ return y : FB

Then N is thunkable.
2. Let Γ, u : UB `c M : C be linear in u. Let Γ, v : UC `c N :
B be an inverse of M i.e.

Γ, u : UB `c let thunkM be y. N ≡ force u : B

Γ, v : UC `c let thunk N be x. M ≡ force v : C

Then N is linear in v.

Let us write Q≡(Γ `v C) for the set of all ≡-classes of thunk-
able Γ `c M : FC. Then any value with computation holes

V : (Γh `c Ch)h∈H → (∆ `v D)

gives rise to a function (V)≡Q
h∈H Q

≡(Γh `c Ch) → Q≡(∆ `v D)

(Γh `c Mh : Ch)≡h∈H 7→
(∆ `c return V[Mh]h∈H : FD)≡

7. Characterizing Contextual Morphisms
We now adapt our account of contextual morphisms in λ-calculus
to call-by-push-value, using thunkable and linear maps.

7.1 Functoriality and Naturality in Thunkable and Linear
Isomorphisms

Definition 7. 1. A thunkable mapA −→ B is an≡-class of thunk-
able computations x : A `c M : FB. These form a category
Thk. The identity on A is (x : A `c return x : FA)≡. The
composite of (x : A `c M : FB)≡ and (x : B`cN :FC)≡ is
(x : A `c M to x. N : FC)≡.

2. A linear map A −→ B is an ≡-class of computations
x : UA `c N : B linear in x. These form a category
Lin. The identity on A is (x : UA `c force x : A)≡. The
composite of (x : UA `c M : B)≡ (x : UB `c N : C)≡ is
(x : UA `c let thunkM be x. N : C)≡.

As in Section 4.2, our type constructors are mixed variance
functors.

U : Lin → Thk

+ : Thk×Thk → Thk

× : Thk×Thk → Thk

F : Thk → Lin

Π : Lin× Lin → Lin

→ : Thk
op

× Lin → Lin

They are defined in Figure 11.
Using these, every type is functorial in its type-holes. Let K and

L be sets, and we write A, B etc. for a pair of an K-indexed family
of value types and an L-indexed family of computation types. We
define functors as follows.

• Every value type C with K value and L computation type-holes
gives a functor

C[··] : Isos (Thk)K × Isos (Lin)L → Isos (Thk)

• Every computation type C with K value and L computation
type-holes gives a functor

C[··] : Isos (Thk)K × Isos (Lin)L → Isos (Lin)

Next we need to make judgements into functors.

Definition 8. Let U = {y0, . . . , yn−1} be a finite set of identifiers.
We define a functor

Q≡(`c ) : (Thk
op

)U × Lin→ Set

as follows.

• An object is a judgement Γ `c C where the domain of Γ is U . It
is sent to the set (Γ `c C)≡.
• A morphism ((y : Ay)y∈U `c C) → ((y : By)y∈U `c D),

consists of an equivalence class (x : By `c Ny : FAy)
≡, with

Ny thunkable, for each y ∈ U , and an equivalence class
(x : UC `c P : D)≡, with P linear in x. It is sent to the
function

Q≡((y : Ay)y∈U `c C)→ Q≡((y : By)y∈U `c D)

sending ((y : Ay)y∈U `c M : C)≡ to

((y : By)y∈U `c Ny0 to y0.

. . .

Nyn−1 to yn−1.

P [thunkM/x] : D)≡

We also define a functor

Q≡(`v ) : (Thk
op

)U ×Thk→ Set

as follows.

• An object is a judgement Γ `v C where the domain of Γ is u. It
is sent to (Γ `v C)≡.
• A morphism ((y : Ay)y∈U `v C) → ((y : By)y∈U `v D)

consists of an equivalence class (x : By `c Ny : FAy)
≡, with

Ny thunkable, for each y ∈ U , and an equivalence class
(x : C `c P : FD)≡, with P thunkable. It is sent to the function

Q≡((y : Ay)y∈U `v C)→ Q≡((y : By)y∈U `v D)

sending ((y : Ay)y∈U `c M : FC)≡, with M thunkable, to

((y : By)y∈U `c Ny0 to y0.

. . .

Nyn−1 to yn−1.

M to x. P : FD)≡

By Proposition 7, these definitions are independent of the partic-
ular ordering of U .

Again letting K and L be sets, we define functors as follows.

• Every value judgement Γ `v C withK value andL computation
type-holes gives a functor

Q≡((Γ `v C)[··]) : Isos (Thk)K × Isos (Lin)L → Set

• Every computation judgement Γ `c C with K value and L
computation type-holes gives a functor

Q≡((Γ `c C)[··]) : Isos (Thk)K × Isos (Lin)L → Set
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U (x : UA `c M : B)≡
def
= (x : UA `c return thunkM : FUB)≡

(x : A `M : FB)≡ + (x : C ` N : FD)≡
def
=

(x : A+ C `c case x of {
inl x.M to y. return inl y

inr x. N to y. return inr y

} : F (B +D))≡

(x : A `M : FB)≡ × (x : C ` N : FD)≡
def
=

(x : A× C `c split x as 〈y, z〉.
M [y/x] to u.

N [z/x] to v.

return 〈u, v〉 : F (B × C))≡

F (x : A `c M : FB)≡
def
= (x : UFA `c force x to x. M : FB)≡

(x : UA `c M : B)≡ Π (x : UC `c N : D)≡
def
=

(x : U(A Π C) `c ≺M [thunk π force x/x],

N [thunk π′ force x/x] �
: B ΠD)≡

(x : B `c M : FA)≡ → (x : UC `c N : D)≡
def
=

(x : U(A→ C) `c λy.

M [y/x] to z.

N [thunk ((force x) z)/x]

: B → D)≡

Figure 11. The functors U , +, ×, F , Π and→ applied to morphisms of Thk and Lin

We then show that every value with type-holes and holes

V : (Γh `c Ch)h∈H
K,L

// (∆ `v D)

and every computation with type-holes and holes

N : (Γh `c Ch)h∈H
K,L

// (∆ `c D)

is natural as the type-hole argument ranges over Isos (Thk)K ×
Isos (Lin)L.

7.2 Characterizing Contextual Morphisms in
Call-by-push-value

We now want to show that

Con1,0
∼= Isos (Thk)

Con0,1
∼= Isos (Lin)

and more generally

ConK,L ∼= Isos (Thk)K × Isos (Lin)L

We proceed as in Section 4.3.

Definition 9. Let σ : A ∼= B in Isos (Thk)K × Isos (Lin)L.
We write Gσ for the following contextual isomorphism A ∼= B.
For each computation judgement Γ `c C with K value and L
computation type-holes,

(Gσ)Γ`cC : Q≡((Γ `c C)[A])→ Q≡((Γ `c C)[B])

isQ≡((Γ `c C)[σ]).

Commutativity of Fig. 8 holds by naturality, and we obtain an
identity-on-objects functor

G : Isos (Thk)K × Isos (Lin)L → ConK,L

Our goal is to show that it is an isomorphism of categories.
First we describe how to recover σ and σ−1 from Gσ.

Lemma 10. Let σ : A ∼= B in Isos (Thk)K × Isos (Lin)L.

For any k ∈ K we have σk = (Gσ)x:Ak`cF [··k] idAk

σ−1
k = (Gσ)x:[··k]`cFAk

idAk

For any l ∈ L we have σ l = (Gσ)x:UAl`c[·· l] idAl

σ−1
l = (Gσ)x:U [·· l]`cAl

idAl

Theorem 11. G is an isomorphism of categories.

Proof. For a contextual morphism θ : A → B, we must show
θ = G σ for unique σ : A ∼= B in Isos (Thk)K × Isos (Lin)L.

For each k ∈ K set σk
def
= θx:Ak`cF [··k] idAk

σ−1
k

def
= θx:[··k]`cFAk

idAk

and for each l ∈ L set σ l
def
= θx:UAl`c[·· l] idAl

σ−1
l

def
= θx:U [·· l]`cAl

idAl

By Lemma 10 this is the only possibility. For k ∈ K, we show σk
to be thunkable as follows. Preservation of θ by

return thunk [·]
: (x : Ak `c F [··l])

K,L
// (x : Ak `c FUF [··k])

applied to return x gives

return thunk σk = θx:A`cFUF [··k](return thunk return x)
(11)

Preservation of θ by

[··k] to y. return thunk return y

: (x : Ak `c F [··k])
K,L

// (x : Ak `c FUF [··k])

applied to return x gives

σk to y. return thunk return y =

θx:Ak`c
··FUF [··k]((return x) to y. return thunk return y)

(12)
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x : UF (1 + 1) `c

force x to y.

case y of {
inl z.

read l as v.

l := 2 ∗ v.
return 〈 〉

inr z.

read l as v.

l := 2 ∗ v + 1.

return 〈 〉
} : F1

x : UF1 `c

force x to z.

read l as u.

case u of {
2 ∗ w.
l := w.

return inl 〈 〉
2 ∗ w + 1.

l := w.

return inr 〈 〉
} : F (1 + 1)

Figure 12. Linear isomorphism F (1 + 1) ∼= F1 in call-by-push-
value with mutable state

The right-hand sides of (11) and (12) are equal, so the left-
hand sides are equal, i.e. σk is thunkable. By a similar argument,
σ l is linear for all l ∈ L. The rest of the proof follows that of
Theorem 4.

Corollary 12. Every contextual morphism is an isomorphism.

8. Examples and Non-examples
To directly give examples and non-examples of contextual isomor-
phisms would be complicated. Happily we do not need to: Theo-
rem 11 lets us instead work with thunkable or linear isomorphisms.
For a ground type A, let Vals(A) be the set of values `v V : A.

In call-by-push-value with mutable state, Figure 12 displays a
linear isomorphism F (1 + 1) ∼= F1. Both computations are linear
in x because of Proposition 8(2) (first and last items). We rule out a
thunkable iso 1 + 1 ∼= 1, provided ≡ has the following property.

Definition 10. Let ≡ be a congruence on call-by-push-value with
state, containing Figures 9–10 (minus the exceptions part). It is
precise for state when, for every ground type A,

1. for every m ∈ N and `c M : FA there is unique n ∈ N and
W ∈ Vals(A) such that

l := constm. M ≡ l := constn. returnW

2. for every `c M,M ′ : FA, if

l := constm. M ≡ l := constm. M
′

for all m ∈ N then M ≡M ′.

For every ground type A, we deduce4 the following.

• For W,W ′ ∈ Vals(A), if return W ≡ return W ′ then
W = W ′, by applying (1) to m = 0 and M = W .
• For any thunkable `c M : FA, there is (unique) W ∈ Vals(A)

s.t. M ≡ returnW . Proof: for every m ∈ N obtain nm and
Wm such that

l := constm. M ≡ l := constnm . Wm

4 Essentially this is a proof that the state monad N→ (N×−) on Set is of
codescent type.

Then nm = m and Wm = W0 because otherwise

return false ≡
(l := 0. M) to x.
(l := constm. M) to y.
read l as u.
return (x = y) and (u = constm)

≡

M to z.
(l := 0. return z) to x.
(l := constm. return z) to y.
read l as u.
return (x = y and (u = constm)

≡ return true

Therefore M ≡ returnW0 by (2).

Let VGround be the category of ground types and thunkable maps.
LetH : VGround→ Set be the following functor.

• A ground type A is sent to Vals(A).
• A thunkable map (x : A `c M : FB)≡ is sent to the function

Vals(A) → Vals(B) sending V to the unique W such that
M [V/x] ≡ returnW .

SinceH(1 + 1) 6∼= H 1 in Set, we have 1 + 1 6∼= 1 in VGround.
In call-by-push-value with exceptions, Figure 13 displays a

thunkable isomorphism UF1 ∼= UF0. Both computations are
thunkable because of Proposition 8(1) (first item). We rule out a
linear iso F1 ∼= F0, provided ≡ has the following property.

Definition 11. 1. For any ground typeA and p ∈ Vals(A)+N, let
`c p̃ : FA be return V if p = inl V , and raise (e, constn)
if p = inr n.

2. Let ≡ be a congruence on call-by-push-value with exceptions,
containing Figures 9–10 (minus the state part). It is precise for
exceptions when, for any ground type A and any computation
`c M : FA, there is unique p ∈ Vals(A)+N such thatM ≡ p̃.

Let CGround be the category in which an object is a ground
type and a morphism A → B is a linear map FA → FB. Let
N/Set be the category of N-pointed sets and homomorphisms. Let
K : CGround→ N/Set be the following functor.

• A ground type A is sent to (Vals(A) + N, (inr n)n∈N).
• A linear map (x : UFA `c M : FB)≡ is sent to the homomor-

phism (Vals(A)+N, (inr n)n∈N)→ (Vals(B)+N, (inr n)n∈N)
sending p to the unique q such that M [thunk p̃/x] ≡ q̃.

Since K 1 6∼= K 0 in N/Set, we have 1 6∼= 0 in CGround, i.e. there
is no linear isomorphism F1 ∼= F0.

9. Call-by-Value and Call-by-Name
We sketch how to adapt our results to the call-by-value and call-by-
name settings.

To define thunkability for a call-by-value language, suppose that
( ) → A is a nullary function type, i.e. the type of functions that
take no arguments and have return type A. Let ≡ be a congruence
that includes the standard call-by-value laws (Moggi 1988). A term
Γ `M : A is thunkable up to ≡ when

Γ `c λ( ).M ≡ letM be x. λ( ). x : ( )→ A

To define linearity for a call-by-name language, suppose that +(B)
is a unary sum type5, i.e. a datatype with a single constructor just
taking one argument of type B. Let≡ be a congruence that includes

5 Call-by-name sum types do not satisfy the η-law, so they are not categorical
coproducts.
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x : UF1 `c return thunk (

try (force x){
to y.

raise (e, 0)

catch (e, v).

raise (e, v+1)

}
) : FUF0

x : UF0 `c return thunk (

try (force x){
to z.

case z as { }
catch (e, u).

case u of {
0.

return 〈 〉
w+1.

raise (e, w)

}
}

) : FUF1

Figure 13. Thunkable isomorphism UFunit ∼= UFempty in call-
by-push-value with exceptions

the standard call-by-name laws (Levy 2004)[Figure A.8]. A term
Γ, u : B `M : C is linear in u up to ≡ when

Γ, z : +(B) `
let (case z of {just w. w}) be u. M
≡ case z of {just u. M} : C

Both these notions, when translated into call-by-push-value, coin-
cide with Definition 6. The requirements for nullary function types
or unary sum types in the language are reasonable, as both are
included in the “jumbo” version of λ-calculus (Levy 2006b).

The category of types and contextual morphisms, for a congru-
ence ≡, is isomorphic

• to the groupoid of types and thunkable isomorphisms, if nullary
function types are present and ≡ includes the call-by-value laws
• to the groupoid of types and linear isomorphisms, if unary sum

types are present and ≡ includes the call-by-name laws.

This allows us, as in Section 8, to work with thunkable and linear
isomorphisms instead of contextual ones. For example:

• In call-by-value with state, Figure 14 displays a thunkable
isomorphism A → bool ∼= A → unit, for any type A. This
translates as U(A → F (1 + 1)) ∼= U(A → F1). But there is
no thunkable isomorphism bool ∼= unit, as in Section 8.
• In call-by-name with exceptions, Figure 15 displays a linear

isomorphism A + unit ∼= A + empty, for any type A. This
translates as F (UA + UF1) ∼= F (UA + UF0). But there is
no linear isomorphism unit ∼= empty, as in Section 8.

10. Conclusions
Contextual isomorphisms provides a unified minimal standard for re-
garding two types as essentially the same. Map-based isomorphisms,
provided they are thunkable or linear, give a sound, complete and
convenient technique for generating contextual isomorphisms.
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