
Semantics of nondeterminism

Paul Blain Levy

University of Birmingham

November 17, 2009

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 1 / 28

Outline

1 Denotational Semantics

2 Nondeterminism

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 2 / 28

Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 3 / 28

Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 3 / 28

Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 3 / 28

Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 3 / 28

Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 3 / 28

Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 3 / 28

Example: simple while language

Our language has two (nonnegative) integer variables x and y.

Integer expressions are given by the BNF grammar

E ::= x | y | E + E | E ∗ E | n (n ∈ N)

Boolean expressions are given by the grammar

B ::= E > E | E = E | true | not B | B and B

Commands are given by the grammar

M ::= skip | x:=E | y:=E

M; M | if B then M else M | while B do M

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 4 / 28

Example: simple while language

Our language has two (nonnegative) integer variables x and y.
Integer expressions are given by the BNF grammar

E ::= x | y | E + E | E ∗ E | n (n ∈ N)

Boolean expressions are given by the grammar

B ::= E > E | E = E | true | not B | B and B

Commands are given by the grammar

M ::= skip | x:=E | y:=E

M; M | if B then M else M | while B do M

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 4 / 28

Example: simple while language

Our language has two (nonnegative) integer variables x and y.
Integer expressions are given by the BNF grammar

E ::= x | y | E + E | E ∗ E | n (n ∈ N)

Boolean expressions are given by the grammar

B ::= E > E | E = E | true | not B | B and B

Commands are given by the grammar

M ::= skip | x:=E | y:=E

M; M | if B then M else M | while B do M

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 4 / 28

Example: simple while language

Our language has two (nonnegative) integer variables x and y.
Integer expressions are given by the BNF grammar

E ::= x | y | E + E | E ∗ E | n (n ∈ N)

Boolean expressions are given by the grammar

B ::= E > E | E = E | true | not B | B and B

Commands are given by the grammar

M ::= skip | x:=E | y:=E

M; M | if B then M else M | while B do M

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 4 / 28

Semantics of Expressions

A state is a pair of integers e.g. (4, 17).
This means that currently x = 4 and y = 17.

The set of states is S
def
= N× N.

Each integer expression E denotes a function [[E]] from S to N.

Example: the meaning of +

[[E + E ′]] is the function mapping a state s to the integer [[E]]s + [[E ′]]s.

Each boolean expression B denotes a function [[B]] from S to B (the set of
booleans).

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 5 / 28

Semantics of Expressions

A state is a pair of integers e.g. (4, 17).
This means that currently x = 4 and y = 17.

The set of states is S
def
= N× N.

Each integer expression E denotes a function [[E]] from S to N.

Example: the meaning of +

[[E + E ′]] is the function mapping a state s to the integer [[E]]s + [[E ′]]s.

Each boolean expression B denotes a function [[B]] from S to B (the set of
booleans).

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 5 / 28

Semantics of Expressions

A state is a pair of integers e.g. (4, 17).
This means that currently x = 4 and y = 17.

The set of states is S
def
= N× N.

Each integer expression E denotes a function [[E]] from S to N.

Example: the meaning of +

[[E + E ′]] is the function mapping a state s to the integer [[E]]s + [[E ′]]s.

Each boolean expression B denotes a function [[B]] from S to B (the set of
booleans).

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 5 / 28

Semantics of Expressions

A state is a pair of integers e.g. (4, 17).
This means that currently x = 4 and y = 17.

The set of states is S
def
= N× N.

Each integer expression E denotes a function [[E]] from S to N.

Example: the meaning of +

[[E + E ′]] is the function mapping a state s to the integer [[E]]s + [[E ′]]s.

Each boolean expression B denotes a function [[B]] from S to B (the set of
booleans).

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 5 / 28

Semantics of Expressions

A state is a pair of integers e.g. (4, 17).
This means that currently x = 4 and y = 17.

The set of states is S
def
= N× N.

Each integer expression E denotes a function [[E]] from S to N.

Example: the meaning of +

[[E + E ′]] is the function mapping a state s to the integer [[E]]s + [[E ′]]s.

Each boolean expression B denotes a function [[B]] from S to B (the set of
booleans).

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 5 / 28

Semantics of Commands

If we run a program in a given starting state s, there are two possible
behaviours:

it can terminate in another state s ′

it can diverge (run silently forever).

We write S⊥ for the set of states extended with an extra element ⊥,
representing divergence.
A command M denotes a function [[M]] from S to S⊥.

For example, we want the denotation of

x := x + 4;
while (x > y) do {x := x + 1}

to be the function that maps the state (x , y) to

⊥ if x + 4 > y

(x + 4, y) if x + 4 6 y .

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 6 / 28

Semantics of Commands

If we run a program in a given starting state s, there are two possible
behaviours:

it can terminate in another state s ′

it can diverge (run silently forever).

We write S⊥ for the set of states extended with an extra element ⊥,
representing divergence.
A command M denotes a function [[M]] from S to S⊥.

For example, we want the denotation of

x := x + 4;
while (x > y) do {x := x + 1}

to be the function that maps the state (x , y) to

⊥ if x + 4 > y

(x + 4, y) if x + 4 6 y .

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 6 / 28

Semantics of Commands

If we run a program in a given starting state s, there are two possible
behaviours:

it can terminate in another state s ′

it can diverge (run silently forever).

We write S⊥ for the set of states extended with an extra element ⊥,
representing divergence.
A command M denotes a function [[M]] from S to S⊥.

For example, we want the denotation of

x := x + 4;
while (x > y) do {x := x + 1}

to be the function that maps the state (x , y) to

⊥ if x + 4 > y

(x + 4, y) if x + 4 6 y .

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 6 / 28

Example: the meaning of while

[[while B do M]] is the function mapping a state s to

a state s ′ if there is a sequence of states s = s0, s1, . . . , sn = s ′ such
that

[[B]]si = true and [[M]]si = si+1 for each i < n

[[B]]sn = false

⊥ if there is a sequence of states s = s0, s1, . . . , sn such that

[[B]]si = true and [[M]]si = si+1 for each i < n

[[B]]sn = true and [[M]]sn = ⊥

⊥ if there is an infinite sequence of states s = s0, s1, . . . such that

[[B]]si = true and [[M]]si = si+1 for each i

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 7 / 28

Procedure call

So far we’ve looked at closed commands that don’t call any procedures.
Let’s suppose there’s a parameterless procedure c. Here’s the grammar of
open commands, that are allowed to mention c.

N ::= M | N; N | if B then N else N | while B do N | c()

Recall A closed command denotes an element of S → S⊥
Suggestion An open command such as

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes a function from S → S⊥ to S → S⊥.
The argument to this function represents the meaning of c.

In fact, an open command must denote a continuous function. (Technical
condition)

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 8 / 28

Procedure call

So far we’ve looked at closed commands that don’t call any procedures.
Let’s suppose there’s a parameterless procedure c. Here’s the grammar of
open commands, that are allowed to mention c.

N ::= M | N; N | if B then N else N | while B do N | c()

Recall A closed command denotes an element of S → S⊥

Suggestion An open command such as

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes a function from S → S⊥ to S → S⊥.
The argument to this function represents the meaning of c.

In fact, an open command must denote a continuous function. (Technical
condition)

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 8 / 28

Procedure call

So far we’ve looked at closed commands that don’t call any procedures.
Let’s suppose there’s a parameterless procedure c. Here’s the grammar of
open commands, that are allowed to mention c.

N ::= M | N; N | if B then N else N | while B do N | c()

Recall A closed command denotes an element of S → S⊥
Suggestion An open command such as

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes a function from S → S⊥ to S → S⊥.
The argument to this function represents the meaning of c.

In fact, an open command must denote a continuous function. (Technical
condition)

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 8 / 28

Procedure call

So far we’ve looked at closed commands that don’t call any procedures.
Let’s suppose there’s a parameterless procedure c. Here’s the grammar of
open commands, that are allowed to mention c.

N ::= M | N; N | if B then N else N | while B do N | c()

Recall A closed command denotes an element of S → S⊥
Suggestion An open command such as

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes a function from S → S⊥ to S → S⊥.
The argument to this function represents the meaning of c.

In fact, an open command must denote a continuous function. (Technical
condition)

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 8 / 28

Recursive definition

Let’s extend the grammar of closed commands, so that we can define a
closed command recursively.

M ::= skip | x:=E | y:=E |
M; M | if B then M else M | while B do M

| command c() {N}

For example, here is a closed command:

x := x + 5;
command c() {

x := 3;
if (y > 4) then {c()} else {y := 2}

};
y := 9

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 9 / 28

Semantics of recursion

How can we give [[command c() {N}]] in terms of [[N]]?

For example, we want the closed command

command c() {
x := 3;
if (y > 4) then {c()} else {y := 2}

}

to denote an element of S → S⊥, mapping a state (x , y) to

⊥ if y > 4

the state (3, 2) if y 6 4.

How can we obtain this element from the denotation of the body?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 10 / 28

Semantics of recursion

How can we give [[command c() {N}]] in terms of [[N]]?

For example, we want the closed command

command c() {
x := 3;
if (y > 4) then {c()} else {y := 2}

}

to denote an element of S → S⊥, mapping a state (x , y) to

⊥ if y > 4

the state (3, 2) if y 6 4.

How can we obtain this element from the denotation of the body?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 10 / 28

Fixpoints

A function f from a set A to itself is called an endofunction.

Is there an element x ∈ A such that f (x) = x?

Such an element is called a fixpoint of f .

Examples of endofunctions on Z
x 7→ x + 1 has no fixpoints.

x 7→ 2x has one fixpoint.

x 7→ x2 has two fixpoints.

x 7→ x3 has three fixpoints.

x 7→ x has infinitely many fixpoints.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 11 / 28

Fixpoints

A function f from a set A to itself is called an endofunction.

Is there an element x ∈ A such that f (x) = x?

Such an element is called a fixpoint of f .

Examples of endofunctions on Z
x 7→ x + 1 has no fixpoints.

x 7→ 2x has one fixpoint.

x 7→ x2 has two fixpoints.

x 7→ x3 has three fixpoints.

x 7→ x has infinitely many fixpoints.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 11 / 28

Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 12 / 28

Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 12 / 28

Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 12 / 28

Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 12 / 28

Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 12 / 28

Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 12 / 28

Equivalence

Note that we started off knowing what the meaning of a program should
be, because we knew how to run a program.

We also knew when we wanted two programs to be equivalent, i.e. to have
the same meaning.

An important question to address before formulating a denotational
semantics is: when should two pieces of code be considered equivalent?

Ideally two pieces of code should have the same denotation if and only if
they are equivalent in some a priori sense.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 13 / 28

Equivalence

Note that we started off knowing what the meaning of a program should
be, because we knew how to run a program.

We also knew when we wanted two programs to be equivalent, i.e. to have
the same meaning.

An important question to address before formulating a denotational
semantics is: when should two pieces of code be considered equivalent?

Ideally two pieces of code should have the same denotation if and only if
they are equivalent in some a priori sense.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 13 / 28

Equivalence

Note that we started off knowing what the meaning of a program should
be, because we knew how to run a program.

We also knew when we wanted two programs to be equivalent, i.e. to have
the same meaning.

An important question to address before formulating a denotational
semantics is: when should two pieces of code be considered equivalent?

Ideally two pieces of code should have the same denotation if and only if
they are equivalent in some a priori sense.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 13 / 28

Equivalence

Note that we started off knowing what the meaning of a program should
be, because we knew how to run a program.

We also knew when we wanted two programs to be equivalent, i.e. to have
the same meaning.

An important question to address before formulating a denotational
semantics is: when should two pieces of code be considered equivalent?

Ideally two pieces of code should have the same denotation if and only if
they are equivalent in some a priori sense.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 13 / 28

Printing

Let’s say we add a printing commands to our language.
Then a command, in a given starting state s, has three possible
behaviours:

to print a finite string m, then terminate in a state s ′

to print a finite string m, then diverge

to print an infinite string m.

Let’s write Beh for the set of behaviours.

A closed command denotes an element of S → Beh.
An open command denotes a (continuous) endofunction on S → Beh.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 14 / 28

Printing

Let’s say we add a printing commands to our language.
Then a command, in a given starting state s, has three possible
behaviours:

to print a finite string m, then terminate in a state s ′

to print a finite string m, then diverge

to print an infinite string m.

Let’s write Beh for the set of behaviours.

A closed command denotes an element of S → Beh.
An open command denotes a (continuous) endofunction on S → Beh.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 14 / 28

Additional Features

We can consider many different programming language features, and try
to come up with denotational models for them:

higher-order functions (functions that take functions as parameters)

data types

recursively defined types

input

exceptions

control operators

local variables

function variables

different parameter-passing mechanisms.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 15 / 28

Why consider nondeterminism?

So far, we’ve looked at programs that are deterministic: given the starting
state, the behaviour follows inexorably.

But lots of programs in reality depend on hidden factors. Run them twice
and they’ll do something different, for no intelligible reason.

Perhaps because they involve concurrent threads, and the behaviour
depends on the details of the scheduler, or on what other programs
are being run by other users.

Perhaps because they allocate some free memory, and the behaviour
depends on which location is chosen.

. . .

The programmer has to assume that a program has a range of possible
behaviours, and to ensure that all of them are acceptable.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 16 / 28

Why consider nondeterminism?

So far, we’ve looked at programs that are deterministic: given the starting
state, the behaviour follows inexorably.

But lots of programs in reality depend on hidden factors. Run them twice
and they’ll do something different, for no intelligible reason.

Perhaps because they involve concurrent threads, and the behaviour
depends on the details of the scheduler, or on what other programs
are being run by other users.

Perhaps because they allocate some free memory, and the behaviour
depends on which location is chosen.

. . .

The programmer has to assume that a program has a range of possible
behaviours, and to ensure that all of them are acceptable.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 16 / 28

Why consider nondeterminism?

So far, we’ve looked at programs that are deterministic: given the starting
state, the behaviour follows inexorably.

But lots of programs in reality depend on hidden factors. Run them twice
and they’ll do something different, for no intelligible reason.

Perhaps because they involve concurrent threads, and the behaviour
depends on the details of the scheduler, or on what other programs
are being run by other users.

Perhaps because they allocate some free memory, and the behaviour
depends on which location is chosen.

. . .

The programmer has to assume that a program has a range of possible
behaviours, and to ensure that all of them are acceptable.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 16 / 28

Why consider nondeterminism?

So far, we’ve looked at programs that are deterministic: given the starting
state, the behaviour follows inexorably.

But lots of programs in reality depend on hidden factors. Run them twice
and they’ll do something different, for no intelligible reason.

Perhaps because they involve concurrent threads, and the behaviour
depends on the details of the scheduler, or on what other programs
are being run by other users.

Perhaps because they allocate some free memory, and the behaviour
depends on which location is chosen.

. . .

The programmer has to assume that a program has a range of possible
behaviours, and to ensure that all of them are acceptable.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 16 / 28

Some nondeterministic constructs

There are various nondeterministic constructs we can put into a language.
An example is or which chooses to go left or right:

{x := 3; y := 4} or {x := 7}
A more powerful construct is somenumber, which offers infinitely many
possibilities:

x := somenumber;
print ”hello” x times

Here is an attempt to achieve x := somenumber using just or.

local z := 0
z := 0 or z := 1;
x := 0;
while (z = 0) do {

x := x + 1;
{z := 0} or {z := 1}

}

//This may diverge.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 17 / 28

Some nondeterministic constructs

There are various nondeterministic constructs we can put into a language.
An example is or which chooses to go left or right:

{x := 3; y := 4} or {x := 7}
A more powerful construct is somenumber, which offers infinitely many
possibilities:

x := somenumber;
print ”hello” x times

Here is an attempt to achieve x := somenumber using just or.

local z := 0
z := 0 or z := 1;
x := 0;
while (z = 0) do {

x := x + 1;
{z := 0} or {z := 1}

} //This may diverge.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 17 / 28

Erratic vs Ambiguous Nondeterminism

Suppose E and E ′ are two expressions that might return an integer or
might diverge.

E or E ′ chooses to go left or right, and evaluates E or E ′ accordingly.

E amb E ′ evaluates E and E ′ concurrently, and returns whatever it gets
first. This will diverge only if both E and E ′ diverge.

(3 or 4) or (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9 or diverge.

(3 or 4) amb (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9. It cannot diverge.
Amb is more powerful than somenumber.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 18 / 28

Erratic vs Ambiguous Nondeterminism

Suppose E and E ′ are two expressions that might return an integer or
might diverge.

E or E ′ chooses to go left or right, and evaluates E or E ′ accordingly.

E amb E ′ evaluates E and E ′ concurrently, and returns whatever it gets
first. This will diverge only if both E and E ′ diverge.

(3 or 4) or (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9 or diverge.

(3 or 4) amb (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9. It cannot diverge.
Amb is more powerful than somenumber.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 18 / 28

Erratic vs Ambiguous Nondeterminism

Suppose E and E ′ are two expressions that might return an integer or
might diverge.

E or E ′ chooses to go left or right, and evaluates E or E ′ accordingly.

E amb E ′ evaluates E and E ′ concurrently, and returns whatever it gets
first. This will diverge only if both E and E ′ diverge.

(3 or 4) or (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9 or diverge.

(3 or 4) amb (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9. It cannot diverge.
Amb is more powerful than somenumber.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 18 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.

safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.

liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.

conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.

infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 19 / 28

Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 20 / 28

Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 20 / 28

Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 20 / 28

Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 20 / 28

Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 20 / 28

Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 20 / 28

Infinite traces and endofunctions

Could an open command denote an endofunction on S → P(Beh)?

No
Let’s say there’s just one character, X. Here’s an open command N

and
another one N ′

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 21 / 28

Infinite traces and endofunctions

Could an open command denote an endofunction on S → P(Beh)? No

Let’s say there’s just one character, X. Here’s an open command N

and
another one N ′

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 21 / 28

Infinite traces and endofunctions

Could an open command denote an endofunction on S → P(Beh)? No
Let’s say there’s just one character, X. Here’s an open command N

and
another one N ′

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 21 / 28

Infinite traces and endofunctions

Could an open command denote an endofunction on S → P(Beh)? No
Let’s say there’s just one character, X. Here’s an open command N and
another one N ′

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX; c()}

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 21 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′?

Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always

Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge?

Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always

Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks?

Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can

Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 22 / 28

Different fixpoints

Let’s apply the recursion operator to N

and to N ′

command c() {
{

x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}

}

In starting state (0, 0), can this print infinitely many ticks?

No Yes

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 23 / 28

Different fixpoints

Let’s apply the recursion operator to N

and to N ′

command c() {
{

x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}

}

In starting state (0, 0), can this print infinitely many ticks? No

Yes

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 23 / 28

Different fixpoints

Let’s apply the recursion operator to N and to N ′

command c() {
{

x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX; c()}
}

In starting state (0, 0), can this print infinitely many ticks? No

Yes

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 23 / 28

Different fixpoints

Let’s apply the recursion operator to N and to N ′

command c() {
{

x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX; c()}
}

In starting state (0, 0), can this print infinitely many ticks? No Yes

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 23 / 28

Solution [2005]: use game semantics

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

N and N ′ must have different denotations.

N ′ can tick, then call its argument c. N cannot.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 24 / 28

Solution [2005]: use game semantics

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

N and N ′ must have different denotations.

N ′ can tick, then call its argument c. N cannot.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 24 / 28

Game semantics (continued)

An open behaviour might look like this.

Proponent prints 3 ticks, then calls c in state (7, 3).

Opponent returns in state (5, 9).

Proponent prints 7 ticks, then calls c in state (8, 8).

Opponent returns in state (1, 0).

Proponent prints infinitely many ticks.

An open command denotes a function from states to open behaviours.

This gives us enough information to model recursion properly.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 25 / 28

Game semantics (continued)

An open behaviour might look like this.

Proponent prints 3 ticks, then calls c in state (7, 3).

Opponent returns in state (5, 9).

Proponent prints 7 ticks, then calls c in state (8, 8).

Opponent returns in state (1, 0).

Proponent prints infinitely many ticks.

An open command denotes a function from states to open behaviours.

This gives us enough information to model recursion properly.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 25 / 28

Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 26 / 28

Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 26 / 28

Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 26 / 28

Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 26 / 28

Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 26 / 28

Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 26 / 28

Context Lemma For Bisimilarity

Could an open command denote an endofunction on S → Trees?

Apparently

Theorem (the context lemma)

Suppose that N and N ′ are open commands that, in any starting state, are
bisimilar whatever c may do
i.e. they represent the same endofunction on S → Trees.
Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 27 / 28

Context Lemma For Bisimilarity

Could an open command denote an endofunction on S → Trees?
Apparently

Theorem (the context lemma)

Suppose that N and N ′ are open commands that, in any starting state, are
bisimilar whatever c may do
i.e. they represent the same endofunction on S → Trees.
Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 27 / 28

Context Lemma For Bisimilarity

Could an open command denote an endofunction on S → Trees?
Apparently

Theorem (the context lemma)

Suppose that N and N ′ are open commands that, in any starting state, are
bisimilar whatever c may do
i.e. they represent the same endofunction on S → Trees.
Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 27 / 28

Context Lemma For Bisimilarity

Could an open command denote an endofunction on S → Trees?
Apparently

Theorem (the context lemma)

Suppose that N and N ′ are open commands that, in any starting state, are
bisimilar whatever c may do
i.e. they represent the same endofunction on S → Trees.
Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 27 / 28

Context Lemma For Bisimilarity

Could an open command denote an endofunction on S → Trees?
Apparently

Theorem (the context lemma)

Suppose that N and N ′ are open commands that, in any starting state, are
bisimilar whatever c may do
i.e. they represent the same endofunction on S → Trees.
Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 27 / 28

New directions in nondeterminism

Find semantics of bisimilarity.

Roscoe’s “Seeing Beyond Divergence” model of conditional liveness
combines least and greatest fixpoint for recursion.

[2007] The context lemma holds if we include amb for integer
expressions

[2007] but not if we include amb for expressions that return
functions.

Functional languages

Relate to other kinds of semantics

Paul Blain Levy (University of Birmingham) Semantics of nondeterminism November 17, 2009 28 / 28

	Denotational Semantics
	Nondeterminism

