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Operational vs Denotational Semantics

How do we describe the meaning of a programming language?

One approach is to say how to run a program (e.g. with an
interpreter). This is called an operational semantics.

Denotational semantics gives a denotation for every piece of
code—even if it’s not a complete program.

If M is a piece of code, we write [[M]] for its denotation.

Compositionality If a big piece of code is made up from some
components, the meaning of the big piece must be given in terms of
the meaning of the components.

A denotational semantics has to be proven to agree with the
operational semantics—otherwise it’s useless.
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Example: simple while language

Our language has two (nonnegative) integer variables x and y.

Integer expressions are given by the BNF grammar

E ::= x | y | E + E | E ∗ E | n (n ∈ N)

Boolean expressions are given by the grammar

B ::= E > E | E = E | true | not B | B and B

Commands are given by the grammar

M ::= skip | x:=E | y:=E

M; M | if B then M else M | while B do M
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Semantics of Expressions

A state is a pair of integers e.g. (4, 17).
This means that currently x = 4 and y = 17.

The set of states is S
def
= N× N.

Each integer expression E denotes a function [[E ]] from S to N.

Example: the meaning of +

[[E + E ′]] is the function mapping a state s to the integer [[E ]]s + [[E ′]]s.

Each boolean expression B denotes a function [[B]] from S to B (the set of
booleans).
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Semantics of Commands

If we run a program in a given starting state s, there are two possible
behaviours:

it can terminate in another state s ′

it can diverge (run silently forever).

We write S⊥ for the set of states extended with an extra element ⊥,
representing divergence.
A command M denotes a function [[M]] from S to S⊥.

For example, we want the denotation of

x := x + 4;
while (x > y) do {x := x + 1}

to be the function that maps the state (x , y) to

⊥ if x + 4 > y

(x + 4, y) if x + 4 6 y .
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Example: the meaning of while

[[while B do M]] is the function mapping a state s to

a state s ′ if there is a sequence of states s = s0, s1, . . . , sn = s ′ such
that

[[B]]si = true and [[M]]si = si+1 for each i < n

[[B]]sn = false

⊥ if there is a sequence of states s = s0, s1, . . . , sn such that

[[B]]si = true and [[M]]si = si+1 for each i < n

[[B]]sn = true and [[M]]sn = ⊥

⊥ if there is an infinite sequence of states s = s0, s1, . . . such that

[[B]]si = true and [[M]]si = si+1 for each i
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Procedure call

So far we’ve looked at closed commands that don’t call any procedures.
Let’s suppose there’s a parameterless procedure c. Here’s the grammar of
open commands, that are allowed to mention c.

N ::= M | N; N | if B then N else N | while B do N | c()

Recall A closed command denotes an element of S → S⊥
Suggestion An open command such as

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes a function from S → S⊥ to S → S⊥.
The argument to this function represents the meaning of c.

In fact, an open command must denote a continuous function. (Technical
condition)
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Recursive definition

Let’s extend the grammar of closed commands, so that we can define a
closed command recursively.

M ::= skip | x:=E | y:=E |
M; M | if B then M else M | while B do M

| command c() {N}

For example, here is a closed command:

x := x + 5;
command c() {

x := 3;
if (y > 4) then {c()} else {y := 2}

};
y := 9
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Semantics of recursion

How can we give [[command c() {N}]] in terms of [[N]]?

For example, we want the closed command

command c() {
x := 3;
if (y > 4) then {c()} else {y := 2}

}

to denote an element of S → S⊥, mapping a state (x , y) to

⊥ if y > 4

the state (3, 2) if y 6 4.

How can we obtain this element from the denotation of the body?
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Fixpoints

A function f from a set A to itself is called an endofunction.

Is there an element x ∈ A such that f (x) = x?

Such an element is called a fixpoint of f .

Examples of endofunctions on Z
x 7→ x + 1 has no fixpoints.

x 7→ 2x has one fixpoint.

x 7→ x2 has two fixpoints.

x 7→ x3 has three fixpoints.

x 7→ x has infinitely many fixpoints.
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Fixpoints and Recursion

An open command N denotes a continuous endofunction on S → S⊥.
The closed command command c() {N} must denote a fixpoint of that
endofunction.

But which fixpoint? For example the open command

x := 3;
if (y > 4) then {c()} else {y := 2}

denotes an endofunction with many fixpoints.

Here is a wrong fixpoint: the function that maps a state (x , y) to

the state (y + 2, y + 7) if y > 4

the state (3, 2) if y 6 4.

The correct answer is the least fixpoint, i.e. as many ⊥s as possible.

It turns out that every continuous function has a least fixpoint.

To model open commands as endofunctions, we need a suitable fixpoint
theory.
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Equivalence

Note that we started off knowing what the meaning of a program should
be, because we knew how to run a program.

We also knew when we wanted two programs to be equivalent, i.e. to have
the same meaning.

An important question to address before formulating a denotational
semantics is: when should two pieces of code be considered equivalent?

Ideally two pieces of code should have the same denotation if and only if
they are equivalent in some a priori sense.
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Printing

Let’s say we add a printing commands to our language.
Then a command, in a given starting state s, has three possible
behaviours:

to print a finite string m, then terminate in a state s ′

to print a finite string m, then diverge

to print an infinite string m.

Let’s write Beh for the set of behaviours.

A closed command denotes an element of S → Beh.
An open command denotes a (continuous) endofunction on S → Beh.
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Additional Features

We can consider many different programming language features, and try
to come up with denotational models for them:

higher-order functions (functions that take functions as parameters)

data types

recursively defined types

input

exceptions

control operators

local variables

function variables

different parameter-passing mechanisms.
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Why consider nondeterminism?

So far, we’ve looked at programs that are deterministic: given the starting
state, the behaviour follows inexorably.

But lots of programs in reality depend on hidden factors. Run them twice
and they’ll do something different, for no intelligible reason.

Perhaps because they involve concurrent threads, and the behaviour
depends on the details of the scheduler, or on what other programs
are being run by other users.

Perhaps because they allocate some free memory, and the behaviour
depends on which location is chosen.

. . .

The programmer has to assume that a program has a range of possible
behaviours, and to ensure that all of them are acceptable.
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Some nondeterministic constructs

There are various nondeterministic constructs we can put into a language.
An example is or which chooses to go left or right:

{x := 3; y := 4} or {x := 7}
A more powerful construct is somenumber, which offers infinitely many
possibilities:

x := somenumber;
print ”hello” x times

Here is an attempt to achieve x := somenumber using just or.

local z := 0
z := 0 or z := 1;
x := 0;
while (z = 0) do {

x := x + 1;
{z := 0} or {z := 1}

}

//This may diverge.
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Erratic vs Ambiguous Nondeterminism

Suppose E and E ′ are two expressions that might return an integer or
might diverge.

E or E ′ chooses to go left or right, and evaluates E or E ′ accordingly.

E amb E ′ evaluates E and E ′ concurrently, and returns whatever it gets
first. This will diverge only if both E and E ′ diverge.

(3 or 4) or (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9 or diverge.

(3 or 4) amb (3 or 8 or 9 or diverge)

can return 3, 4, 8 or 9. It cannot diverge.
Amb is more powerful than somenumber.
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Example Application

Two programs are equivalent when they have the same properties. What
properties should we consider?

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property
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Infinite trace equivalence

Let’s take a language with printing and nondeterminism.
Two programs are infinite trace equivalent when they have the same range
of behaviours for any starting state.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics for this equivalence?

A closed command will denote a relation from S to Beh, i.e. an element of
S → P(Beh).

What about an open command?
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Infinite traces and endofunctions

Could an open command denote an endofunction on S → P(Beh)?

No
Let’s say there’s just one character, X. Here’s an open command N

and
another one N ′

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}
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Same endofunction

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

In a given starting state s

can it print n ticks and terminate in state s ′? Always Always

can it print n ticks and diverge? Always Always

can it print infinitely many ticks? Iff c can Iff c can.

Whatever c can do, N and N ′ have the same range of behaviours in any
starting state.
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Different fixpoints

Let’s apply the recursion operator to N

and to N ′

command c() {
{

x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()}

or {printX; c()}

}

In starting state (0, 0), can this print infinitely many ticks?

No Yes
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Solution [2005]: use game semantics

{
x := somenumber;
print x ticks;
x := somenumber;
y := somenumber;
{skip or diverge}

} or {c()} or {printX. c()}

N and N ′ must have different denotations.

N ′ can tick, then call its argument c. N cannot.
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Game semantics (continued)

An open behaviour might look like this.

Proponent prints 3 ticks, then calls c in state (7, 3).

Opponent returns in state (5, 9).

Proponent prints 7 ticks, then calls c in state (8, 8).

Opponent returns in state (1, 0).

Proponent prints infinitely many ticks.

An open command denotes a function from states to open behaviours.

This gives us enough information to model recursion properly.
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Bisimulation

We can also consider branching time properties that ask: at what point
during execution are choices made?

Example The program can print “a” and then be in a position where it can
print “b” and can also print “c”.

print ”a”; {print ”b” or print ”c”}
{print ”a”; print ”b” } or {print ”a”; print ”c”}

Two programs with the same branching time properties are bisimilar.

This means they have the same branching tree.

Let’s write Trees for the set of branching trees.

A closed command should denote a function from S to Trees.

What about an open command?
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Context Lemma For Bisimilarity

Could an open command denote an endofunction on S → Trees?

Apparently

Theorem (the context lemma)

Suppose that N and N ′ are open commands that, in any starting state, are
bisimilar whatever c may do
i.e. they represent the same endofunction on S → Trees.
Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.
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Then command c() {N} and command c() {N′} are bisimilar
i.e. they represent the same fixpoint.

The proof is elegant but mysterious.

It doesn’t tell us how to find that fixpoint, given the endofunction.

Possible research direction Use “least” fixpoint with several different
orderings.
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New directions in nondeterminism

Find semantics of bisimilarity.

Roscoe’s “Seeing Beyond Divergence” model of conditional liveness
combines least and greatest fixpoint for recursion.

[2007] The context lemma holds if we include amb for integer
expressions

[2007] but not if we include amb for expressions that return
functions.

Functional languages

Relate to other kinds of semantics
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