
MFPS 2006

Monads and Adjunctions for Global Exceptions

Paul Blain Levy 1

School of Computer Science
University of Birmingham

Birmingham B15 2TT, U.K.

Abstract

In this paper, we look at two categorical accounts of computational effects (strong
monad as a model of the monadic metalanguage, adjunction as a model of call-by-
push-value with stacks), and we adapt them to incorporate global exceptions. In
each case, we extend the calculus with a construct, due to Benton and Kennedy, that
fuses exception handling with sequencing. This immediately gives us an equational
theory, simply by adapting the equations for sequencing. We study the categorical
semantics of the two equational theories.

In the case of the monadic metalanguage, we see that a monad supporting excep-
tions is a coalgebra for a certain comonad. We further show, using Beck’s theorem,
that, on a category with equalizers, the monad constructor for exceptions gives all
such monads.

In the case of call-by-push-value (CBPV) with stacks, we generalize the notion
of CBPV adjunction so that a stack awaiting a value can deal both with a value
being returned, and with an exception being raised. We see how to obtain a model
of exceptions from a CBPV adjunction, and vice versa by restricting to those stacks
that are homomorphic with respect to exception raising.

Key words: exception handling, monad, adjunction, comonad,
coalgebra, call-by-push-value, Beck’s theorem

1 Introduction

1.1 Monads For Exceptions

In a seminal paper [19], Moggi brought together a range of imperative be-
haviours that have come to be called computational effects, including diver-
gence, nondeterminism, storage and exceptions. The present paper is a study
of the last example. For the sake of precision, let us distinguish some variations
on the effect of exceptions.

1 Email: pbl@cs.bham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Levy

• Some languages, such as Java, distinguish between errors and exceptions.
The former cannot be caught: when an error is raised, execution immedi-
ately terminates. By contrast, exceptions can be caught (aka handled).

• Some languages, such as ML, allow the dynamic generation of new exception
names, and this is modelled using games in [8]. But in the present paper,
we look at global exceptions only.

In the study of effects, various calculi have been studied, including compu-
tational λ-calculus [18], monadic metalanguage [19], fine-grain call-by-value [12],
call-by-push-value (CBPV) [11], CBPV with stacks [14]. And various categor-
ical structures have been studied as models of these calculi, including strong
monads [19], Freyd categories [16], κ-categories [16], CBPV adjunctions [14].

None of the above calculi contain constructs for specific effects; such con-
structs (and associated equations) must be added on to them. The same is
true for the categorical structures. Take strong monads, for example. The
analysis of various effects in [21], makes it possible to axiomatize the addi-
tional structure 2 that a strong monad T on C should be provided with.

• To model binary erratic nondeterminism, T should be equipped with a mor-
phism 1 or //T (1 + 1) satisfying equations for commutativity, associativity
and idempotence.

• To model a ground storage cell, where S is the countable set of elements

that can be stored, T should be equipped with a morphisms 1
lookup //T

∑

s∈S1

and
∑

s∈S1
update//T1 satisfying some equations given in [21]; and similarly

for several cells.

• To model printing, where A is the countable set of characters that can be

printed, T should be equipped with a morphism
∑

c∈A1
print //T1 .

• To model raising of errors, where E is the countable set of errors, T should
be equipped with a morphism

∑

e∈E1
error //T0 .

• To model I/O, where O is the countable set of messages requesting input,
and message o ∈ O requests an input from the countable set Io, the monad

T should be equipped with a morphism 1
input(o)//T

∑

i∈Io
1 for each o ∈ O.

(This generalizes the previous two examples. If Io is singleton, then o is a
print-character. If Io is empty, the o is an error message.)

All these effects are instances of a general theory developed in [21,22]. This
theory involves the notion of an algebraic operation, i.e. an operation θ on
terms such that

θ{Mi}i∈I to x. N = θ{Mi to x. N}i∈I

where I is the (countable) arity of θ and to means sequencing.

2 We assume that the category C has countable coproducts of a suitable kind. Below
(Def. 2.1) we state this assumption precisely.

2

Levy

By contrast, as explained in [22], exception handling is not an algebraic op-
eration. So how can we add exceptions to the monadic metalanguage? What
equations should be imposed, and what is the resulting categorical structure?
These questions will be answered in the first part of the paper (Sect. 2–5).
We shall see that the categorical structure is actually a coalgebra for a certain
comonad.

A large class of monads for exceptions is given by a monad transformer

that takes a monad T to T (−+E) [4]. Surprisingly, we shall prove that every
monad for exceptions (on a category with equalizers) is of this form.

1.2 Adjunctions For Exceptions

CBPV is a fine-grain calculus that includes both call-by-value and call-by-
name as fragments [11,13]. It was shown in [14], that when we extend CBPV
with a judgement for stacks (aka evaluation contexts), its categorical semantics
is given by an adjunction. As an example, define an E-set to be a set X
equipped with a function E −→ X. Then the adjunction between the category
of sets and that of E-sets gives a model of errors. A stack denotes a morphism
of the second category, in this example, an E-set homomorphism. Intuitively,
an evaluation context, applied to a term that raises an error, gives a term that
raises an error.

As noted in [14], this theory cannot account for exception handling. Stacks
that involve handlers may treat an error in a non-homomorphic way. The
problem here is more severe than in Sect. 1.1, because exception handling
actually invalidates some of the equational laws of CBPV with stacks. (A
similar phenomenon is noted in [9]: exception handling invalidates some of
the standard laws for continuations.) So what is the appropriate equational
theory, and what is the resulting categorical structure? These questions will
be answered in the second part of the paper (Sect. 6–7).

1.3 Combining Handling With Sequencing

Both of our questions rely on finding a reasonable set of equations for raising
and handling of exceptions. Using conventional syntax for handling, this would
seem to be difficult. But in [2] a novel syntax was introduced for handle-
sequencing :

M {to x. N, catch x. N ′}

This means: first evaluate M . If it returns a value, bind x to that value
and evaluate N . On the other hand, if it raises an exception, bind x to that
exception and evaluate N ′.

Many advantages of this syntax—which is equivalent, in the presence of
sum types, to the traditional syntax—are discussed in [2]. But what is useful
for us is that it is so similar to ordinary sequencing. So all we need to do is
take the standard equations for sequencing and adapt them to this construct.

3

Levy

This gives an elegant theory in both of the calculi we are considering: monadic
metalanguage, and CBPV with stacks.

1.4 Theories and Categorical Structures

In the course of the paper, we present various equational theories and various
categorical structures. We relate these with results asserting a “correspon-
dence” between theory and structure. This asserts an equivalence between
the category A of theories (where a theory consists of a signature and a con-
gruence generated by the signature) and the category B of structures. See
e.g. [14] for a precise statement of this equivalence in the specific case of
CBPV adjunctions; this statement is easily adapted to the other cases. As
explained there, the morphisms in both A and B are required to preserve
structure on the nose; this is a flaw pervasive in categorical semantics, whose
rectification is left to future work.

2 Monadic Metalanguage

The monadic metalanguage, with finite products and sum types, is shown in
Fig. 1, along with syntax for exception raising. Here, pm abbreviates “pattern-
match”, and we use to for sequencing. Because the rules for 1 are analogous
to those for ×, we omit them. Throughout the paper, all constructs and
equations that involve sequencing are marked ♣, because they are the ones
that will need to be adapted when we add handle-sequencing into the language.

The equational theory is shown in Fig. 2. We omit the assumptions nec-
essary to make each equation well-typed. Given a term Γ ` M : B we write
xM for the weakened term in the context Γ, x : A where A is some suitable
type. This implies that x is not in Γ, because the identifiers in a context
must be distinct. We thereby obviate the need for the traditional x 6∈ FV(M)
conditions.

To interpret sum types, we adapt the following from [3,5].

Definition 2.1 Let C be a cartesian category, i.e. a category with distin-
guished terminal object and distinguished binary products.

(i) A distributive coproduct for a family of C-objects {Ai}i∈I is a cocone

(V, {Ai
ini //V }i∈I) such that, for every C-object X, the cocone (X ×

V, {X × Ai
X×ini //X × V }i∈I) is a coproduct.

(ii) A distributive (resp. countably distributive) category is a cartesian cate-
gory with a distributive coproduct for every finite (resp. countable) family
of objects.

(iii) Let T be a strong monad on C.
• T has Kleisli exponentials when it is equipped, for every pair of C-
objects A,B, with a representing object for the functor C(−×A, TB) :
C

op

−→ Set.

4

Levy

Types A ::=
∑

i∈IAi | 1 | A× A | A ⇀ A (I finite)

(x : A) ∈ Γ
Γ ` x : A

Γ `M : A

Γ ` return M : TA

Γ `M : TA Γ, x : A ` N : TB
♣

Γ `M to x. N : TB

Γ `M : Aı̂
ı̂ ∈ I

Γ ` 〈̂ı,M〉 :
∑

i∈IAi

Γ `M :
∑

i∈IAi Γ, x : Ai ` Ni : B (∀i ∈ I)

Γ ` pm M as {〈i, x〉.Ni}i∈I

Γ `M : A Γ `M ′ : A′

Γ ` 〈M,M ′〉 : A× A′

Γ `M : A× A′ Γ, x : A, y : A′ ` N : B

Γ ` pm M as 〈x, y〉. N : B

Γ, x : A `M : TB

Γ ` λx.M : A ⇀ B

Γ `M : A ⇀ B Γ ` N : A

Γ `MN : TB

Fig. 1. Syntax Of Monadic Metalanguage And Exception Raising

Laws of Sequencing

♣ (return M) to x. N =N [M/x]

♣ M =M to x. return x

♣ (M to x. N) to y. P =M to x. (N to y. xP)

β-laws

pm 〈̂ı,M〉 as {〈i, x〉.Ni}i∈I =Nı̂[M/x]

pm 〈M,M ′〉 as 〈x, y〉.N =N [M/x,M ′/y]

(λx.M)N =M [N/x]

η-laws

N [M/z] = pm M as {〈i, x〉. xN [〈i, x〉/z]}i∈I
N [M/z] = pm M as 〈x, y〉. xyN [〈x, y〉/z]

M =λx.(xMx)

Fig. 2. Equations For Monadic Metalanguage

• T has countable products of Kleisli exponentials when it is equipped,
for every countable family of pairs of C-objects {(Ai, Bi)}i∈I , with a
representing object for the functor

∏

i∈I C(− × Ai, TBi) : C
op

−→ Set.
(This clearly implies that T has Kleisli exponentials.)

5

Levy

2

Proposition 2.2 There is a theory/model correspondence (see Sect. 1.4) be-
tween

• a theory of the monadic metalanguage

• a distributive category, together with a strong monad with Kleisli exponen-
tials.

2

Remark 2.3 An infinitary variant of the metalanguage can be formed by in-
cluding both countable sum types, and a fusion of function type and countable
product types in the style of [15], to the calculus. There is then a correspon-
dence between

• a theory of the infinitary monadic metalanguage

• a countably distributive category, together with a strong monad with count-
able products of Kleisli exponentials.

2

3 Exceptions

3.1 Raising Exceptions

Types with Exceptions A ::=
∑

i∈IAi | 1 | A× A | A ⇀ A | exn (I finite)

Exception Raising
Γ `M : exn

Γ ` raiseBM : TB

Raising Is Algebraic

♣ (raise M) to x. N = raise M

Fig. 3. Syntax and Equations For Exception Raising In Monadic Metalanguage

We first treat the raising of exceptions, which requires an additional type
exn, as shown in Fig. 3.1. Exception raising is an algebraic effect, in the
sense of [20], and consequently its semantics is very simple—unlike that of
exception handling. Indeed, the semantics of raise is determined by that of
the computation x : exn ` raise x : T0, because

raiseBV = (raise0x)[V/x] to y. raiseBV

This is an instance of a general result [22]: an algebraic operation corresponds
to a generic element. We define a semantic structure accordingly:

6

Levy

Definition 3.1 Let C be a distributive category, and let E be an object of C.
A strong monad supporting E-raising is a strong monad T on C together with
a C-morphism from E to T0. 2

The “monad constructor for exceptions” [4] provides the main class of
examples.

Definition 3.2 Let C be a distributive category, with an object E. Let T be
a strong monad on C. Then we define TE to be the strong monad T (−+ E).

2

Note that if T has Kleisli exponentials (resp. countable products of Kleisli
exponentials) then so does TE.

Proposition 3.3 There is a theory-model correspondence (Sect. 1.4) between

• a theory of the monadic metalanguage with exception raising

• a distributive category C, with distinguished object E and a strong monad
on C, with Kleisli exponentials, supporting E-raising.

2

3.2 Exception Handling—The Syntax

The changes required to obtain the monadic metalanguage with exceptions
are shown in Fig. 4. We define

M to x. N to be M

to x. N

catch x. raise x

M catch x. N to be M

to x. return x

catch x. N

We can then prove all the equations marked ♣ (that are no longer needed as
axioms), and the following:

(raise V) catch x. M = M [V/x] (1)

(return V) catch x. M = return V (2)

M = M catch x. raise x (3)

(M catch x. N) catch y. P =

M catch x (N catch y. xP) (4)

((M catch w. return V) to x. N) catch y. P =

(M catch w. return V) to x. (N catch y. xP) (5)

((M to w. raise V) catch x. N) to y. P =

(M to w. raise V) catch x . (N to y. xP) (6)

M{to x. N, catch x. N ′} =

((M to w. return inl w) catch y. return inr y) to z.

pm z as {inl x. zN, inr x. zN ′} (7)

7

Levy

The following constructs and equations replace those marked ♣ in Fig. 1–3.1.

Γ `M : TA Γ, x : A ` N : TB Γ, x : exn ` N ′ : TB

Γ `M {to x. N, catch x. N ′} : TB

(return M)

to x. N

catch x. N ′

=N [M/x]

(raise M)

to x. N

catch x. N ′

=N ′[M/x]

M =M

to x. return x

catch x. raise x

(M

to x. N

catch x. N ′

)

to y. P

catch y. P ′

=

M

to x. N {to y. xP, catch y. xP ′}

catch X. N ′ {to y. xP, catch y. xP ′}

Fig. 4. Handle-Sequencing In The Monadic Metalanguage

Equations (1)–(6) give properties of plain handling. (7) shows that handle-
sequencing is no more expressive (in the presence of sum types) than ordinary
handling and sequencing; it is merely a syntactic convenience.

To give categorical semantics for handle-sequencing will require more so-
phisticated machinery, which we now develop. But for the moment, note that
TE always gives a model.

4 Coalgebras On Algebras

In this section, we review and develop some abstract theory of coalgebras.

Proposition 4.1 Let A
F //
⊥ B
G

oo be an adjunction with unit η and

counit ε. Write L for the induced comonad (FG, ε, FηG).

(i) There is a unique comparison K from the resolution (A, F,G, η) of L to
the co-Eilenberg-Moore resolution (into the category of L-coalgebras). It

maps an A-object X to (FX,FηX), and a morphism X
f //X ′ to Ff .

(ii) Suppose A has all equalizers, and F preserves them. Then K has a right
adjoint Q (not necessarily a comparison) and the counit of K a Q is an
isomorphism.

8

Levy

2

Proof. This is proved in [1]. The right adjoint of K maps an L-coalgebra
(Y, φ) to the equalizer in A of

GY
Gφ //

ηGY
//GFGY

2

Now suppose that (T , η, µ) is a monad on a category M. We form the
following two adjunctions:

M

⊥
((RRRRRRRRRRRRRRRR

K(T)

²²
Â
Â
Â
Â
Â
Â
Â Eilenberg-Moore

MT

hhRRRRRRRRRRRRRRRR

vvmmmmmmmmmmmmm

(MT)L(T)

⊥

66mmmmmmmmmmmmm

co-Eilenberg-Moore

This proceeds in three steps.

The first step is to form the Eilenberg-Moore resolution (MT , GT , F T , εT)
of T . This induces a comonad onMT , which we call L(T). Explicitly:

• it maps an object (X, θ) to (T X,µX)

• it maps a morphism (X, θ)
f // (Y, θ′) to (T X,µX)

T f // (T Y, µY)

• the counit at (X, θ) is (T X,µX) θ // (X, θ)

• the comultiplication at (X, θ) is (T X,µX)
T ηX// (T 2X,µT X) .

The second step is to form the co-Eilenberg-Moore resolution of this comonad.
Explicitly:

• a coalgebra for L(T) is (X, θ, φ), where (X, θ) is a T -algebra, and

(X, θ)
φ // (T X,µX) is a T -algebra homomorphism such that

X
φ //

id
!!DD

DD
DD

DD
T X

θ

²²

X
φ //

φ

²²

T X

T φ
²²

X T X T ηX
// T 2X

commute

• a coalgebra homomorphism from (X, θ, φ) to (Y, θ′, φ′) is a T -algebra homo-

9

Levy

morphism (X, θ)
f // (Y, θ′) such that

X
f //

φ

²²

Y

φ

²²
LX Lf

//LY

commutes

• the forgetful functor (the left adjoint) maps an object (X, θ, φ) to (X, θ)

and a morphism (X, θ, φ)
f // (Y, θ′, φ′) to f

• the free functor (the right adjoint) maps an object (X, θ) to (T X,µX, T ηX)

and a morphism (X, θ)
f // (Y, θ′) to T f

• the unit at (X, θ, φ) is φ.

The third step is to look at the unique comparison from our first resolution
of L(T) to the co-Eilenberg-Moore resolution, which is terminal. It is a functor
fromM to the coalgebra category, mapping

• an object X to (T X,µX, T ηX)

• a morphism X
f //Y to T f .

We call this comparison K(T).

Proposition 4.2 Let (T , η, µ) be a monad on a category M. Suppose M
has all equalizers, and T preserves them. Then K(T) has a right adjoint Q,
and the counit of K a Q is an isomorphism. 2

Proof. Since T preserves equalizers, the free algebra functor F T must do so
too. We then apply Prop. 4.1(ii). 2

5 Monad Models For Exceptions

5.1 General Monads

In this section, let C be a distributive category, and E an object of it. We
define MC to be the category of strong monads on C. We first recall the
following result, mentioned in [7].

Proposition 5.1 Let T be a strong monad on C. Then TE is a coproduct of

T and −+E. The injection T //TE is given at A by TA
T inlA,E//T (A+ E) .

The injection −+ E //TE is given at A by A+ E
η(A+E) //T (A+ E) .

2

Now, in general, if E is an object of a category M such that every M-
object U has a coproduct with E , then U 7→ U + E gives a monad onM. So
in particuar, we obtain a monad TC,E that maps T to TE. Its unit at T maps

10

Levy

X to TX
T inl //T (X + E) . The multiplication at T maps X to

T ((X + E) + E)
T [id,inr] //T (X + E)

Furthermore, let us write Mkl
C (resp. M

ωkl
C) for the full subcategory of

MC consisting of strong monads with Kleisli exponentials (resp. countable
products of Kleisli exponentials). Then TC,E restricts to a monad onM

kl
C (resp.

on Mωkl
C), though the strong monad − + E might lack Kleisli exponentials.

We call this restricted monad T kl
C,E (resp. T

ωkl
C,E).

We can now formulate our main definition.

Definition 5.2 • A strong monad supporting E-exceptions on C is a coalge-
bra for L(TC,E).

• A strong monad with Kleisli exponentials (resp. with countable products

of Kleisli exponentials) supporting E-exceptions is a coalgebra for L(T kl
C,E)

(resp. L(T ωkl
C,E)).

2

Let us unpack this definition.

Firstly, an algebra for the TC,E monad is precisely a strong monad T with a
strong monad morphism from −+E to T , and such a strong monad morphism

corresponds to a C-morphism E
raise //T0 (by the general theory of algebraic

operations [22]). Thus, an algebra is a strong monad on C supporting E-
raising. The algebra structure θ is given at X by

T (X + E)
T [ηX,(raise;T [])] //T 2X

µX //TX

A coalgebra for the induced comonad consists of a strong monad T support-

ing E-raising, together with, for each C-objectX, a morphism TX
eX //T (X + E)

that is natural in X, is strong monad homomorphic

X

ηX

¦¦

η inlX,E

ÀÀ<
<<

<<
<<

<<
<<

<<
<<

TX eX
//T (X + E)

T 2X
e2X //

µX

²²

T (T (X + E) + E)

T ([id,η inrX,E])

²²

T 2(X + E)

µ(X+E)

²²

TX eX
//T (X + E)

11

Levy

TX × Y
(eX)×Y //

tX,Y

²²

T (X + E)× Y

tX+E,Y

²²
T ((X + E)× Y)

²²
T (X × Y)

(eX×Y)
//T (X × Y + E)

is a TC,E-algebra homomorphism

T (X + E) eX+E //

θX

²²

T ((X + E) + E)

T [id,inrX+E,E]

²²

TX ex
//T (X + E)

(8)

and is coalgebraic

TX

id
%%LLLLLLLLLLL

eX //T (X + E)

θX

²²
TX

TX
eX //

eX

²²

T (X + E)

e(X+E)
²²

T (X + E)
T inlX+E,E

//T ((X + E) + E)

Proposition 5.3 The condition (8) is equivalent, in the presence of all the
other equations, to the condition

E
raise //

η inr0,E $$II
II

II
III

I T0

e0
²²

T (0 + E)

2

5.2 Monad Semantics Of Exceptions

The above structure is precisely what we require to interpret handling. For
given terms Γ ` M : TA and Γ, x : A ` N : TB and Γ, x : exn ` N ′ : TB, the
term M {to x. N, catch x. N ′} denotes the composite

[[Γ]]
〈id,[[M]]〉// [[Γ]]× T [[A]]

[[Γ]]×e[[A]] // [[Γ]]× T ([[A]] + E) t //T ([[Γ]]× ([[A]] + E)e)

T [[[N]],[[N]]]

²²
T [[B]]

It is then easy to see that all the equational laws of Fig. 2 are validated.

12

Levy

Conversely, we can construct such a coalgebra out of the syntax of han-
dling. We define eA to be the congruence class of the term

x : TA ` x {to y. return inl y, catch y. return inr y} : T (A+ E)

and all the required commutativity diagrams follow from the laws.

These two directions enable us to prove:

Proposition 5.4 There is a theory/model correspondence (Sect. 1.4) be-
tween

• a theory of the monadic metalanguage with exceptions

• a distributive category C, with a distinguished object E, and a strong
monad, with Kleisli exponentials, supporting E-exceptions.

2

5.3 The Comparison Functor

Let us now unpack the comparison functor K(TC,E) defined in Sect. 4. It maps
a strong monad T on C to the monad TE, so it is precisely the exceptions
monad transformer.

Proposition 5.5 Let E be an object of a distributive category C. Suppose
C has equalizers. Then the functors K(TC,E) and K(T kl

C,E and K(T ωkl
C,E) each

have a right adjoint, and, in each case, the counit of the adjunction is an
isomorphism. 2

Proof. We have to check that the conditions of Prop. 4.2 are satisfied. Given
a diagram of strong monads

T
α //

β
//T ′

the equalizer S
γ //T is computed pointwise. Kleisli exponentials are just

equalizers of Kleisli exponentials for T and T ′, and similarly for countable
products of Kleisli exponentials. Preservation by TC,E is trivial. 2

Corollary 5.6 Let T be a strong monad on C supporting E-exceptions. If C
has equalizers, then T ∼= T ′

E for some strong monad T
′ on C, possessing Kleisli

exponentials (resp. countable products of Kleisli exponentials) if T possesses
them. 2

We note that T ′ might not be unique up to isomorphism. For example,
let C be Set, let E be 1, let T ′ be the monad (− → 0) → 0, and let T ′′ be
the unit monad (mapping everything to 1). Then T ′′

E and T
′
E are isomorphic

(they are the unit monad), but T ′′0 6∼= T ′0.

We have now characterized all monads on Set that model exceptions and
validate the laws of Fig. 2. We next look at some non-examples. Here are two

13

Levy

monads on Set, supporting E-raising, that do not support E-exceptions in
general:

(i) [6] the monad mapping X to S → ((S ×X) + E), where S is some set

(ii) the monad mapping X to (S × ((S ×X) → R)) → R, where R is some
set and S is E → R.

The second example has been provided independently by Andrzej Filinski
and Hayo Thielecke [personal communication] as a model for the catch and
escape facility provided in NJ-SML.

In each case there is a candidate interpretation for handle-sequencing. Sup-
pose Γ ` M : TA and Γ, x : A ` N : TB and Γ, x : exn ` N ′ : TB. Then, we
define [[M {to x. N, catch x. N ′}]] to map ρ ∈ [[Γ]] to

(i) the function mapping s ∈ S to
• ([[N]](ρ, x 7→ b))s′ if ([[M]]ρ)s = inl (s′, b)
• ([[N ′]](ρ, x 7→ e))s if ([[M]]ρ)s = inr e.

(ii) the function mapping s ∈ S and k ∈ (S × [[B]])→ R to

([[M]]ρ)((λe.(([[N ′]]ρ)(s, k))), (λ(s′, b).(([[N]]ρ)(s′, k))))

Corollary 5.6 suggests that these interpretations do not (in general) validate
the equations of Fig. 4. This can be checked directly: (i) breaks equation (5),
and (ii) breaks (3). Filinski has also shown [personal communication] that (3)
is broken, as an observational equivalence, by catch and escape.

Two alternative conclusions may be drawn:

• these monads are inappropriate for modelling exceptions, and the constructs
they model (such as catch and escape) are unnatural

• the laws in Fig. 4 are too demanding, for exceptions in general.

6 Review of Call-By-Push-Value With Stacks

A model of the monadic metalanguage with exceptions is still a model of the
monadic metalanguage, albeit with extra structure. By contrast, in the case
of CBPV with stacks, to which we now turn, the addition of exceptions ne-
cessitates a genuinely different structure. We first review CBPV. Our account
is for infinitary CBPV; replace “countable” by “finite” throughout for the
finitary version.

CBPV has two disjoint classes of terms: values and computations. It
likewise has two disjoint classes of types: a value has a value type, while a
computation has a computation type. For clarity, we underline computation
types. The types are given by

value types A ::= UB |
∑

i∈IAi | 1 | A× A

computation types B ::= FA |
∏

i∈I Bi | A→ B

14

Levy

where I can be any countable set (finite, in finitary CBPV). The meaning of F
and U is as follows. A computation of type FA produces a value of type A. A
value of type UB is a thunk of a computation of type B, i.e. the computation
is frozen into a value so that it can be passed around. When later required, it
can be forced i.e. executed.

As an example model, suppose we have a monad T on a cartesian closed
category C with countable coproducts and products. Then each value type
denotes a C-object, and each computation type a T -algebra, in the evident
way. U and F follow the Eilenberg-Moore adjunction, whilst

∏

i∈I and →
denote product algebra and exponential algebra.

Like in call-by-value, an identifier in CBPV can be bound only to a value,
so it must have value type. We accordingly define a context Γ to be a sequence

x0 : A0, . . . , xn−1 : An−1

of distinct identifiers with associated value types. We write Γ `v V : A to
mean that V is a value of type A, and we write Γ `c M : B to mean that M
is a computation of type B.

In the monad semantics, a value Γ `v V : A denotes a C-morphism from
[[Γ]] to [[A]], and a computation Γ `c M : B denotes a C-morphism from [[Γ]] to
the carrier of [[B]].

The terms of CBPV are given in Fig. 5. The symbol ‘ represents application
in reverse order.

A third judgement is Γ|B `k K : C. This comes from the CK-machine
of[14], and means that K is a stack or evaluation context of type C, with a
B-typed hole. We do not treat the CK-machine in this paper, but give the
typing rules for stacks.

For the monad semantics, given strong monad T on C, we define a homo-
morphism from T -algebra (Y, θ) to T -algebra (Z, φ) over C-object X to be a

C-morphism X × Y
f //Z satisfying

X × TY
t(X,Y) //

X×θ

²²

T (X × Y)
Tf //TZ

φ

²²
X × Y

f
//Z

A stack Γ|B `k K : C then denotes a homomorphism from [[B]] to [[C]] over
[[Γ]].

The complex values are an extension of pure CBPV that are needed to
achieve theory/model correspondence, though they complicate operational se-
mantics. It is shown in [10] that this extension is conservative on computa-
tions. We can similarly add complex stacks, as explained in [14]. The syntax
of complex values and complex stacks is shown in Fig. 6.

Given a computation Γ `c M : B and a stack Γ|B `k K : C, we obtain a

15

Levy

Types

value types A ::= UB |
∑

i∈IAi | 1 | A× A

computation types B ::= FA |
∏

i∈I Bi | A→ B

Values and Computations

Γ, x : A,Γ′ `v x : A

Γ `v V : A Γ, x : A `c M : B

Γ `c let V be x. M : B

Γ `v V : A

Γ `c return V : FA

Γ `c M : FA Γ, x : A `c N : B
♣

Γ `c M to x. N : B

Γ `c M : B

Γ `v thunk M : UB

Γ `v V : UB

Γ `c force V : B

Γ `v V : Aı̂
ı̂ ∈ I

Γ `v 〈̂ı, V 〉 :
∑

i∈IAi

Γ `v V :
∑

i∈IAi Γ, x : Ai `
c Mi : B (∀i ∈ I)

Γ `c pm V as {〈i, x〉.Mi}i∈I : B

Γ `v V : A Γ `v V ′ : A′

Γ `v 〈V, V ′〉 : A× A′

Γ `v V : A× A′ Γ, x : A, y : A′ `c M : B

Γ `c pm V as 〈x, y〉.M : B

Γ `c Mi : Bi (∀i ∈ I)

Γ `c λ{i.Mi}i∈I :
∏

i∈IBi

Γ `c M :
∏

i∈IBi
ı̂ ∈ I

Γ `c ı̂‘M : B ı̂

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `v V : A Γ `c M : A→ B

Γ `c V ‘M : B

Stacks

Γ|C `k nil : C

Γ, x : A `c M : B Γ|B `k K : C
♣

Γ|FA `k to x. M :: K : C

Γ|B ı̂ `
k K : C

Γ|
∏

i∈IBi `
k ı̂ :: K : C

Γ `v V : A Γ|B `k K : C

Γ|A→ B `k V :: K : C

Fig. 5. Terms of CBPV with stacks

16

Levy

computation Γ `c M •K : C by dismantling K on C, defined by induction on
K in the obvious way.

Given a stack Γ|B `k K : C and Γ|C `k L : D, we can concatenate K and
L to give Γ|B `k K++L : D, defined by induction on K in the obvious way.

Complex Values

Γ `v V : A Γ, x : A `v W : B

Γ `v let V be x. W : B

Γ `v V :
∑

i∈IAi Γ, x : Ai `
v Wi : B (∀i ∈ I)

Γ `v pm V as {〈i, x〉.Wi}i∈I : B

Γ `v V : A× A′ Γ, x : A, y : A′ `v W : B

Γ `v pm V as 〈x, y〉.W : B

Complex Stacks

Γ `v V : A Γ, x.A|B `k K : C

Γ|B `k let V be x. K : C

Γ `v V :
∑

i∈IAi Γ, x : Ai|B `
k Ki : C (∀i ∈ I)

Γ|B `k pm V as {〈i, x〉.Ki}i∈I : C

Γ `v V : A× A′ Γ, x : A, y : A′|B `k K : C

Γ|B `k pm V as 〈x, y〉.K : C

Γ|C `k K : B Γ|B `k L : D

Γ|C `k K where nil is L : D

Γ|C `k Ki : Bi (∀i ∈ I) Γ|
∏

i∈IBi `
k L : D

Γ|C `k {Ki where i :: nil}i∈I is L : D

Γ, x : A|C `k K : B Γ|A→ B `k L : D

Γ|C `k K where x :: nil is L : D

Fig. 6. Complex Values and Stacks

The equational theory for CBPV is shown in Fig. 7 (with the same conven-
tions as Fig. 2), and the additional law for exception raising in Fig. 8. Here

17

Levy

β-laws

let V be x. Q=Q[V/x]

K where nil is L=K++L

pm 〈̂ı, V 〉 as {〈i, x〉.Qi}i∈I =Qı̂[V/x]

pm 〈V, V ′〉 as 〈x, y〉.Q=Q[V/x, V ′/y]

force thunk M =M

♣ (return V) to x. M =M [V/x]

ı̂‘λ{i.Mi}i∈I =Mı̂

{Ki where i :: nil}i∈I is ı̂ :: L=Kı̂++L

V ‘λx.M =M [V/x]

K where x :: nil is V :: L=K[V/x]++L

η-laws

Q[V/z] = pm V as {〈i, x〉. xQ[〈i, x〉/z]}i∈I
Q[V/z] = pm V as 〈x, y〉. xyQ[〈x, y〉/z]

V = thunk force V

♣ K++L= to x. ((return x) • xK) :: L

M =λ{. . . , i.i‘M, . . .}

K++L= {(K++i :: nil) where i :: nil}i∈I is L

M =λx.(x ‘ xM)

K++L=(xK++x :: nil) where x :: nil is L

Fig. 7. Equational laws for CBPV + stacks

Types with Exceptions

value types A ::= UB |
∑

i∈IAi | 1 | A× A | exn

computation types B ::= FA |
∏

i∈I Bi | A→ B

Exception Raising
Γ `v V : exn

Γ `c raiseBM : B

Raising Is Algebraic

(raise V) to x. M = raise V

Fig. 8. Syntax and Equations For Exception Raising In CBPV

are some consequences:

18

Levy

M •K =M to x. ((return x) • xK)

M =M to x. return x

(M to x. N) •K =M to x. (N •K)

(M to x. N) to y. P =M to x. (N to y. P)

λ{i.(M to x. Ni)}i∈I =M to x. λ{i.Ni}i∈I
λy.(M to x. N)=M to x. λy.N

(raise V) •K = raise V

λ{i.raise V }i∈I = raise V

λx. raise V = raise V

Definition 6.1 Let D be a category. A right D-module is a functorO : D −→
Set. Explicitly,

• it provides for each A a set OA of “morphisms”, an element of which is

written
g //A ,

• we can compose
g //A with A

h //B to obtain
g;h //A

• this composition satisfies associativity and right-identity laws.

2

Definition 6.2 Let C be a category.

A locally C-indexed category is a strictly C-indexed category D in which all
the fibres have the same objects (ob D) and all the reindexing functors are
identity on objects; equivalently, a [C

op

,Set] enriched category.

Let D be a locally C-indexed category. A right D-module consists of

• for each X ∈ ob C and Y ∈ ob D, a small set OXY , an element of which we

call an O-morphism over X to Y and write
g

X
//Y

• for each X ′ k //X and
g

X
//Y a reindexed O morphism

k∗g

X′

//Y

• for each
g

X
//Y and Y h

X
//Y ′ a composite O morphism

g;h

X
//Y ′

satisfying right-identity, associativity and reindexing laws. 2

Various equivalent versions of these definitions are given in [14].

Definition 6.3 A CBPV judgement model consists of

• a cartesian category C

• a locally C-indexed category D

• a right D-module O.

2

Given such a structure, we interpret

• a value type or context by a C-object

• a computation type by a D-object

19

Levy

• a value Γ `v V : A by a C-morphism [[Γ]]
[[V]] // [[A]]

• a stack Γ|B `k KC by a D-morphism [[B]]
[[K]]

[[Γ]]
// [[C]]

• a computation Γ `c M : C by an O-morphism
[[M]]

[[B]]
// [[Γ]]

This structure interprets the connectives × and 1. To interpret the remaining
connectives, we require the following.

Definition 6.4 In a CBPV judgement model (C,D,O),

UB a right adjunctive for a D-object B is a C-object V and an O-morphism
force

V
//B , such that the functions

C(X,V)−→OXB for all X

f 7−→ f ∗
force

are isomorphisms

FA a left adjunctive for a C-object A is a D-object V and an O-morphism
return

A
//V , such that the functions

DX(V , Y)−→OX×AY for all X,Y

h 7−→ (π′∗
X,Areturn); (π∗

X,Ah)

are isomorphisms
∑

i∈I
Ai a distributive coproduct for a family {Ai}i∈I of C-objects is a C-object

V and, for each i ∈ I, a C-morphism Ai
ini //V , such that the functions

C(X × V, Y)−→
∏

i∈IC(X × Ai, Y) for all X,Y

OX×V Y −→
∏

i∈IOX×Ai
Y for all X,Y

DX×V (Y , Z)−→
∏

i∈IDX×Ai
(Y , Z) for all X,Y , Z

f 7−→λi.((X × ini)
∗f)

are isomorphisms
∏

i∈I
B

i
a product for a family {Bi}i∈I of D-objects is a D-object V and, for

each i ∈ I, a D-morphism V
πi

1
//Bi , such that the functions

OXV −→
∏

i∈IOXBi for all X

DX(Y , V)−→
∏

i∈IDX(Y ,Bi) for all X,Y

h 7−→λi.(h; ()∗πi)

are isomorphisms

A → B an exponential from a C-object A to a D-object B is a D-object V
and a D-morphism V ev

A
//B , such that the functions

OXV −→OX×AB for all X

DX(Y , V)−→DX×A(Y ,B) for all X,Y

h 7−→ (π∗
X,Ah); (π

′∗
X,Aev)

are isomorphisms.

20

Levy

2

Definition 6.5 A CBPV adjunction is a CBPV adjunction model with all
left adjunctives, all right adjunctives, all countable products, all countable
distributive coproducts and all exponentials. 2

For example, suppose T is a strong monad on a countably distributive
category C, and all countable products of, and exponentials to, carriers of
T -algebras exist in C. Then the Eilenberg-Moore resolution of T is a CBPV
adjunction. Many other examples are given in [14,13]

Proposition 6.6 [14] There is a theory/model correspondence (Sect. 1.4)
between

• a theory of CBPV with stacks (including complex values and complex
stacks)

• a CBPV adjunction.

2

To interpet exception raising, we again use the “generic element”, as in
Sect. 3.1.

Definition 6.7 Let E be an object of a cartesian category C. A CBPV ad-

junction supporting E-raising is a CBPV adjunction (C,D,O) together with

an O-morphism raise

E
//F0 . 2

Proposition 6.8 There is a theory/model correspondence between

• a theory of CBPV with stacks and exception raising

• a cartesian category C with object E and CBPV adjunction supporting
E-raising.

2

7 CBPV With Handle-Sequencing

Fig. 9 shows how to add handle-sequencing to CBPV with stacks and exception
raising. Given a strong monad T on C, we interpret values and computations
as before, using the monad TE. In particular, FA denotes the free TE-algebra
on A, and UB denotes the carrier of [[B]]. But a stack does not denote a TE
algebra homomorphism, because raise V • K might not raise V . It has to
denote a T -algebra homomorphism. More precisely, if Y = (X, θ) is a TE-
algebra, write pY for the T -algebra (X, (T inlX,E; θ)). Then a stack Γ|B `k

K : C denotes a T -algebra homomorphism from p[[B]] to p[[C]] over [[Γ]].

We see in this class of examples that F and U do not describe an adjunction
between values and stacks. We can see this in the equational theory too.

21

Levy

Define M to x. N as in Sect. 2, and similarly define to x. N :: K to be

to x. N

catch x. raise x

:: K

Then one of the equations that appears in Fig. 7 and is valid in any CBPV
adjunction, viz.

K++L = to x. ((return x) • xK) :: L

ceases to be valid. To see this, suppose that V is a closed value of type exn,
take L to be nil , and let K be to x. return 〈〉. When we dismantle the
two sides onto raise V , then the LHS returns the value 〈〉, whereas the RHS
raises exception V .

The following constructs and equations replace those marked ♣ in Fig. 5–7.

Γ `c M : FA Γ, x : A `c N : B Γ, x : exn `c N ′ : B

Γ `c M {to x. N, catch x. N ′} : B

Γ, x : A `c M : B Γ, x : exn `c M ′ : B Γ|B `k K : C

Γ|FA `k {to x. M, catch x. M ′} :: K : C

(return V)

to x. N

catch x. N ′

=N [V/x]

(raise V)

to x. N

catch x. N ′

=N ′[V/x]

K++L=

to x. ((return x) • xK)

catch x. ((raise x) • xK)

:: L

Fig. 9. Exception Handling In CBPV With Stacks

Thus, in the presence of exceptions, the type FA is not a left adjunctive
for A. To model F , we need to generalize the notion of left adjunctive.

Definition 7.1 (i) Let (C,D,O) be a CBPV judgement model, and let E
be an object of C. A left E-adjunctive for a C-object A consists of a

D-object V , an O-morphism return

A
//V and an O-morphism raise

E
//V such

that the functions

22

Levy

DX(V , Y)−→OX×AY ×OX×EY for all X,Y

h 7−→ (((π′∗
X,Areturn); (π∗

X,Ah)),

((π′∗
X,Araise); (π∗

X,Ah)))

are isomorphisms.

(ii) Let E be an object of a cartesian category C. A CBPV E-adjunction
is a CBPV judgement model (C,D,O) with all left E-adjunctives, all
right adjunctives, all countable products, all countable distributive co-
products and all exponentials. We write FA for (the vertex of) the left
E-adjunctive of A, and likewise for the other operations on objects.

(iii) Let E ′ and E be objects of a cartesian category C. A CBPV E ′-adjunction

supporting E-raising is CBPV E ′-adjunction (C,D,O) together with an

O-morphism raise

E
//F0 .

2

Note that a CBPV 0-adjunction is just a CBPV adjunction.

Proposition 7.2 There is a theory/model correspondence between

• a theory of CBPV with stacks and exceptions

• an object E of a cartesian category C, and a CBPV E-adjunction.

2

We relate this to strong monads as follows.

Definition 7.3 Let E be an object of a cartesian category C, and let (C,D,O)
be a CBPV E-adjunction. Then C is countably distributive, and we obtain a
CBV strong monad on C, supporting E-exceptions: on objects it is given by
A 7→ UFA, and the rest is evident. 2

Another way of seeing this construction is as a translation from the monadic
metalanguage with exceptions to CBPV with exceptions.

We can also translate CBPV with exceptions to CBPV without exceptions,
so we can convert an adjunction into an E-adjunction. More generally, an E ′

adjunction can be converted into an E ′ + E adjunction:

Definition 7.4 Let E ′ and E be objects in a cartesian category C, and let
A = (C,O,D) be an E ′-adjunction. We construct an E ′ + E adjunction
AE = (C,D

′,O′) as follows.

• An object of D′ is a D-object B together with an O-morphism t

E
//B .

• A D′-morphism (B, r)
A

// (C, s) is a D-morphism B
A

//C .

• An O′-morphism
A

// (B, r) is an O-morphism
A

//B .

• Distributive coproducts are unchanged.

• The right adjunctive of (B, r) is UB.

• The product of {Bi, ri}i∈I is (
∏

i∈IBi, s) where s; ()
∗πi = ri,

23

Levy

• The exponential from A to (B, r) is (A→ B, s) where π∗
A,Es;π

′∗
A,Eev = π′∗

A,Er

• The left E + E ′ adjunctive of A is (F (A+ E), inr
∗
A,Ereturn).

2

Proposition 7.5 If T is the strong monad obtained from E ′-adjunction A,
then the strong monad obtained from (E ′ + E)-adjunction AE is TE. 2

Conversely, suppose we are given an E adjunction. We can obtain an
ordinary adjunction supporting E-raising by restricting to those stacks that
are “homomorphic” in exception raising. More generally, given an E ′ + E
adjunction, we can obtain an E ′ adjunction:

Definition 7.6 Let E ′ and E be objects in a cartesian category C, and let
(C,O,D) be an E ′ + E adjunction. We form an E ′ adjunction (C,O,D′)
supporting E raising, as follows. D′ has the same objects asD. AD′-morphism

B
X

//C is a D-morphism B h

X
//C which is “homomorphic for E” i.e.

π′∗X,Eraise

ÄÄ¡¡
¡¡

¡¡
¡

π′∗X,Eraise

ÂÂ>
>>

>>
>>

B
π∗X,Eh

//C

as a diagram over X × E commutes.

The left E ′ adjunctive of A is FA with inl
∗
E′,Eraise. All the other connectives

are unchanged. This monad supports E-raising via the morphism inr
∗
E′,Eraise.

2

As an example, suppose we take the monad semantics of CBPV with stacks,
using strong monad T on category C. If we apply the construction in Def. 7.4,
we obtain the semantics of CBPV with stacks and exception handling de-
scribed above, where a computation object is a TE-algebra but a stack is
a T -algebra homomorphism. If we then apply the construction in Def. 7.6,
then we get the monad semantics for errors, where a computation object is a
TE-algebra and a stack is a TE-algebra homomorphism.

Acknowledgements I thank A. Filinski and H. Thielecke for their help.

References

[1] Beck, J. M., Triples, algebras and cohomology, Reprints in Theory and
Applications of Categories 2 (2003), pp. 1–59.

[2] Benton, N. and A. Kennedy, Exceptional syntax, Journal of Functional
Programming 11 (2001), pp. 395–410.

[3] Carboni, A., S. Lack and R. F. C. Walters, Introduction to extensive and
distributive categories, J. of Pure and Applied Algebra 84 (1993), pp. 145–158.

[4] Cenciarelli, P. and E. Moggi, A syntactic approach to modularity in denotational
semantics, in: CTCS 1993, 1993.

24

Levy

[5] Cockett, J. R. B., Introduction to distributive categories, Mathematical
Structures in Computer Science 3 (1993), pp. 277–307.

[6] Filinski, A., Representing layered monads, in: Proc., 26th ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, 1999, pp. 175–188.

[7] Hyland, J. M. E., G. D. Plotkin and A. J. Power, Combining effects: Sum and
tensor (2006), to appear in Theoretical Computer Science.

[8] Laird, J., A fully abstract game semantics of local exceptions, in: Proc. of the
16th Annual IEEE Symp. on Logic in Computer Science (2001), pp. 105–114.

[9] Laird, J., Exceptions, continuations and macro-expressiveness, LNCS 2305

(2002).

[10] Levy, P. B., Call-by-push-value: Decomposing call-by-value and call-by-name,
submitted.

[11] Levy, P. B., Call-by-push-value: a subsuming paradigm (extended abstract), in:
J.-Y. Girard, editor, Typed Lambda-Calculi and Applications, LNCS 1581, 1999.

[12] Levy, P. B., Possible world semantics for general storage in call-by-value, in:
J. Bradfield, editor, Proceedings, 16th CSL, LNCS 2471 (2002).

[13] Levy, P. B., “Call-By-Push-Value. A Functional/Imperative Synthesis,”
Semantic Structures in Computation, Springer, 2004.

[14] Levy, P. B., Adjunction models for call-by-push-value with stacks, Theory and
Applications of Categories 14 (2005), pp. 75–110.

[15] Levy, P. B., Jumbo λ-calculus (2006), to appear in Proc., 33rd ICALP, in LNCS.

[16] Levy, P. B., A. J. Power and H. Thielecke, Modelling environments in call-by-
value programming languages, Inf. and Comp. 185 (2003), pp. 182–210.

[17] Mac Lane, S., “Categories for the Working Mathematician,” Graduate Texts in
Mathematics 5, Springer, New York, 1971, ix+262 pp.

[18] Moggi, E., Computational lambda-calculus and monads, in: LICS’89, Proc. 4th
Ann. Symp. on Logic in Comp. Sci., IEEE, 1989, pp. 14–23.

[19] Moggi, E., Notions of computation and monads, Inf. and Comp. 93 (1991).

[20] Plotkin, G. and J. Power, Adequacy for algebraic effects, LNCS 2030 (2001).

[21] Plotkin, G. and J. Power, Notions of computation determine monads, in: Proc.,
Foundations of Software Sci. and Comp. Struct., 2002, LNCS 2303 (2002).

[22] Plotkin, G. D. and A. J. Power, Algebraic operations and generic effects, Applied
Categorical Structures 11 (2003), pp. 69–94.

25

	Introduction
	Monads For Exceptions
	Adjunctions For Exceptions
	Combining Handling With Sequencing
	Theories and Categorical Structures

	Monadic Metalanguage
	Exceptions
	Raising Exceptions
	Exception Handling---The Syntax

	Coalgebras On Algebras
	Monad Models For Exceptions
	General Monads
	Monad Semantics Of Exceptions
	The Comparison Functor

	Review of Call-By-Push-Value With Stacks
	CBPV With Handle-Sequencing
	References

