Infinite Trace Equivalence

Paul Blain Levy

University of Birmingham, U.K.

Abstract

We solve a longstanding problem by providing a denotational model fadeterministic
programs that identifies two programs iff they have the same range of [@lsshmaviours.
We discuss the difficulties with traditional approaches, where diveggermttom or where
a term denotes a function from a set of environments. We see that makampfexplicit,
in the manner of game semantics, allows us to avoid these problems.

We begin by modelling a first-order language with sequential /0 and urmlsslinon-
determinism (no harder to model, using this method, than finite nondeterminisar) viléh
extend the model to a calculus with higher-order and recursive typesjdpting standard
game semantics. Traditional adequacy proofs using logical relation®bapplicable, so
we use instead a novel hiding and unhiding argument.

Key words: nondeterminism, infinite traces, game semantics, Jump-With-Argument

1 Introduction
1.1 The Problem

Consider the following call-by-nanelanguage of countably nondeterministic com-
mands with recursion:

M = x| printc. M | recx. M | choose ney. M,

wherec ranges over some alphahbét We define binary nondeterminisid or M’
from countable in the evident way. We define

. def def .
div = rec x. x chooseLneN. M,, = div or choose n¢y. M,

Email addresspbl@cs.bham.ac.uk (Paul Blain Levy).
URL: www.cs.bham.ac.uk/"pbl (Paul Blain Levy).
I Meaning that an identifier gets bound to an unevaluated term.

Preprint submitted to Elsevier Science 22 November 2007

A closed term can behave in two ways: to print finitely manyrabgers and then
diverge, or to print infinitely many characters. Two closednrts are said to be
infinite trace equivalenivhen they have the same range of possible behaviours. To
illustrate this very natural notion of equivalence, cossithe following properties
that appear in the specification for a program called PROG.

safety PROG must not kill the customer.

liveness PROG must (eventually) greet the customer.

conditional liveness If PROG insults the customer, it must (eventually) apolegiz
infinite liveness PROG must (eventually) stop insulting the customer.

If we know PROG'’s infinite trace equivalence class—i.e.atsge of behaviours—
then we know which of these conditions are satisfied.

As stated in (Plotkin, 1983), “we [...] desire a semantics such thaefan’s deno-
tation] is the set of tapes that might be output”, i.e. a medese kernel on closed
terms is infinite trace equivalence. Some models of nonehétésm, such as the
various powerdomains (Plotkin, 1983) and “Seeing Beyonceijence” or SBD
semantics (Roscoe, 2004), identify programs that are notit@firace equivalent,
so they are too coarse. In particular, they cannot identiigtver a program sat-
isfies all four of the above conditions. Other styles of semarcount the internal
manipulations (Brookes, 2002; Escard 998) or include branching-time informa-
tion (Abramsky, 1983; Cattani and Winskel, 2003; PanangadeRussell, 1989),
so they are too fine (at best) for this problem.

In this paper, we provide a solution, and see that it can be tesmodel not only

the above language, but also unbounded nondeterminiseraative input, and

higher-order, sum and recursive types. Our model is a forpowiter game seman-
tics (Hyland and Ong, 2000), although the technology of fmrigames is needed
only for the higher-order types. This gives a good illustratof the power and

flexibility of game semantics.

Proving the computational adequacy of the model incorpugdtigher-order, sum
and recursive types presents a difficulty, because thetivadi method, using a
logical relation, is not applicable to it. So we give, instea proof that uses the
method ofhiding. As a byproduct, we obtain a very simple proof of the adequacy
of the game model of FPC (McCusker, 1996).

2 Although this quotation appears within a discussion of a calowitisout recursion, the
point it makes is a general one.

1.2

Why Explicit Forcing?

Before turning to our solution, we consider two kinds of seticarthat have been
studied.

(1)

(2)

A divergence-leassemantics is one where a term denotes an element of a
poset, every construct is monotone, atig¢ denotes a least element Ex-
amples are the Hoare, Smyth and Plotkin powerdomain secsafiiotkin,
1983), all the CSP semantics in (Roscoe, 1998), and the gamantem

of (Harmer and McCusker, 1999). Divergence-least semao#inaot model
infinite trace equivalence, by the following argument takeom (Plotkin,
1983). Let us say thak is an insult and? is an apology. Put

def

M =div or (print &. print ©. div)
M' = div or (print é&. div) or (print &. print Q. div)

Then
M = div or div or (print é&. print Q. div) < M
M = div or (print &. print ©. div) or (print &. print Q. div) > M’

HenceM = M’, contradicting infinite trace equivalence. Moreovern)ifin-
sults the customer, then it must apologize, but this is met&f M/’. Therefore,
divergence-least semantics cannot verify conditiona&ness properties—by
contrast with the SBD semantics presented in (Roscoe, 200dghwan.

A well-pointedsemantics is one where (roughly speaking) a term denotes
a function from the set oénvironmentsExamples are the 3 powerdomain
semantics (Plotkin, 1983), all the CSP semantics in (Rosc@@8)1 the se-
mantics using infinite traces in (Brookes, 2002), and SBD sénsafRoscoe,
2004). In general, well-pointed semantics are appropftaitequivalences sat-
isfying thecontext lemmaroperty: terms equivalent in every environment are
equivalent in every context. However, infinite trace eqi@mae does not sat-
isfy this property. Suppose that contains just one charactd; and consider
the following two terms involving x.

N ¥ (choose™ ney. (print &.)" div) or x
def

N’ = (choose ney. (print &.)" div) or print &. x

3 discovered by A. W. Roscoe in 1989 [personal communication], andpardiently
in (Levy, 2004b).

On the one handy and N’ are infinite trace equivalent in every environment:

closed term N[M/x] N'[M /%]
can print&™ then diverge yes yes
can printé* iff M can print&® | iff M can printé&*

On the other hand, they are not contextually equivalent:

closed term recx. N |[recx. N’
can print&” then diverge| yes yes
can printé* no yes

and so any model of infinite trace equivalence must diststgthem. In par-
ticular,rec x. N must stop insulting the customer, but that is not the case for
rec x. N'. Thus a semantics that identifiéé and N/, such as cpo-enriched
semantics (Abramsky, 1983) and SBD semantics (Broy, 1986;d@02004),
cannot verify infinite liveness.

(Lest the reader think unbounded nondeterminism is to hlaoie that if
we allow recursion oveN-indexed families of commands, we can express
choose’ney. M, as(rec fAney. (M, or £(n+1)))0. So finite nondetermin-
ism suffices to make this example.)

A naive way of distinguishingv and V' is to say thatV’ is able to print a tick and
then force (i.e. execute), whereasV is not:

term involvingx N | N

can print&™ then diverge | yes | yes
can printé® no | no
can forcex yes | no

can printé then forcex no | yes

can print&"*2 then forcex | no | no

And that gives our solution.

This idea, that a model of call-by-name should make explibién a program forces
its (thunked) argument, is present—often implicitly—imgasemantics, where (as
argued in (Levy, 2004a)) “asking a question” indicatesifoy@ thunk. That is why
our solution fits into the game framework. However, the ganoeers in the liter-
ature are divergence-least, and this property is expldiyealdequacy proofs using
logical relations. This is even true of the nondeterministiodel of (Harmer and

McCusker, 1999), where strategy sets are quotiented by thévidger preorder
and so they become cpos. The novelty of this paper is thabitlaxsuch quotient-

ing.

Consider, for example, the two (call-by-name) terms

P =MXx.(div or if x then (if x then true else true) else true)
P'=\x.(div or (if x then div else true)
or if x then (if x then true else true) else true)

of typebool — bool. In (Harmer and McCusker, 1999), these terms have the same
denotation, and indeed are observationally equivalemhyr and must testing. But
if we add printing to the language, then we can place thesestén the ground
context

C[-] = [](print &. true)
Now C[P] andC[P’] may print& and then diverge, where@sP| cannot. There-
fore, from the viewpoint of infinite trace equivalendeand P’ must have different
denotations.

1.3 Structure Of Paper

We adapt the language of Sect. 1.1 in three stages.

Firstly, in Sect. 2.1, we bring in erratic (aka internal) w®operators of arbitrary
arity.

Secondly, in Sect. 2.2, we aduteractive inputwhich is one of the computational
effects studied in (Moggi, 1991) and is illustrated in FigThis is where a program
does not take input silently from a stream, but first prints essage requesting
input, and then waits until it is supplied.

In Sect. 2.5, we give a denotational semantics for this lagguno sophisticated
game techniques are required at this stage.

The third adaptation, in Sect. 4, moves to a language withdrigrder and recur-
sive types. In (Levy, 2006b), this was done as an extensidheotall-by-name
language. But giving game semantics directly for a call-byae calculus is com-
plicated, so in this paper we use the calculus that (as arguéidevy, 2004a))

makes game semantics easiest: Jump-With-Argument (JW&Qntnuation pass-
ing calculus. The game semantics of (Abramsky et al., 1998ardl and Ong,

2000; Nickau, 1996) is presented for JWA in (Levy, 2005)is paper we merely
adapt that model to include nondeterminism, interactiygiirand infinite trace
equivalence.

A program in BASIC

10 INPUT "Hello. Enter your name (a string):" name$
20 INPUT "Enter your age (an integer):" age
30 IF age >= 18 THEN INPUT "Enter your address (a string):" d$

A nondeterministic program—states marked “e” make an erratic choice
Initial State

"Hello. (Hit SCROLL to continue)"

SCROLL
male

Q "What gender are you? (male/female)"

female

o
economy
business

"What class are you travelling? (business/standard/economy)

standard

"Goodbye."

female
male /

"What gender are you? (male/female)"

"

Fig. 1. Two programs illustrating interactive input

The usual adequacy proof for game semantics uses logiediares (McCusker,
1996; Pitts, 1996), but that only works for divergencedeasnantics, which ours
is not. Instead, we prove adequacy using a novel method.ddzeis that it is easy
to prove adequacy for deterministic, divergence-free seland every term can be
converted into such a term using an “unhiding” transformiclwimakes every step
of execution visible. That gives a highly extensional seticanfrom which we
can recover the desired semantics by hiding all these eisiielps. We then deduce
adequacy for each term from the known adequacy for its ungidi

1.4 Diagrammatic Statement of Computational Adequacy

There is a diagrammatic description of adequacy that wiluseful for our pur-
poses. Take PCF for example. WrR€F(B) for the set of closed terms of type
B, andPCF(B) for the set of such terms that are terminal (where evaluagioni-
nates). The operational semantics of PCF provides, for gae, a function

PCF(B)—"2~T PCF(B)
whereT is thelifting monadon Set that adds an extra element

In any particular model of PCF, the denotation of the judgearieR will be a7T-
algebra(Xp,0p), i.e. a pointed set. Thus each tekm\/ : B denotes an element
[M] € X.Computational adequacy amounts to the commutativity ofidi@wving,
for each typeB.

PCF(B) 27 PCF(B) (1)
Hl J/TH
Xp~—p—TXp

This says that if\/ |} T'then[A] = [T] and if M diverges theffM] = L.

For languages with other computational effégtsuch as nondeterminism and 1/0,
this notion of adequacy is still a reasonable one, althalgill be not lifting but
some other (inclusion-preserving) monadSst appropriate to those effects.

1.5 Related Work

An infinite trace model fodataflow networks-including feedback, but not recursion—
was presented in (Jonsson, 1994), and shown fully abstrathe terminology

of (Hasegawa, 1997), it formsaartesian-centre traced symmetric monoidal cate-
gory. Although it is shown in (Hasegawa, 1997) that such a categfocentrally
closed can be converted into a kind of recursion, that is not useéué because
Jonsson’s model is not centrally closed. (Nor, for that erais its finite trace vari-
ant.)

Adequacy of cpo-enriched semantics in the presence of @gebffects (such as
interactive input and erratic nondeterminism) is studiedRlotkin and Power,
2001). The form of the operational semantics resembles ohiding transform
in that each operation (in particular, erratic choice) iglenanto an explicit action.

4 other than control effects, for which this formulation does not make sense

Acknowledgements

| thank Marin Escaré and Guy McCusker—both of whom showed me adequacy
proofs that count execution steps—and Russ Harmer and Billdgosc

2 First-Order Language
2.1 Erratic Choice

The language of Sect. 1.1 contained an erratic choice apethbose of arity
N. In this section, we generalize this by having an entire i erratic choice
operators{ choose” } < where the arity othoose” is given by a sef,.

We thus define aerratic signatureto be a family of set” = {P,},cny. Such a
signature, together with an alphabg&tdetermines a calculug(A, Y') with syntax

M := x| printec. M | recx. M | chooseh{Mp}pePh

wherec ranges overd, andh ranges oveld, ande ranges ovely. The command
choose"{M,},cp, means: erratically choose some& P, then executé/,.

A signature in whichP, is non-empty for every, € H is said to bdively. Accord-
ing to the explanation just given, the calculus does not ntakeputational sense
if the erratic signature is not lively. Nonetheless, we wdhsider both lively and
non-lively signatures in this paper; we justify studying tatter in Sect. 8.1.

LetY be an erratic signature antlan alphabet. For each contéxt xo, ..., %,_1,

we define a terminabfe LTS L(A, Y, T) with labels A + {7}. Its states are the
termsI” = M built usingY and.A, and its terminal states are the free identifiers.
The transitions are

recx. M s M(rec x. M/x]
ChOOSQh{Mp}peph LMI; (]3 S Ph)

print c. M SM

For a closed termi/, we say that

> A terminable LTSs a labelled transition system (LTS) in which some states are desig-
nated terminal, and there is no transition from a terminal state.

e ay,...,a, ; € A*is afinite traceof M when)~ TS v for some
N
e ag,...,a,1 € A*is adivergenceof M when 7~

T*apgT*ay -

® ay,aq,... € A¥ is aninfinite traceof M when)/

We say that two closed termid, M’ areinfinite trace equivalentvhen they have
the same finite traces, divergences and infinite traces.elfetinatic signature is
lively (the main case of interest), then the finite tracesradeindant because they
are precisely the finite prefixes of the divergences and tefinaces. We defer to
Sect. 8.2 the justification for including the finite trace$he non-lively case.

The finite traces, divergences and infinite traces aj@enterm[” - M are defined
the same way. We also say that ..., a,_1,x is aterminating traceof M when

M~ x| Two termsT - M, M are infinite trace equivalent when
they have the same finite and terminating traces, divergesue infinite traces. As
we shall see in Sect. 2.5, this is a congruence and can be leddenotationally.

2.2 Interactive Input

For the second extension (see Sect. 1.3), we consideratiteranput (Fig. 1). We
want to have a family of interactive input operatdtisiput®},co. Eacho € O is
a message that requests input from the/seéVe thus define amput signatureto
be a family of setq1,},c0. Given an input signatur& = {I,},co and an erratic
signatureY” = { P, }rcm, We obtain a calculug(Z, V') with syntax

M = x | recx. M | choose"{M,},cp, | input®{M;}ic;,

whereh ranges ovelH, ando ranges ovet). (We are not includingrint explic-
itly, as we explain presently.)

The commandnput®{ M, };, has the following meaning:
(1) printo
(2) wait until the user inputs somiec I,
(3) executeVs;

If the user never supplies input, the program will wait fanev

Two cases of input operator are of special interest: unadynaitiary.

e Where |, is singleton, the commanthput®{M} prints o, waits for a speci-
fied input (the user hitting a SCROLL button, let us say), amhtbontinues to
executel!. This isslightly different fromprint o. M, which executed/ imme-
diately after printingp. However, for the purposes of this paper, we regard them

as the same thing; therefore point primitive is required in the calculus.

e Where], is empty, the commandnput®{} simply prints the message and
nothing further can happen. In effect, this command throwsiarecoverable
error, an is the error message.

Remark 1 Interactive input using input signatuse = {I,},co is an example of

a computational effecfMoggi, 1991; Plotkin and Power, 2002), represented as
a monad orSet, viz. the free monad on the endofunciBg on Set defined by

X — 3 ,coX . Explicitly, this monad maps a sétto uY.(V + R;Y).

Three monads appearing in (Moggi, 1991) are special casbspfollowing (Plotkin
and Power, 2002).

e The interactive input monad — nY.(V + Y7) arises from the input signature
with one operator of arity.

e The interactive output monad — A* x V arises from the signature witd
unary operators.

e The exceptions monad — V + E arises from the signature witA nullary
operators.

2.3 Operational Semantics of Interactive Input

In Sect. 2.1, we gave the operational semantics of a pricaigulus as a terminable
LTS. But for a calculus with interactive input, this is not gusuitable:

¢ If we allow both outputs and inputs to be actions, we needteail alternation
and receptivity-to-input conditions.

e If we define an action to be a pdis, i), we do not deal with the case of an output
whose input never arrives (or, indeed, whose input set igy@mp

Instead we need a transition system of the kind depictedgnIithough without
an initial state.

Definition 1 (BLTS) LetZ = {I,},c0 be an 1/O signature.

(1) A bi-labelled transition systefBLTS) M over Z consists of
e a set (which we also calM) of states each of which is classified as either
o-interactivefor someo € O, or silent
e for eacho-interactive state, and each input € [, a statel : i € M.
e for each silent staté, a set ofsuccessorsucc(d) C M
We writed | o whend is ano-interactive state. We writé ~~ d’ whend is
silent andd’ € succ(d).

10

(2) A terminable BLTSM is the same, except that there is a third kind of state:
terminal We write M for the set of terminal states.

(3) A BLTS or terminable BLTS idively when each silent state has at least one
successor, andeterministicwhen each silent state has precisely one succes-
sor.

O

Remark 2 Defining Rz as in Remark 1, we can, more abstractly, define a BLTS
over Z to be a coalgebra for the endofunctor— PX + R; X onSet. O

Let Z be an input signature and an erratic signature. For each contéxt=
Xo, - - -, X,_1, We define a terminable BLTS(Z, Y, I') overZ as follows. The states
are the termg3” - M in the calculusC(Z,Y), with transitions given in Fig. 2. In
particular, the terminal states are the free identifiers.

Interactive commands
input®{M;}ic;, o

Interactive transitions

input®{M,;}tie;, 1 = M; (1€l,)
Silent commands

recx. M

choose{M,},ep,
Silent transitions

recx. M ~» M][rec x. M /%]

choose{M,},ep, ~ M; (pe bn)
Terminal commands

X (xeTl)

Fig. 2. Operational semantics 6f 7, Y) as terminable BLTE(Z,Y,T)
The following is trivial.
Lemma 1 Supposd’,x - M andIl' = N. Suppose that/ is notx.
(1) M issilentiff M[N/x]is. If, moreoverM ~» M'thenM[N/x] ~» M'[N/x].
Conversely, ifM[N/x| ~ @Q thenM ~- M’ for someM’ such that) =

M'[N/x].
(2) M is ano-state iff M[N/x] is, and themV/[N/x] : i = (M : i)[N/x] for each

11

1€ I,
(3) Foreachy € I', we haveM =y iff M[N/x] =y.

2.4 Strategies in a BLTS

As in Sect. 2.1, we can define finite traces, divergences dmiténtraces. Fix an
input signatureZ = {1, },co-

Definition 2 Let Z = {I,}.,co be an input signature. Alay over Z is a finite
or infinite sequenceyigo,i; ... Wwhereo, € O andi, € [, for eachr. It awaits
Proponentf of even length, an@waitso-inputif of odd length ending ir. O

Definition 3 Let d be a state within a BLT31 over 7.

(1) An input-awaiting playyig . . . 0,_1i,_10, IS afinite traceof d when there is
a sequence of states

d~~* €0 l 0o
Goiiow*ellOl

. y *
€n—1:ln-1~" €En l On

(2) A Proponent-awaiting playyi . . . 0,17, IS adivergenceof d when there
is a sequence of states

d ~* €o l (oh)
eoiiow*€1l01
. w
€n—1:lpn-—1"

(3) Aninfinite playogig, 01, 71, . . . is aninfinite traceof d when there is a sequence
of states

dw*egloo
egiiow*ellOl

ellilw*GQlOQ

O

Of course, any finite prefix of a finite trace, divergence omitdi trace ofs is a
finite trace. So we make the following definition.

12

Definition 4 (1) A strategyoverZ consists of
e a setA of input-awaiting plays
e a setB of Proponent-awaiting plays
e a setC' of infinite plays
such that every input-awaiting prefix of a playAnu B U C'is in A.

(2) Letd be a state in a BLT3 over Z. Theoperational meanin@f d, written

[d], is the strategy oveZ given by the finite traces, divergences and infinite
traces ofd. Two states! andd’ areinfinite trace equivalenivhen|d] = [d].

O

In the case of a terminable BLTS, there is a fourth kind of behawve need to
consider.

Definition5 (1) Let V be a set. AV-terminating playover Z is a sequence
00lg - - - On_1in—1v Whereo, € O andi, € I, for eachr, andv € V.

(2) Letd be a state within a terminable BLTS! over Z. (Recall thatM is the
set of terminal states of1.) A M—terminating playogig . .. 0, 10,10 IS @
terminating traceof d when there is a sequence of states

dw*eolOo
eoziow*el lOl

€n—1:ln_1 T

The input-awaiting traces, divergences and infinite tradesare defined as
for a state of a BLTS. Afinite traceis either an input-awaiting trace or a
terminating trace.

(3) LetV be a set. AV-terminable strategpver Z consists of
o asetd = Ajpur U Arermin Of input-awaiting and/-terminating plays
e a setB of Proponent-awaiting plays
e asetC of infinite plays
such that any input-awaiting prefix egf U B U C'is in Ajput.

(4) Let M be a terminable BLTS oveX. For any statel € M, theoperational
meaningof d, written [d], is the M-terminable strategy ove given by the
finite traces, divergences and infinite traced.of

O

Definition 6 Let V' be a set. We build/-terminable strategies ovef using the
following operations.

(1) Forv € V, we definenuv to be the strategy

({o}, {3 {})

13

(2) Given a family of strategie$o; }c;, whereo; = (A;, B;, C;, D;), we write

U, 0; for the strategy
(U4, UBi, U
el el el
(3) Giveno € O, and for each € I, a strategyo; = (A;, B;, C;), we write
input®{o; }es, for the strategy

({o} U{oilli € 1,,1 € A;},{oilli € 1,,1 € B;},{oilli € 1,,1 € C;})
O

Proposition 1 Let d be a state in a terminable BLT®! over Z. Let V' be the set
of terminal states.

e If dis ano-state thend| = input®{[d : i|}scs,
e If dis asilent state thefal] = U, [d]
e If dis aterminal state theja] = nd.

2.5 Denotational Semantics

The key result of this section is that, on the terminable BIO(E, Y, T"), we can
characterizé—] in a compositional way.

Proposition 2 In the language£ (Y, Z), we have the following.

(1) Ifx € F, then[X]E(Zy’[‘) =nx

(2) [choose"{M,},ep,]ezyr) = Upep, [Mplc(zyir)
(3) [input®{M;}icr,](zy,r) = input’{[Mo]z(z,yv,r) tier,
(4) fI',x = M then

[rec x. Mzyr) = u[M]cizyrsx

where we defing:(A, B, C) to be

({lo -+ ln—1lllox € Aterminy - - - s ln—1X € Atermin, | € Ainput }

U{lo -+ ln_1ly|lox € Aterming - -+ ln-1% € Atermin, IY € Atermin, ¥ # X},
{lo--lorl)lox € Asermin, - -+ ln_1%X € Asermin, | € B}

U{lo -+ ln—1]lox € Aterminy - - - » ln—1X € Atermins €X € Atermin
{lo- Lh_1lllox € Aterminy - - - » ln—1X € Atermin, | € C'}

U{loly - - - [lox € Atermins 1X € Atermin, - .. andVi € N. [; # €})

14

(B5) fI',x+ M andl' - N, then
[M[N/XHE(Z,Y,F) = [M]ﬁ(Z,Y,F,x) * [N]L‘(Z,Y,F)
where we defingA, B, C) = (A, B’,C") to be
(Ainput U{ly | Iy € Atermin, ¥ 7# x} U {ll'|lx € Atermin, ' € A},
BU{ll'|lix € Atermin, ' € B'},
CU{ll'|lx € Atermin, I € C'})

O

We thus define a denotational modeéc x. M| = u[M] etc., and Prop. 2(1)—(4)
shows computational adequacy i[&7] = [M].

3 Monads and Algebraic Operations

Let Z = {1, },co be an input signature.
3.1 The Monad of Nondeterministic Strategies

For any setl, we write 7,(V') for the set ofV/-terminable strategies ovef.
This gives us a monad oflet—it is the monad representing the combination
of interactive input ovetZ, nondeterminism and divergence, under infinite trace
equivalence. The unit at’ is given by Def. 6(1). The multiplication dt maps
(A,B,C)eT,T,Vto

(Ainpat U {10 | 1A, B',C") € Ararmin, I € A'Y,
BU{Il' | I(A",B',C") € Asermin; I € B'Y, (2)
CU{ll'| I(A", B',C") € Asermin; I € C'})

The monad laws are easily verified.

For any terminable BLTS\U, Def. 5(4) gives us a functionu i>TZ/\}1. This
takes the place af in Sect. 1.4.

3.2 Algebraic Operations
We can defin¢) andinput® in a general setting.

15

Definition 7 Let X = (X, 0) be aT,-algebra.

(1) Given a family{z;};c; of elements ofX, we define

Ui Zo0({zi[ie 1} {3.{})

i€l
(2) Giveno € O and a family{z;};c;, of elements ofX', we define
input®{z; }ics, = 0({o} U {oiz; | i € L.}, {},{})

O

If we apply Def. 7 to the free algebra dn, we recover the constructions given in
Def. 6(2)—(3).

We recalf the following concept from (Plotkin and Power, 2003).

Definition 8 Let 7' be a monad orBet and let/ be a set. An/-ary algebraic
operationa for 7' provides, for eachi’-algebraX = (X, 6), a function

XI5 X natural inX € Set’.

It is easy to see that Def. 7 gives us algebraic operations for

e For each sef, the operationJ,; is an/-ary algebraic operation.
e For eachv € O, the operatiorinputj.; is anl,-ary algebraic operation.

4 Jump-With-Argument With Type Recursion
4.1 The Language

We now want to move to a language with higher-order types. @ssibility to
simply add higher-order types to the langualj¢’, V'), as done in (Levy, 2006b).
However, giving game semantics directly for a call-by-ndamguage is quite com-
plicated. To make the game semantics as easy as possiblesenge aontinuation
passing calculus “Jump-With-Argument” (JWA).

6 Although the initial formulation in (Plotkin and Power, 2003) covers fieéalgebras
only, it is shown that an algebraic operation over free algebras extergisely to one over
all algebras. So we take the latter as our definition, cf. (Mggelberg ands8SMmp007).

16

We can then use a “stack passing” transform (Levy, 2004a)atestate call-by-
push-value, a calculus that subsumes call-by-name anrtigathlue (Levy, 2006a),
into JWA. On the call-by-value fragment, this is the tramhtal CPS transform,
while on the call-by-name fragment, it is the transform give (Streicher and
Reus, 1998). A categorical description of how, from a modelWh, we can con-
struct a model of call-by-push-value is given in (Levy, 2P05

The types of JWA with type recursion are given by
A= A YA | 1| AxA| X | uXA

wherel ranges over countable sets. (We can also consider a finigasyon, where
I ranges over finite sets.) The typel is the type of functions that take an argument
of type A and do not return.

More formally, if @ is a type context (list of type identifiers), we wride-%re A
to mean thatd is a type whose free identifiers are includeddinThis is defined
inductively in the usual way.

JWA has two kinds of termvaluesandnonreturning commandsndicated by the
judgementd” ¥ V : Aandl’ -" M respectively. The types ihi and the typed
must all be closed.

For a given input signatur® = {/,},co and an erratic signatudé = { P, },cx, we
defineJWA(Z,Y), i.e. JWA extended with type recursion, interactive inponi
Z and erratic choice fromY. The syntax is given in Fig. 3. We writgn as an
abbreviation for “pattern-match”, and writet to make a binding. We omit typing
rules, etc., for 1, since 1 is analogous+to

The operational semantics is given in the same style as irRFfgr each context
we define a terminable BLT®NA(Z, Y, I') over Z. The states are the commands
I' " M in JWA(Z,Y'). The transitions are shown in Fig. 4.

To translate the languag¥® Z, Y') into JWA(Z,Y’), acommandy, ..., x,_1 - M

is translated into a commang : —1,...x,_; : =1 F" M. In particular, a free
identifierx is translated as(). Recursion can be encoded in terms of type recursion
in the usual way; we omit details.

4.2 Categorical semantics of JWA

It it usual, and convenient, to use categorical structurer¢@nize game models,
rather than interpreting syntax directly. In this sectwe,recall from (Levy, 2005)
the relevant categorical structure for JWA.

Firstly, if C is a category, &ft C-moduleis a functor\ : C* — Set. An element

17

——(x:A) el
'Fx: A

FI_VVZAg

11
rrY (i, V> D> ierAi

rEVv:A THV A

'"v:A I''x: A" M
'F"let Vbex M

Fl_VVZZiGIAZ' F,XiIAi (ol Mz (VZEI)

TH (V,V'): Ax A

x:AF"M
'Y xx.M:—-A

[F Vo AluX.A/X]
['H foldV : uX.A

I'F"M, (Vp € Py)
I'F" choose"{M,},cp,

I'E"pm Voas {(i,x;).M; }ier

' V:AxA Tyx:Ay:AF"M
F'F"pmV as (x,y). M

r=yv:-A I'r="yw:A
r="vw

FE VXA T)x: A[pX A/X]F" M
['F"pmV as foldx. M

T M, (Viel,)
[' =" input®{ M, }icr,

y=x0,

Fig. 3. Syntax of the calculuBNVA(Z,Y)

g € N(R) is called anN-morphism fromR (though it is not a morphisrto any-
thing), and writtenz —~~ . Given aC-morphism R—_~§ and an\/-morphism
§—%~ , we define the compositg —'~ 5~ to beNg.

A cartesian categorg together with a lefC-module V' is called aJWA judge-
ment modelbecause it can be used to interpret the fragment of JWA, in the

following manner.

A type denotes &-object

A contextI’ = Ay, ..., A,_; denotes th€-object[I'] = [Ao] x -+ x [An_1]
Avaluel' - V' : A denotes &-morphism from[['] to [A
A commandl’ " M denotes aV-morphism from[I'].

Given a JWA judgement modéy, S), the families constructior{Abramsky and
McCusker, 1998) gives us another one which we @at,g, fam,S). A fam,G-
object is a countable family @f-objects. We define

18

Interactive commands

Interactive transitions

Silent commands

Silent transitions

Terminal commands

input®{ M, }ies,

inputo{Mi}iefo

let Vbex. M

pm (i, V) as {(7, %) M, }ier

pm (V. V') as (x,y).M
(Ax. M)V
pm fold V as fold x. M

choose{M,},ep,

let V be x.M

pm (i, V) as {(i,x).Mi}ics
pm (V. V") as (x,y).M
(Ax. M)V

pmfold V as fold x. M

choose{M,},ep,

zV

pmz as {(i,x). M;}ier
pnzas (x,y). M
pmzas foldx. M

>

I
=

(1€ 1L,

M|V /x]

(1el)
M[V/x,V'/y]
M[V/x]

MI[V/x]

~ o M (p € P)

where(z : =A) e T
ZiZz‘eIAi)GF
z:AxA)el

(
where(
where(
where(z : uX.A) € T

Fig. 4. Operational semantics #VA(Z,Y") commands in context

(fam,G)({Ri}ier, {SiYien) E 11 D G(R:, S))

icl jeJ

(fam,S)({ R }ier) dZEfH S(R;)

{Ri}ier X {S;}ies E{R: % S} pvers

il

19

3)
(4)
()

and define composition and identities in the obvious way.

The structuréfam,G, fam,,S) always provides a model of the, 1, - fragment of
JWA, using

ZlG]{RZj}]EJI - {R”}<Z,j>€ Zie[‘]i
But to be able to modet, we need additional structure ¢4, S), as we explain.

Definition 9 A JWA pre-families structureonsists of

e a JWA judgement modgly, S)
e for each countable family of-objects{R;};c;, a representing object for the
functor
[I[S(— x R):G" — Set
el
i.e. an object-;c; R; together with an isomorphism
[IS(X x R;)) 2 G(X,~erR;) naturalinX € G”.
el

O

If (G,S) is a JWA pre-families structure, th¢fam,,G, fam,,S) is a model of JWA.
A — type denotes a singleton family:

ﬁ({Ri}ieI) = {_‘z‘eIRz‘}
4.3 Enriched Models of JIWA

In order to model JWA extended with computational effects, meed additional
structure.

Definition 10 Let7T be a monad oSet.

(1) A T-enriched JWA judgement modsla cartesian categoty together with
a functor\ : ¢ — Set”, whereSet” is the category of-algebras and
homomorphisms. Equivalently, it is a JWA judgement mddel\V') together
with a natural transformatiom A’ —>— A/ such that VA, BA) is aT-algebra
for everyA € ob C.

(2) If (G,8) is aT-enriched JWA judgement model, then we define anoiher
enriched JWA judgement modghm,G, fam,S) by setting

(fam,S)({ Ritier) = HQ(RD

el

as in (4), but here we are taking the producieélgebras.

20

O

Let (C,V, 3) be aT-enriched judgement model. Anfyary algebraic operation
for T"induces a map

(NAY 245 Ar A natural inA € C

whereaA £ a(N A, BA). Thus in the case of the mondg,, we obtain|J and
input® constructions on thé/" homsets. We can use these to interpret JWA with
input signatureZ and any erratic signature.

5 Pointer Games
5.1 Arenas

In this section we describe the pointer game semantics fak, Blapting the
deterministic semantics given in (Levy, 2005). We assuneeréader is familiar
from (Abramsky et al., 1998; Hyland and Ong, 2000; Nickalg@)9with this style
of semantics, so we do not motivate it here; see (Lassen avygl P807) for an
operational theory that is closely connected.

Definition 11 e An arenais a countable s&t equipped with a relation C ({x}+
R) x R that depicts a forest, i.e. for eache R there is a unique finite sequence

sFrgb---bFr,=r

Therootsof R are the elementg R £ {r € R | = I r}, and thechildren of
s € Raretheelementy- € R | st r}.

e We write R & S for the disjoint union ofR? andS, and(for the empty arena.

e For a countable family of arends; },c;, we writept,, R; for the arena with/
roots and a copy oR; placed below théth root.

e If r € R, we write R[, for the arena of elemenssdrictly descended from.

O

Although it is not usually made explicit in the game liter&uthe following cate-
gory is important, as it is used for coherence isomorphisms.

Definition 12 A renamingfrom arenakR to arena$ is a function R—L~5, such
that, ifb € rt R, thenfb € rt S andf restricts to an arena isomorphigi,= ST .

We write TokRen for the category of arenas and token renamings. This has finit
(and indeed countable, though it is only finite that we usgyaducts given by
disjoint union. O

21

5.2 Pointer Game: informal definition

Given an arend, thepointer gameon R is informally described as follows.

e Play alternates between Proponent and Opponent, with Reoponoving first.

¢ In each move, an element &fis played.

e Proponent moves bgither stating a rootr € rt R, or pointing to a previous
Opponent-moven and stating a child of the element playediin

e Opponent moves by pointing to a previous Proponent-moead stating a child
of the element played im.

We write S R for the set of nondeterministic strategies for this gamedefene this
more formally presently). We then set up a JWA pre-familiescdure(g, S). The

objects ofG are arenas, with finite products given lyand— structure given by
pt,c;. The homsets are given by

G(R,S)Z [S(RwSh)

bert S

for all arenask andS. And we will then define identity maps, both kinds of com-
position, etc., in the usual way.

Remark 3 G is the category defined in (Hyland and Ong, 2000), minus tlme co
straints of innocence, visibility, bracketing and detemisim. The question/answer
labelling is omitted, as it is redundant in the absence obtheketing condition

The structurgfam,,G, fam,S) will be used to model JWA with nondeterminism
but without I/O. In order to model JWA with an input signatufe= {1,},co, we
modify the pointer game oR:

e Proponent has a third option for playing a move: to outputesom O
e Opponent then responds with some 1,
e play continues as usual.

This is depicted as follows:

awaiting arena Opponent awaitingo-input

Opponent plays
arena move

Propoonent outpu
(@]

Opponent inputs € I,

Proponent plays
arena move

Initial state
awaiting Proponent

Taking nondeterministic strategies for this variant game,obtain a JWA pre-
families structurdG,, N7). We shall see that it i$,-enriched.

22

5.3 Pointer Game Strategies: Formal Definition

Fix an input signatureZ = {I,},co. We are going to define strategies wrt this
signature.

Definition 13 A justified sequencein an arenak over Z consists of

¢ afinite or infinite sequencg s, s, . . . where each,, is either
- an element of? (we say thatn is anarena movg
- an element € O (we say thain is ano-output movg
- an element of,, for someo € O (we say thatn is ano-input move
wheres,, is ano-input move iff it follows ano-output move

e for each arena move: such thats,, is not a root, a pointer to a moygr,, such
thatptr,, < m andsy, s,.

O
Pictorially, we describe an arena moweasptr,, . s,,, whereptr,, < « in the
case thatn is a root move.

Definition 14 A playon arenak over 7 is a justified sequence such that, for every
movem,

e if m is even (e.g. 0) then it is either an output move, an arena mplayeng a
root, or an arena move pointing to an odd arena move

e if m is odd then it is either an input move or an arena move poirttran even
arena move.

A finite play awaits Proponenbr awaits Opponenaccording as its length is even
or odd. In the latter case, @waits arena-Opponerdr awaitso-input according as
its last move is an arena move or @output move. a
Definition 15 A strategyon an arend over Z consists of

e a setA of Opponent-awaiting plays (tHaite trace$

e a setB of divergences (thdivergencep

e asetC of infinite plays (thenfinite trace$

such that ifs is in A, B or C, then every Opponent-awaiting prefix is th We
write S, R for the set of strategies aR over 2. O

It is clear thatS, R is functorial inR € TokRen.

As stated above, we defigg, (R, S) £ [Iyen s S,(R W S[,) for all arenask and
S.

23

5.4 Copycat and Composition

To define the identity morphism oR, we require for eaclh € rt R a strategy
idg, ON RW R [, This is a “copycat” strategy: the (deterministic) strategth
no divergences, whose finite/infinite traces are all the laywhich Proponent
initially plays x «~ inl b, and responds to

0 ~inla with x ~inra
n+1-inla with n &~ inra
n+1oinra with n A~ inla

For the rest of the categorical structure, we first define anain

G,(R,S) x S,(S6T)LS (RWT)

for arenasi, S, T. We then define composition in terms of this:

R1-5-t-1 = Aeer 7+ [%R 5T, 9o (6)

R—1L-5-4> =7 XRS50 Y (7)
Finally, we show that can be recovered from the categorical structure:

Proposition 3 If R—7=S and Rw T —— ,theno xgsr7= (o xT);7 O

¢ Intuitively, the strategy xr s 7 should execute until that plays a root of S,
then continue i, until that plays another move i, then followr again, and so
forth. But the moves ir¥’ are hidden—"parallel composition with hiding”.

Definition 16 Let s be a justified sequence dhw S w T wrt Z. Theinner thread
initiators of s are
inners(s) & {x} U {root moves inS}

Forg € inners(s), thearena ofg is SWT'if ¢ = %, andR W S|, if ¢ playsb € rt S.
O

Definition 17 Let s be a justified sequence dbw S & T wrt Z, equipped with

e for each root move iR, a pointer to an earlier root move
e for each output move, a pointer to an inner thread initiator.

(These additional pointers are callgdead pointerg
(1) Theouter threadof s is the justified sequence diw T’ consisting of all arena

moves inR and7 and all /O moves.

24

(2) Theinner thread initiated by;, whereq € inners(s), is the justified sequence
on the arena of consisting of
e if ¢ = %, all arena moves i andT

e if ¢ playsd € rt S, all the arena moves iR descended from a root move
that thread-points tg, and all the arena moves strictly descended from
q

together with the output moves that thread-point smd the input moves that

follow them.

(3) We say that is aninteraction sequence&hen all the threads (outer and inner)
are plays.

O

Remark 4 The thread pointers of an interaction sequence are actugllyndant.
But it is more difficult to define interaction sequence withthem. O

1 thread (wheré playsb € rt S) awaitso-input * thread await®>-input
all other inner threads await Opponent

all other inner threads await Opponent
outer thread awaits-input

outer thread awaits-input

i€ Io

1€ I, o€ O

movel playingb € rt S Initial state

1 thread (wheré playsb € rt .S) awaits Proponent /\ * thread awaits Proponent,
- T

all other inner threads await Opponent move inS in [thread all other inner threads await Opponent

. outer thread awaits Proponent
outer thread awaits Proponent \/

move inS in [thread

move inT'

move inR

move inR in I thread

move inT'
in [thread

outer thread awaits Opponent,
all inner threads await Opponent

Fig. 5. State diagram followed by an interaction sequence on arenasl’ overZ

An interaction sequence follows the state diagram showngn3; giving us the
following result.

Proposition 4 Let s be an interaction sequence &S, T wrt Z. Then precisely
one of the following is true.

(1) sis finite. The outer thread and every inner thread await a@p@onent.

(2) sisfinite. For some € O andi € inners(s), thel-inner thread awaits-input,
as does the outer thread. All other inner theads await abgrpnent.

(3) s is finite. For somé < inners(m), the l-inner thread awaits Proponent, as
does the outer thread. All other inner theads await arenaegmnt.

(4) sisinfinite. Each inner thread awaits arena-Opponent offiisiia. The outer
thread awaits Proponent.

25

(5) sisinfinite. Each inner thread awaits arena-Opponent offiisiia. The outer
thread is infinite.

We say that an interaction sequence

awaits outer Opponenn cases (1)—(2)
awaits/-inner Proponentn case (3)

is outer-starvedn case (4)

is outer-infinitein case (5).

Using our classification of interaction sequences, we candefine thex opera-
tion.

Definition 18 Let R, S, T be arenas, and an input signature. Let € G,(R, S)
andr € §,(S W T). For any interaction sequeng@ndg € inners(s), we thus have
a strategy;(o, 7) on the arena of, viz. 7 if ¢ = %, ando, if ¢ playsb € rt S.

We defines xr ¢ 7 to be the following strategy:

finite traces the outer thread of every outer-Opponent-awaiting inteyacsequence
s whoseg-inner-thread is a finite trace gfo, 7) for everyq € inners(s)

divergences (1)the outer thread of everftinner-Proponent-awaiting interaction
sequences whosel-inner thread is a divergence fo, 7) and whoseg-inner
thread is a finite trace af(c, 7) for everyq € inners(s)\{/}

divergences (2)the outer thread of every outer-starved interaction secpiemose
g-inner-thread is a finite trace or infinite traceqdé, 7) for everyq € inners(s)

infinite traces the outer thread of every outer-infinite interaction segaeenhose
g-inner-thread is a finite trace or infinite traceq&, 7) for everyq € inners(s).

O

Proposition 5 Definition (6) satisfies associativity and identity laws,king G a
category. Definition (7) satisfies associativity and leftntity laws, makingS, a
left G,,-module. O

Prop. 5 is proved by the same “zipping” argument that is useéble deterministic
case; see e.g. (McCusker, 1996).

We define an identity-on-objects funct®i, : TokRen” — G, taking f to the
deterministic strategy given by renaming copycat.

Proposition 6 All compositions of the formR%S*‘BT or R£>5L>
or RL>S@>T are obtained by token-renaming alofig a

26

It immediately follows that the isomorphisms given by reiiragn

G,(R,S)xGy(R,T)=G,(R,SWT)
[[S2(RwS) =G, (R, ptc;S:)

el

are natural in? € G, and so(G,, S,) is a JWA pre-families structure. Moreover,
Fz preserves finite products on the nose. Finally, we prove .R3dpy another
zipping argument.

5.5 Enrichment

Let 7 = {I,},co be an input signature. We need to makg,,S,) into a7,-
enriched JWA judgement model. This resembles the mul&ipbo of 7', in Sect. 3.1:

we define the functiorTZSZ(R)LB;SZR to map(A, B,C) to (2). It is easy to
check thatS,(R),v,R) is anT,-algebra, and that, R is natural inR € G. We
conclude thatG,,S,,v,) is aT,-enriched JWA judgement model.

The induced operationg andinput, following the construction in Def. 7, are the
same as in Def. 6(2)—(3).

5.6 Type Recursion

Recursive types are modelled following (McCusker, 1996).dfenags: andsS, we
say thatkR C S when for everyr € R, bothr and all its ancestors are elements of
S andtp is the restriction of-g to R. We adapt this to arena familie§R; }.c; T
{S;};es when for eachi € I, we havei € J andR; C S,.

We definef to be the large cpo of countable families of arenas, ordeydd. bt is
easy to see that the functions

51@5 g2—2>¢ E—>¢

are continuous.

A type contextd denoted®] £ £”, wheren is the length of®. A type & P A

denotes a continuous functid®] e n particular, if®, X F%P¢ Aandy €
E®! then[[uX. A]y is the least fixpoint of? — [A](x, X — R).

So in the semantics we have an “equirecursive” type:

[1X.A] = [A[uX.A/X]]

27

We accordingly defin¢fold V] to be[V], and interprepm V' as fold x. M the
same way aget V' be x. M.

5.7 Statement of Adequacy

Adapting diagram (1) the statement of computational adeyisaas follows. Lel’
be a typing context, denoting the arena family; } ;. The operational semantics

gives us a functionWA(Z, Y, T) —=~7, JWA(Z, Y, T) .

The denotational semantics interprets the judgemetit by the algebra

(X7 6) dZEf H(SZRH F}/ZRl)

el

Computational adequacy for commands" M is the commutativity of

JWA(Z,Y,T) -1,)WA(Z, Y, T)
] iTZH
X 0 TZXF

This is equivalent to the commutativity of

JWA(Z,Y,T) =7,)WA(Z, Y, T) ®)
Hil iTZ(Hi)
.

for everyi € I. Explicitly, (8) says that, for any command-" M, where[M| =
(A, B, (), the strategy

[MTi = (Aippue U {1 [1T € Aermin, [T]i = (A', B',C"), 1" € A'},
(BU{Il' | IT € Asermin, [T]i = (A’, B',C"),I' € B'},
(CU{Il' [IT € Asermin, [T]i = (A, B',C"I' € C"})

is equal to[M s.

28

6 Determinism and Liveliness
6.1 Determinism

Leto = (A, B, C) be a strategy over. (It could be al/-terminable strategy, or a
strategy on an arena.) We say thas deterministiovhen

e for each Proponent-awaiting pldywhose input-awaiting prefixes are all iy
either
- | ¢ B and! has a unigue one-place extensiordinor
- [€ B and has no extension it

e each infinite tracé whose input-awaiting prefixes are all iis in C'.

Thus a deterministic strateg@y, B, C') is determined byA.
We write

e TV for the set ofr € T,V that are deterministic
e S$R for the set ofr € S, R that are deterministic
e GI'(R, S) for the set off € G, (R, S) that are deterministic at eabhe rt S.

Then T¢t forms a monad orSet, and (G&, Sg¢t, vd¢t) forms aTget-enriched
JWA pre-families structure, just like its nondetermirgstiounterpart. Moreover,
the property of determinism is preservedibyut;_, for anyo € O.

Remark 5 The monadl'$®t can be defined as a “free completely iterative monad”
using terminal coaglebras, in the manner of (Aczel et aD32Ghani et al., 2003;
Moss, 2001). Explicitly, it maps a sétto v X.(V + Ry) ., whereR is as defined

in Remark 1. 0

We obtain

[_ det

e for every deterministic terminable BLT$1, a functionM—>TgetM
e adenotational semantigs-]4t of JWA(Z, 0) in (G&*, Sg).

6.2 Liveliness

We recall that an erratic signatuké = { P, },cy is lively when P, is nonempty
for eachh € H. For such a signature, the terminable BLLSZ, Y, T') is lively,
meaning that each silent state has at least one successoefe a corresponding
notion for strategies, based on (Roscoe, 1998).

29

Definition 19 Let 0 = (A, B,C) be aV-terminable strategy, or a strategy on
arenaR, over input signature/. We say that is lively when for every Proponent-
awaiting playl whose Opponent-awaiting prefixes are allinthere is a determin-
istic strategy starting fromthat is contained iw. O

The property of liveliness is preservedinput;.; foranyo € O, and by nonempty
union. We write

e T,V forthe set ofr € T,V that are lively
e S; R forthe set ofS € S, R that are lively
e G1(R,S) forthe setoff € G,(R, S) that are lively at each € rt S.

ThenT; forms a monad o$et, and for any terminable BLT3/ over Z that is
lively, we have M i>T;/\}l .

As expected(G}, S}, %) forms aT;-enriched JWA pre-families structure. So
for any input signatureZ and lively erratic signatur@”, we obtain a model of
JWA(Z,Y) consisting of lively strategies.

The following result shows that liveliness is a sufficienthgtrictive constraint.

Proposition 7 Any lively strategyo on R over Z is a union of a nonempty family
of deterministic strategies. O

Proof Supposé€ is an infinite trace of. For every Opponent-awaiting prefikxof
[, there is a deterministic strategyl’), starting at, contained iro. We define/ (1)
to be the deterministic strategy whose finite traces aréhalProponent-awaiting
prefixes ofl, and, for eaclt, those finite traces af(!') that disagree witth imme-
diately afterl!’. Thenv(l) hasl as an infinite trace and is containeddinSimilarly
we can define () for each finite trace and divergencexfTheno is the union of
v(l) asl ranges over finite traces, divergences and infinite traces.

The family is nonempty becausemust have a finite trace or divergence (take a
deterministic strategy starting atontained irn). O

7 Proving Computational Adequacy
7.1 Weak Adequacy Results

Our desired adequacy theorem can be broken into two parts:

30

[M]i C [M]: (9)
[M]i € [M]) (10)
where(A, B,C) C (A', B’,C") meansA C A’andB C B’ andC C (.

Before we embark on our proof, we note in this section thatthes weak versions
of (9)—(10) that are trivial.

We begin with a one-step adequacy result.

Lemma?2 (1) If ' " M is silentthenM]i = Upoon [N]i.
(2) If ' =" M is o-interactive therfM[i = inputf; [M : j]i.

O

Proof This follows from the categorical structure, which valiggall thes-laws.
O

Lemma 2(1) tells us that/ ~~ M’ implies[M']i C [M]i. Hence
M ~*T implies [T7]:i C [M]i (11)
M ~*N | o implies inputj., [N :j]i C [M]i (12)
This immediately gives us a weak version of (9).
Lemma 3 LetT" =" M be a command. Suppog¥/| = (A, B,C).
(1) If I € Ajnpue thenl is a finite trace of Ms.

(2) IfIT € Awermin @and|[T]i = (A, B',C") andl’ € A’ (resp.B’,C") thenll’ is a
finite trace (resp. divergence, infinite trace) éf|:.

Proof
(1) By induction on. If [is justo, then this follows (12). If = ojl”, thenM ~~*
N | o, where[N : j] = (A", B",C"), andl” € A”. By inductive hypothesis,
" is a finite trace of N : j]i so by (12)oj!” is a finite trace of M]:.
(2) Similar induction orl, using (11)—(12).
O
Corollary 8 If I =" M, then every finite trace df)/]i is a finite trace of M]i. O

Likewise, we have a weak version of (10).

Lemma 4 Any finite trace (resp. divergence, infinite trade)f [M]i is either a

31

finite trace (resp. divergence, infinite trace) or an extemsf a divergence gf\/].
O

Proof We will construct a sequendd,, M, ... of commands in context, and a
sequencé, C [, C --- of Proponent-awaiting play$ that are prefixes of. For

eachk, we requird, = 1\ I, (i.e. the uniqué’ such thai = [,/') to be a finite trace

(resp. divergence, infinite trace) of,. Fork = 0 we set
MyEM 1hZe Hencel, =1
Having constructed/, and/,, there are 4 possibilities.
(1) M is terminal. Then the sequence ends.at

(2) My is silent. Then by Lemma 2(1), there exi$ts such thatV, ~~ M’ and
l;. is a finite trace (resp. divergence, infinite trace)0f Then we define

My €M L £, Hencely , =1,

(3) M, is o-interactive and;, = o. Then the sequence ends:at
(4) M, is o-interactive and is of the formojl”. Then we define

My EMy:j L Elgoj Hencel),,, ="

If this sequence ends in a terminal commarg, thenlx M is a terminating trace
of [M] and we are done.

If it ends in ano-interactive statel/; then! = [o is an input-awaiting trace of
[M] and we are done.

If it is infinite, definel.x to besup,cy Ik, which must be a prefix of Sincel is
finite, [,,.x Mmust be finite, sé.,., = (i for someK and we have

My~ Myyq ~ - -
Solm.x is a divergence of)M], sol extends a divergence 0F/] as required.

In the case thatis an infinite trace of M/], it is also possible thdy,., is infinite, in
which casd,,., is an infinite trace of /] and we are done. O

For a terminable BLTSM, write DF(M) for the set of states that adévergence-
freg i.e. have no divergences. We have adequacy for determjniitergence-
free commands. Fdr denoting{ R; }.<;, this amounts to the commutativity of the

7 Just output and input moves, no arena moves

32

following variant of (8), for each € 1.

[}det

DF(JWA(Z,0,T)) ——Tgt JWA(Z,), T) (13)
[[_]]detil lT%et [—]det
S%et Rz Tget %et Rz

YR,

To see this, suppos&/ € DF(JWA(Z,0,T)). Write [M]%% = (A, B,C) and
[M]eeti = (A’, B’, C"). These are deterministic, so to prove them equal, it suffices
to proveA = A’. Lemma 8 tells ust’ C A. SinceM is divergence-free, Lemma 4
impliesA C A’.

7.2 Relating Enriched Models

Our proof is going to be based on relating two JWA pre-famifiguctures enriched
in different monads. We set up the abstract structure first.

Let 7 and7’ be monads oBet, and let7 —2~7" be a monad morphism.

A mapping across from a7-enriched JWA pre-families structuf€, S,~) to a
T’-enriched JWA pre-families structufg’, S’, ') with the same objects and object
structure is a collection of functions

G(A,B) 2 (A,B) forall A,Beobg
SA—4-5'4 forallAcobG

preserving identity, both kinds of composition, productisture and- structure,
such that, for everyl € ob G, the following commutes.

TSA—4 =TS A (14)

| 2

SA <A S'A

Remark 6 More abstractly, writingS = (S,v) andS’ = (S',v), a mapping
across) can be defined to be

¢ an identity-on-objects finite-product-preserving fumctp—="=~ g’
e anatural transformatio® —>Set’S'¢, in [G”, Set”]

preserving- structure. Hereg et SLtisetT is the functor mapping @’-algebra

(X,0) to (X, (6x;0)). O

33

7.3 Hiding

Suppose that we have an input signatédre- {I,},c0. An input signature embed-
ding into Z consists of a sefv and and an injectiony —— (. Given such an
embedding, we define the input signaturéZ to be{7,,)}nen-

Our aim is to define

e amonad morphisrnget%TLle
e amapping(Gdst, Sget 4det) > (G,_1,,S,-1,,7,-1,) across,.

Thus we have to convert deterministic strategies aveto nondeterministic strate-
gies over.~!'Z. We do this by converting th@put’ operators, where € O \ .(N),
into erratic operators. This is calle¢hiding.

Remark 7 In fact, .-hiding could be defined oall strategies ove#, not just de-
terministic ones. But that is not needed for our adequacyfproo O

Let/ be al/-terminable play ove#, or a play on aren® over Z. We define a play
Hide,/ over.~!Z, the.-hiding of I, by removing froml everyo-output move, where
o € O\ «(N), and every input move that follows such an output move. Alg®,
replace every output movén), forn € N, byn.

There are several possibilities figilisted as follows.

e [awaits.(n)-input, forn € N, andHide, [awaitsn-input. (We say that awaits
t-visible input)

e (For aV-terminable play]) is terminating, and so idide,!.

(For a play on an arendawaits arena Opponent, and sadlige, /.

[either awaits-input, foro € O \ «(V), or awaits Proponent, aritide,/ awaits

Proponent.

[is infinite, andHide,! awaits Proponent. (We say thas :-starved)

[is infinite, and so i$lide, . (We say that is c-infinite.)

Leto = (A, B, C) be a deterministic strategy, eithgrterminable or on an arena,
over Z. The (-hiding of o, written Hide,o, is the strategy over'Z defined as
follows.

finite traces(1) the-hiding of everyl € A that awaits-visible input

finite traces (2) the .-hiding of everyl € A that is terminating / awaiting arena
Opponent

divergences (1)the:-hiding of everyl € B

divergences (2)the:-hiding of everyl € C that is.-starved

infinite traces the.-hiding of everyl € C that isc-infinite.

34

Remark 8 An input signature embeddingy —— O is lively when for eachy €
O\ ((N), the set/, is nonempty. If. is lively, then:-hiding preserves liveliness of
strategies. O

We thus have functions

Tdety oV T,V for every set/’
Sdetp ol S 1 R for every arena?
det(R, S)— G | (R,S) for arenasi, S

where the first two are justide, and the third mapsz*f>s to\b € rt S. (Hide,(f3)).
It can be verified thad, is a monad morphism angl is a mapping across, as re-
quired. The only non-trivial part is proving that preserves composition; this is
proved by a zipping argument in Sect. 7.4. We also have

Hideb(inputgg})oai) =inputj; Hide,o; forn e N (15)
Hide, (input}.; 0;) = | J Hide,o; foroe O\ «(N) (16)

i€l,

SinceHide, commutes with renaming alongBokRen-morphism R—1~g9, the
following commutes:

det

op F e
TokRen = gg ‘

7.4 Hiding Preserves Composition

Let N—— (O be an input signature embedding infto= {/,},co. We wish to
show that:.-hiding preserves composition; specifically, that for a®R, S, T we
have

HideL(a XR,ST T) = (Hideba) XRST (HideLT) (17)
foranyo € G,(R,S)andT € S,(SwT). This is proved using the same kind of
“zipping” argument that is used to prove associativity. Ui we have omitted the
other zipping proofs, we give this one in detalil.

Define A to be the pointed cpo of plays over' Z on R & T, ordered by extension.
Define B to be the pointed cpo of interaction sequences aven R, S, T, ordered
by extension. Defin€’ to be the poset of pairs:, v), where

35

e 1 is an interaction sequence overZ on R, S, T
e v associates, tg € inners(u) in u, a playv(q) over Z on the arena of whose
t-hiding is theg-thread ofu.

The ordering makegu,v) < (uv/,v") whenu is a prefix ofu’ and, for everyy €
inners(u), the playv(q) is a prefix of the play’(q). We note that, irC', if (u,v) <
(u’,v") then precisely one of the following hold.

(1) » awaits outer-arena-Opponent; then for each inners(u), the :-hiding of
v(q) awaits arena-Opponent and s@) awaits arena-Opponent. Henee<
u' (because(q) < v'(¢q) impliesu < u’).

(2) v awaitsn-input (wheren € N) in thread; then the:-hiding of v(1) awaitsn-
input, sov(l) awaitsc(n)-input; and for each inner thread-name inners(u)\
{1}, thec-hiding of v(¢) awaits arena-Opponent sg;) awaits arena-Opponent.
Henceu < ' (because(q) < v'(¢q) impliesu < u’).

(3) w is infinite; then for eacly € inners(u), the -hiding of v(¢) awaits arena-
Opponent and so(q) awaits arena-Opponent. Hence< «’ (because(q) <
v'(q) impliesu < u')—impossible.

(4) u awaitsl-inner-Proponent; then for eaghe inners(u) \ {l}, the .-hiding
of v(¢q) awaits arena-Opponent and s@;) awaits arena-Opponent. Hence
v(l) < V(1) (because: < u' impliesuv(l) < v'(1), andv(q) < v'(q) implies
u < u'if g € inners(u) \ {l}). Sowv(l) is finite, and since the-hiding of
v(l) awaits Proponenty(l) either awaits Proponent or awaitsnput for some
0€ O\ (N).

In particular, we see that and everyv(q) must be finite. So every element ©f
with infinitely many predecessors is maximal.

We construct a commutative diagram:

N

R

B C

Here,

e ¢ maps an interaction sequenct the-hiding of its outer thread

e ¢’ maps(u,v) to the outer thread af

e f maps an interaction sequenct (u, v), whereu is the:-hiding of s, andv(q)
is theg-inner thread ob (using the correspondence betweenfh@otmoves in
s and those in).

Clearly these are strict continuous maps and clearly theralimagommutes. The
function f is strictly monotone, because every movesiappears somewhere in
f(s). We show that ifs € B and(v/,v") € C and f(s) < («/,?'), then the set
{t € B|s < t, f(t) < (v/,v")} has a least elemest by an extensive case analysis.

36

For example: iff(s) = (u,v) is of the form (1), thers is awaiting outer-arena-
Opponent. We know thatm < «/, andm playsn «» r. Suppose: € R. Thenn

is a Proponent-move in some threlad inners(u). Hence(Hide,v(l))(n v r) C
Hide,v'(1), sov(l)(n v~ r) C /(). Puts’ = s(n v r); thenf(s') = (u”,0")
whereu” = u(n v« r) andv”(l) = v(l)(n v r) andv”(q) = wv(q) for every

q € inners(u) \ {l/}. Hencef(s") < («/,v'), as required. Iff(sm’) < (v/,v'),
thenm’ must appear in/, so must bex .~ r. Hences’ is the least element of
{t € B|s < t, f(t) < (v,v")}. The case where € T, and all the other cases, are
similar.

For an elementu, v) of C, define the maximal sequence
Sp <81 <S8y <---€B (18)

such thats; is the uniqueB-element of lengthi whose f-image is< (u,v). This
is defined by inductions, = ¢, and if f(s;) < (u,v) thens;; is the least element
of {t € Bls; < t, f(t) < (u,v)}. If (18) ends ins,, thenf(s,) = (u,v). If (18)
is infinite, sets., to be| |y si, then f(s,) < (u,v). But f(s«) has infinitely
many predecessors, so it is maximal. Thus, in either casehaves such that
f(s) = (u,v). If f(s') = (u,v), then every finite prefix of’ appears in (18), so
s’ < s, and, sincef is strictly monotonics’ = s. Thusf is a poset isomorphism.

Now suppose we are givenc G, (R, S) andr € S,(SWT). Lett be a Proponent-
awaiting play over~'Z on Rw T'. Thent is a divergence of, (o x 7) iff ¢t = g(s),
for somes € B such that (condition 1)

e s awaits/-Proponent, itg-thread is a divergence &fo, 7), and theg-thread ofs
is a finite trace ofj(o, 7) for eachg € inners(s) \ {{}, or
e sisinfinite, and every inner threadss a finite trace or infinite trace af(o, 7).

And t is a divergence ofo \ Z') x (7 \ Z') iff t = ¢'(u,v), for some(u,v) € C
such that (condition 2)

e v awaitsi-Proponenty(l) is a divergence of(o, 7), andwv(q) is a finite trace of
q(o,) for eachg € inners(u) \ {l}

e v awaits/-Player,v(l) is an infinite trace of(o, 7), andq(l) is a finite trace of
q(o, 1) for eachg € inners(u) \ {i}

e v is infinite, andv(q) is a finite trace or infinite trace aof(o, 7) for eachq €
inners(u).

Any s € B satisfies condition 1 ifff(s) satisfies condition 2, so the two sides of
(17) have the same divergences. By a similar but easier arguthey have the
same finite traces and infinite traces.

37

7.5 Unhidings

In the next section, we shall look at anhiding transfornfrom a nondeterministic
calculus to a deterministic one. In this section, we lookatdssential features such
a transform ought to have.

Definition 20 Let M be a BLTS over~!Z and letAM’ be a deterministic BLTS
over Z. A function M —f>/w is anunhidingwhen, for every staté € M, we
have the following.

e If dis terminal thenf(d) is terminal.

e If d is n-interactive, forn € N, then f(d) is «(n)-interactive, andf(d) : i =
f(d:i)forallic I,,.

e If dis silent then there exists (necessarily unique) M’ ando € O\ «(L) such
that f(d) ~* e | o, and furthermore

{eriliely}={f(d)|d—d}
O

Lemma5 Let M be a BLTS over—'Z and let M’ be a deterministic BLTS over
Z. Let M*fw\/(’ be an unhiding, so it restricts to a functiggy *f>/\‘4/ . Then
the range off is contained irDF(AM'), and the following diagram commutes.

M—7 M

fl i&f

DF(M') ——=Tg M’

7.6 Adequacy Via Unhiding
Given an input signaturg = {I,},co and an erratic signaturé = { P, } ey, we
want to prove the adequacy &8VA(Z,Y"), using the tools we have developed.

We define the input signaturg to be Z extended withy” and a unary” operator.
Formally itis{I’},cos defined as follows. The indexing set@ = O + H + {v'}.

We write 0 —4=¢’ and H —“> ()’ for the embeddings. We defidgo) to bel,
(for o € O), we definel;, to be P, (for h € H), and we defing, to be singleton.

We note that is an input signature embedding inf6, giving. 12’ = Z.

38

I M I " (M)

let V bex. N let u(V) be x. v.u(N)
pm V as {(i,x). M, }ier|pm u(V) as { (i, x). v .u(M,;) }ier
pm V as (x,y).M pmnu(V) as (x,y).v .u(M)
VW u(V)u(W)
pmnV as foldx.M | pmu(V)as foldx.v.u(M)

choose" (My}yep, | input’®{u(My)}er,
input®{Mi}ier, input"®{u(M;) }ier,
I'V:B ' wu(V): B
X X
(&, V) (i, u(V))
(V,v') {u(V), u(V"))
Ax. M Ax. v u(M)
foldV fold u(V)

Fig. 6. The unhiding transform

Remark 9 If the erratic signatur&” is lively, then the input signature embedding
is lively in the sense of Remark 8. O

We will define two transforms. Thaiding transformh is from JWA(Z', () to
JWA(Z,Y). This consists of

e removing every occurrence of
e replacing every occurrence ofput’ "), whereh € H, by choose”
e replacing every occurrence oiput'®, whereo € O, by input®.

This transform exactly corresponds:thiding on the semantics.

Lemma 6 Let M be a JIWA term (command or value). ThEr{M)] = Hide, [M].
O

Proof Straightforward induction, using the fact théitle, preserves all categorical
structure, and (15)—(16). O

We next define amnhiding transformu from JWA(Z,Y") to JWA(Z', (). This is
shown in Fig. 6.

39

Lemma 7 For any termV/ (command or value) ofWA(Z,Y"), we haveh(u(M)) =
M (syntactic identity). O

The syntactic properties of unhiding are as follows. Thfeing lemma gives the
operational properties of the unhiding transform.

Lemma 8 (1) The unhiding transformation preserves renaming andtgubon.
In particular,u(M[V/x]) = u(M)[u(V)/x]
(2) Forany command " M in JWA(Z,Y),
e if M is terminal then()M) is terminal
e if M is silent and not of the fornehoose’. , M, then M has a unique
successof/’ andu(M) is silent with unique successat.u(M').

O
Corollary 9 w is an unhiding from/WA(Z,Y) to JWA(Z', 0). O
We now have everything in place to prove (8), by means of thgrdm
JWA(Z,Y,T) E T,JWA(Z,Y,T)
u ou
__]det N
DF(JWA(Z, 0, T)) = 1dst \WA (27, 0, T)
[-1e [[]]detl-i nge,t[[_]]deti T,[-1i
de det Qde
SzltRi ’dee,tRZ‘ TzltS /tRi
eR; m
SZR’L 'YZRi TzszRi
(19)

The top part of (19) is an instance of Lemma 5. The central isaan instance
of diagram (13). As stated in Sect. 74,is a mapping acros§,, in particular
satisfying (14), which gives us the lower part.

The right part of (19) is obtained by applyig horizontally to the left part, and
restricting to terminal commands. So only the left part revm&o be proved. It is

40

given by
JWA(Z,Y,T) (20)

id ¢

JWA(Z,Y,T)<—DF(JWA(Z',),T))

[Hdetii

[-1: SER;

where the top part of (20) is Lemma 7 and the bottom part is Lar6mAlterna-
tively the left part of (19) can be proved directly by indwetj avoiding the need to
definenh.

7.7 Empty Signatures

We briefly discuss what this adequacy argument reduceshe icetse of a language
that has no 1/O, i.e. where the input signatures empty. In particular

e the monadljisV — P(Vy)
e the monadly isV — P* (V)
e the moand/jtisV — V,

If, moreover, the erratic signatuté is empty, so that the language is deterministic
as in McCusker (1996), thei’ consists of a single unary operatsr SoTSst is

V +— N x V 4 {o0o}. In this situation, the unhiding transform merely adds &or
each transition, ensuring that the translation of evemytsrnon-divergent.

This gives a considerably simpler adequacy proof than tteatigeed in (McCusker,
1996), which uses the relational technique of (Pitts, 19B6) each method has its
advantages: only the unhiding proof works for models of itditrace equivalence,
and only the relational proof works for domain models.

8 The meaning of a non-lively language
8.1 Omni-errors

A valid implementation of an imperative language must ei@@ach primitive
command, such gsrint or choose, within a finite time. An implementation that
tarries forever while executing a command is incorrect.réfuge, a language built

41

from a non-lively erratic signature cannot be implemengejt contains a com-
mand “erratically choose an element of the empty set”, whanmot be executed.

Nevertheless, such a languag@n be given operational meaning, using the concept
of omni-errors as we now explain.

Take any programming language, e.g. Java.lLee a set, whose elements we call
“‘omni-errors”. Definelava; to be the following nondeterministic language:

¢ the syntax is that of Java
¢ the operational semantics is that of Java, except that agram, at any time, is
allowed to throw any: € U, i.e. to outputz and terminate.

Note thatJavay is Java.

Since omni-errors can be thrown bgyterm, they do not affect (any notion of) ob-
servational equivalence. For this reason, the denotdtibeary of Java;; is exactly
the same as that of Java. So thelgae$ denotationally immaterial.

If U is nonempty, then the extension &dfva;; with an empty choice command
can be given operational meaning: to execute empty chaioglys choose some
omni-erroru € U and throw it. We accordingly say that an erratic signatdrgr

a terminable BLTS, or a strategy, or an input signature emhbgglds lively with
respect toa setU of omni-errors when eitheY’ is lively or U is nonempty. This
means that a language that teth omni-errors provided by and erratic choice
provided byY is operationally meaningful.

8.2 Finite traces and infinite trace equivalence

Recall the calculu€ (A, YY) from Sect. 2.1. We write€;;(.A, Y') for the extension
with a setU of omni-errors.

For a closed termi/ in L(A,Y), let A, B andC be the sets of finite traces, diver-
gences, and infinite traces of, respectively. We define

[M]= (4, B.C)
[M]y = (A x U, B, C) for any setl/ wrt whichY" is lively

If Y is lively wrt U, then[M] is the set of possible behaviours &f in the (oper-
ationally meaningful) calculug (A, Y'), becausé/ can

e print somel € A, then throw some € U
e print somel € B, then diverge
e printsomel € C.

42

Proposition 10 Let Y be an erratic signature lively wrt a st of omni-errors.
Then the kernel of—]; and the kernel of—|, as equivalence relations on closed
terms inL(A,Y), are the same. O

This justifies defining “infinite trace equivalence” @i{.A,Y") to be the kernel of
[], as we do in Sect. 2.1.

9 Further Work: General References

The adequacy proof above should be adapted to general meésréAbramsky
et al., 1998), but this seems likely to go through smoothlytfrermore, when gen-
eral references are added to JWA, the results of (Abramshy,,e1998) ought to
give definability and full abstraction results.

Adapting Prop. 7, it appears that any lively strategy is @ddia in the presence of
continuum choice. (This assumes that the input signdfusscountable.) A variant
for general (non-lively) strategies should be straighfand.

For full abstraction, we conjecture that distinct stragsgoverZ can be distin-
guished by a strategy oveéf + {v'}, wherev is a unary operator. However, the
semantics for a fixed input signaturemight not be fully abstract.

References

Abramsky, S., 1983. On semantic foundations for applieathwultiprogramming.
In: Diaz, J. (Ed.), Automata, Languages and Programming, 10tlodiaolm.
Vol. 154 of LNCS.

Abramsky, S., Honda, K., McCusker, G., 1998. A fully abstiganine semantics for
general references. In: Proceedings, 13th Annual IEEE $gam on Logic in
Computer Science. pp. 334-344.

Abramsky, S., McCusker, G., 1998. Call-by-value games. Ield¢n, M., Thomas,
W. (Eds.), Computer Science Logic: 11th International WhdgsProceedings.
LNCS. Springer, pp. 1-17.

Aczel, P., Admek, J., Milius, S., Velebil, J., 2003. Infinite trees andnptetely
iterative theories: a coalgebraic view. Theoretical Corap&cience 300 (1-3),
1-45.

Brookes, S., 2002. The essence of Parallel Algol. Inforrmatind Computation
179.

Broy, M., 1986. A theory for nondeterminism, parallelismjrcaunication, and
concurrency. Theoretical Computer Science 45, 1-61.

Cattani, G. L., Winskel, G., 2003. Presheaf models for CCSHikguages. Theo-
retical Computer Science 300 (1-3), 47-89.

43

Escard, M., 1998. A metric model of PCF, unpublished research note.

Ghani, N., Liith, C., Marchi, F. D., Power, J., 2003. Dualising initialelhgas. Math-
ematical Structures in Computer Science 13 (2), 349-370.

Harmer, R., McCusker, G., 1999. A fully abstract game semaifdicfinite nonde-
terminism. In: 14th Symposium on Logic in Comp. Sci. IEEE.

Hasegawa, M., 1997. Models of sharing graphs :—a catedgsgoaantics of let and
letrec. Ph.D. thesis, University of Edinburgh.

Hyland, J. M. E., Ong, C.-H. L., 2000. On full abstraction faZ/ I, Il, and III.
Information and Computation 163 (2).

Jonsson, B., 1994. A fully abstract trace model for dataflod/asynchronous net-
works. Distributed Computing 7 (4).

Lassen, S. B., Levy, P. B., 2007. Typed normal form bisimufatla: Duparc, J.,
Henzinger, T. (Eds.), Proc., 23rd Conf. on Comp. Sci. and Logpt 4646 of
LNCS.

Levy, P. B., 2004a. Call-By-Push-Value. A Functional/ImpemSynthesis. Se-
mantic Struct. in Computation. Springer.

Levy, P. B., April 2004b. Infinite trace semantics, Proc., ARPSEM Il Workshop,
Tallinn, Estonia.

Levy, P. B., 2005. Adjunction models for call-by-push-valugh stacks. Theory
and Applications of Categories 14, 75-110.

Levy, P. B., 2006a. Call-by-push-value: Decomposing callsalpe and call-by-
name. Higher-Order and Symbolic Computation 19 (4), 377-414

Levy, P. B., 2006b. Infinite trace equivalence. In: Proc.t 2. Conf. in Mathe-
matical Foundations of Comp. Sci., Birmingham, UK, 2005. Ngb ih ENTCS.

McCusker, G., 1996. Games and full abstraction for a funefioretalanguage with
recursive types. Ph.D. thesis, University of London.

Mggelberg, R., Simpson, A., 2007. Relational parametri@tycomputational ef-
fects. In: Proceedings, 22nd IEEE Symposium in Logic in Cap&cience.
IEEE Computer Society, pp. 346—355.

Moggi, E., 1991. Notions of computation and monads. Infdromeand Computa-
tion 93.

Moss, L. S., 2001. Parametric corecursion. Theoretical Caengcience 260 (1-
2), 139-163.

Nickau, H., 1996. Hereditarily Sequential Functionals: An@-Theoretic Ap-
proach to Sequentiality. Shaker-Verlag, diss., Univatsteesamthochschule
Siegen.

Panangaden, P., Russell, J. R., 1989. A category-theoratargies for unbounded
indeterminacy. In: Proceedings, 5th Conference on Matheal&toundations of
Programming Semantics, New Orleans. Vol. 442 of LNCS. pp-339.

Pitts, A. M., 1996. Relational properties of domains. Infatron and Computation
127.

Plotkin, G., 1983. Domains, prepared by Y. Kashiwagi, H. §oimand T. Hagino.

Plotkin, G., Power, J., 2002. Notions of computation deteenmonads. In: Pro-
ceedings, Foundations of Software Science and Computatiaot&es, 2002.
Vol. 2303 of LNCS. Springer, pp. 342-356.

44

Plotkin, G. D., Power, A. J., 2001. Adequacy for algebrafe@t. LNCS 2030.

Plotkin, G. D., Power, A. J., 2003. Algebraic operations gederic effects. Ap-
plied Categorical Structures 11 (1), 69-94.

Roscoe, A. W., 1998. Theory and Practice of Concurrency. ieeshtall.

Roscoe, A. W., July 2004. Seeing beyond divergence, prasait8CS FACS
meeting “25 Years of CSP”.

Streicher, T., Reus, B., 1998. Classical logic, continuatemantics and abstract
machines. Journal of Functional Programming 8 (6), 543-572

45

