
Infinite Trace Equivalence

Paul Blain Levy

University of Birmingham, U.K.

Abstract

We solve a longstanding problem by providing a denotational model for nondeterministic
programs that identifies two programs iff they have the same range of possible behaviours.
We discuss the difficulties with traditional approaches, where divergence is bottom or where
a term denotes a function from a set of environments. We see that making forcing explicit,
in the manner of game semantics, allows us to avoid these problems.

We begin by modelling a first-order language with sequential I/O and unbounded non-
determinism (no harder to model, using this method, than finite nondeterminism). Then we
extend the model to a calculus with higher-order and recursive types, byadapting standard
game semantics. Traditional adequacy proofs using logical relations are not applicable, so
we use instead a novel hiding and unhiding argument.

Key words: nondeterminism, infinite traces, game semantics, Jump-With-Argument

1 Introduction

1.1 The Problem

Consider the following call-by-name1 language of countably nondeterministic com-
mands with recursion:

M ::= x | print c. M | rec x. M | choose n∈N. Mn

wherec ranges over some alphabetA. We define binary nondeterminismM or M ′

from countable in the evident way. We define

div
def
= rec x. x choose⊥n∈N. Mn

def
= div or choose n∈N. Mn

Email address:pbl@cs.bham.ac.uk (Paul Blain Levy).
URL: www.cs.bham.ac.uk/˜pbl (Paul Blain Levy).

1 Meaning that an identifier gets bound to an unevaluated term.

Preprint submitted to Elsevier Science 22 November 2007

A closed term can behave in two ways: to print finitely many characters and then
diverge, or to print infinitely many characters. Two closed terms are said to be
infinite trace equivalentwhen they have the same range of possible behaviours. To
illustrate this very natural notion of equivalence, consider the following properties
that appear in the specification for a program called PROG.

safety PROG must not kill the customer.
liveness PROG must (eventually) greet the customer.
conditional liveness If PROG insults the customer, it must (eventually) apologize.
infinite liveness PROG must (eventually) stop insulting the customer.

If we know PROG’s infinite trace equivalence class—i.e. its range of behaviours—
then we know which of these conditions are satisfied.

As stated2 in (Plotkin, 1983), “we [. . .] desire a semantics such that [aterm’s deno-
tation] is the set of tapes that might be output”, i.e. a modelwhose kernel on closed
terms is infinite trace equivalence. Some models of nondeterminism, such as the
various powerdomains (Plotkin, 1983) and “Seeing Beyond Divergence” or SBD
semantics (Roscoe, 2004), identify programs that are not infinite trace equivalent,
so they are too coarse. In particular, they cannot identify whether a program sat-
isfies all four of the above conditions. Other styles of semantics count the internal
manipulations (Brookes, 2002; Escardó, 1998) or include branching-time informa-
tion (Abramsky, 1983; Cattani and Winskel, 2003; Panangadenand Russell, 1989),
so they are too fine (at best) for this problem.

In this paper, we provide a solution, and see that it can be used to model not only
the above language, but also unbounded nondeterminism, interactive input, and
higher-order, sum and recursive types. Our model is a form ofpointer game seman-
tics (Hyland and Ong, 2000), although the technology of pointer games is needed
only for the higher-order types. This gives a good illustration of the power and
flexibility of game semantics.

Proving the computational adequacy of the model incorporating higher-order, sum
and recursive types presents a difficulty, because the traditional method, using a
logical relation, is not applicable to it. So we give, instead, a proof that uses the
method ofhiding. As a byproduct, we obtain a very simple proof of the adequacy
of the game model of FPC (McCusker, 1996).

2 Although this quotation appears within a discussion of a calculuswithout recursion, the
point it makes is a general one.

2

1.2 Why Explicit Forcing?

Before turning to our solution, we consider two kinds of semantics that have been
studied.

(1) A divergence-leastsemantics is one where a term denotes an element of a
poset, every construct is monotone, anddiv denotes a least element⊥. Ex-
amples are the Hoare, Smyth and Plotkin powerdomain semantics (Plotkin,
1983), all the CSP semantics in (Roscoe, 1998), and the game semantics
of (Harmer and McCusker, 1999). Divergence-least semanticscannot model
infinite trace equivalence, by the following argument takenfrom (Plotkin,
1983). Let us say that♣ is an insult and♥ is an apology. Put

M
def
= div or (print ♣. print ♥. div)

M ′ def
= div or (print ♣. div) or (print ♣. print ♥. div)

Then

M = div or div or (print ♣. print ♥. div) 6 M ′

M = div or (print ♣. print ♥. div) or (print ♣. print ♥. div) > M ′

HenceM = M ′, contradicting infinite trace equivalence. Moreover, ifM in-
sults the customer, then it must apologize, but this is not true ofM ′. Therefore,
divergence-least semantics cannot verify conditional liveness properties—by
contrast with the SBD semantics presented in (Roscoe, 2004), which can.

(2) A well-pointedsemantics is one where (roughly speaking) a term denotes
a function from the set ofenvironments. Examples are the 3 powerdomain
semantics (Plotkin, 1983), all the CSP semantics in (Roscoe, 1998), the se-
mantics using infinite traces in (Brookes, 2002), and SBD semantics (Roscoe,
2004). In general, well-pointed semantics are appropriatefor equivalences sat-
isfying thecontext lemmaproperty: terms equivalent in every environment are
equivalent in every context. However, infinite trace equivalence does not sat-
isfy this property. Suppose thatA contains just one character♣, and consider
the following two terms3 involving x.

N
def
= (choose⊥n∈N. (print ♣.)n div) or x

N ′ def
= (choose⊥n∈N. (print ♣.)n div) or print ♣. x

3 discovered by A. W. Roscoe in 1989 [personal communication], and independently
in (Levy, 2004b).

3

On the one hand,N andN ′ are infinite trace equivalent in every environment:

closed term N [M/x] N ′[M/x]

can print♣n then diverge yes yes

can print♣ω iff M can print♣ω iff M can print♣ω

On the other hand, they are not contextually equivalent:

closed term rec x. N rec x. N ′

can print♣n then diverge yes yes

can print♣ω no yes

and so any model of infinite trace equivalence must distinguish them. In par-
ticular,rec x. N must stop insulting the customer, but that is not the case for
rec x. N ′. Thus a semantics that identifiesN andN ′, such as cpo-enriched
semantics (Abramsky, 1983) and SBD semantics (Broy, 1986; Roscoe, 2004),
cannot verify infinite liveness.

(Lest the reader think unbounded nondeterminism is to blame, note that if
we allow recursion overN-indexed families of commands, we can express
choose⊥n∈N.Mn as(rec fλn∈N. (Mn or f(n+1)))0. So finite nondetermin-
ism suffices to make this example.)

A naive way of distinguishingN andN ′ is to say thatN ′ is able to print a tick and
then force (i.e. execute)x, whereasN is not:

term involvingx N N ′

can print♣n then diverge yes yes

can print♣ω no no

can forcex yes no

can print♣ then forcex no yes

can print♣n+2 then forcex no no

And that gives our solution.

This idea, that a model of call-by-name should make explicitwhen a program forces
its (thunked) argument, is present—often implicitly—in game semantics, where (as
argued in (Levy, 2004a)) “asking a question” indicates forcing a thunk. That is why
our solution fits into the game framework. However, the game models in the liter-
ature are divergence-least, and this property is exploitedby adequacy proofs using
logical relations. This is even true of the nondeterministic model of (Harmer and

4

McCusker, 1999), where strategy sets are quotiented by the Egli-Milner preorder
and so they become cpos. The novelty of this paper is that it avoids such quotient-
ing.

Consider, for example, the two (call-by-name) terms

P = λx.(div or if x then (if x then true else true) else true)

P ′ = λx.(div or (if x then div else true)

or if x then (if x then true else true) else true)

of typebool → bool. In (Harmer and McCusker, 1999), these terms have the same
denotation, and indeed are observationally equivalent formay and must testing. But
if we add printing to the language, then we can place these terms in the ground
context

C[·] = [·](print ♣. true)

Now C[P] andC[P ′] may print♣ and then diverge, whereasC[P] cannot. There-
fore, from the viewpoint of infinite trace equivalence,P andP ′ must have different
denotations.

1.3 Structure Of Paper

We adapt the language of Sect. 1.1 in three stages.

Firstly, in Sect. 2.1, we bring in erratic (aka internal) choice operators of arbitrary
arity.

Secondly, in Sect. 2.2, we addinteractive input, which is one of the computational
effects studied in (Moggi, 1991) and is illustrated in Fig. 1. This is where a program
does not take input silently from a stream, but first prints a message requesting
input, and then waits until it is supplied.

In Sect. 2.5, we give a denotational semantics for this language; no sophisticated
game techniques are required at this stage.

The third adaptation, in Sect. 4, moves to a language with higher-order and recur-
sive types. In (Levy, 2006b), this was done as an extension ofthe call-by-name
language. But giving game semantics directly for a call-by-name calculus is com-
plicated, so in this paper we use the calculus that (as arguedin (Levy, 2004a))
makes game semantics easiest: Jump-With-Argument (JWA), acontinuation pass-
ing calculus. The game semantics of (Abramsky et al., 1998; Hyland and Ong,
2000; Nickau, 1996) is presented for JWA in (Levy, 2005); in this paper we merely
adapt that model to include nondeterminism, interactive input and infinite trace
equivalence.

5

A program in BASIC

10 INPUT "Hello. Enter your name (a string):" name$

20 INPUT "Enter your age (an integer):" age

30 IF age >= 18 THEN INPUT "Enter your address (a string):" d$

A nondeterministic program—states marked “•” make an erratic choice

"What gender are you? (male/female)"

male

"What gender are you? (male/female)"

"Goodbye."

"What class are you travelling? (business/standard/economy)"

economy

standard

business

female

male

female

Initial State

"Hello. (Hit SCROLL to continue)"

SCROLL

Fig. 1. Two programs illustrating interactive input

The usual adequacy proof for game semantics uses logical relations (McCusker,
1996; Pitts, 1996), but that only works for divergence-least semantics, which ours
is not. Instead, we prove adequacy using a novel method. The idea is that it is easy
to prove adequacy for deterministic, divergence-free terms; and every term can be
converted into such a term using an “unhiding” transform, which makes every step
of execution visible. That gives a highly extensional semantics, from which we
can recover the desired semantics by hiding all these visible steps. We then deduce
adequacy for each term from the known adequacy for its unhiding.

6

1.4 Diagrammatic Statement of Computational Adequacy

There is a diagrammatic description of adequacy that will beuseful for our pur-
poses. Take PCF for example. WritePCF(B) for the set of closed terms of type
B, and `PCF(B) for the set of such terms that are terminal (where evaluationtermi-
nates). The operational semantics of PCF provides, for each typeB, a function

PCF(B)
⇓B // T `PCF(B)

whereT is thelifting monadonSet that adds an extra element⊥.

In any particular model of PCF, the denotation of the judgement ⊢ B will be a T -
algebra(XB, θB), i.e. a pointed set. Thus each term⊢ M : B denotes an element
[[M]] ∈ X. Computational adequacy amounts to the commutativity of thefollowing,
for each typeB.

PCF(B)
⇓B //

[[−]]

��

T `PCF(B)

T [[−]]

��

XB TXBθB

oo

(1)

This says that ifM ⇓ T then[[M]] = [[T]] and ifM diverges then[[M]] = ⊥.

For languages with other computational effects4 , such as nondeterminism and I/O,
this notion of adequacy is still a reasonable one, althoughT will be not lifting but
some other (inclusion-preserving) monad onSet appropriate to those effects.

1.5 Related Work

An infinite trace model fordataflow networks—including feedback, but not recursion—
was presented in (Jonsson, 1994), and shown fully abstract.In the terminology
of (Hasegawa, 1997), it forms acartesian-centre traced symmetric monoidal cate-
gory. Although it is shown in (Hasegawa, 1997) that such a category, if centrally
closed, can be converted into a kind of recursion, that is not usefulhere because
Jonsson’s model is not centrally closed. (Nor, for that matter, is its finite trace vari-
ant.)

Adequacy of cpo-enriched semantics in the presence of algebraic effects (such as
interactive input and erratic nondeterminism) is studied in (Plotkin and Power,
2001). The form of the operational semantics resembles our unhiding transform
in that each operation (in particular, erratic choice) is made into an explicit action.

4 other than control effects, for which this formulation does not make sense

7

Acknowledgements

I thank Mart́ın Escard́o and Guy McCusker—both of whom showed me adequacy
proofs that count execution steps—and Russ Harmer and Bill Roscoe.

2 First-Order Language

2.1 Erratic Choice

The language of Sect. 1.1 contained an erratic choice operator choose of arity
N. In this section, we generalize this by having an entire family of erratic choice
operators{chooseh}h∈H where the arity ofchooseh is given by a setPh.

We thus define anerratic signatureto be a family of setsY = {Ph}h∈H . Such a
signature, together with an alphabetA, determines a calculusL(A, Y) with syntax

M ::= x | print c. M | rec x. M | chooseh{Mp}p∈Ph

wherec ranges overA, andh ranges overH, ande ranges overE. The command
chooseh{Mp}p∈Ph

means: erratically choose somep ∈ Ph, then executeMp.

A signature in whichPh is non-empty for everyh ∈ H is said to belively. Accord-
ing to the explanation just given, the calculus does not makecomputational sense
if the erratic signature is not lively. Nonetheless, we willconsider both lively and
non-lively signatures in this paper; we justify studying the latter in Sect. 8.1.

LetY be an erratic signature andA an alphabet. For each contextΓ = x0, . . . , xn−1,
we define a terminable5 LTS L(A, Y, Γ) with labelsA + {τ}. Its states are the
termsΓ ⊢ M built usingY andA, and its terminal states are the free identifiers.
The transitions are

rec x. M
τ

M [rec x. M/x]

chooseh{Mp}p∈Ph

τ

Mp̂ (p̂ ∈ Ph)

print c. M
c

M

For a closed termM , we say that

5 A terminable LTSis a labelled transition system (LTS) in which some states are desig-
nated terminal, and there is no transition from a terminal state.

8

• a0, . . . , an−1 ∈ A∗ is afinite traceof M when M
τ∗a0τ∗···τ∗an−1 ///o/o/o/o/o/o/o/o/o/o/o N for some

N
• a0, . . . , an−1 ∈ A∗ is adivergenceof M when M

τ∗a0τ∗···τ∗anτω
///o/o/o/o/o/o/o/o/o/o/o

• a0, a1, . . . ∈ Aω is aninfinite traceof M when M
τ∗a0τ∗a1··· ///o/o/o/o/o/o/o/o/o/o/o

We say that two closed termsM,M ′ are infinite trace equivalentwhen they have
the same finite traces, divergences and infinite traces. If the erratic signature is
lively (the main case of interest), then the finite traces areredundant because they
are precisely the finite prefixes of the divergences and infinite traces. We defer to
Sect. 8.2 the justification for including the finite traces inthe non-lively case.

The finite traces, divergences and infinite traces of anopentermΓ ⊢ M are defined
the same way. We also say thata0, . . . , an−1, x is a terminating traceof M when

M
τ∗a0τ∗···τ∗an−1 ///o/o/o/o/o/o/o/o/o/o/o x . Two termsΓ ⊢ M,M ′ are infinite trace equivalent when

they have the same finite and terminating traces, divergences and infinite traces. As
we shall see in Sect. 2.5, this is a congruence and can be modelled denotationally.

2.2 Interactive Input

For the second extension (see Sect. 1.3), we consider interactive input (Fig. 1). We
want to have a family of interactive input operators{inputo}o∈O. Eacho ∈ O is
a message that requests input from the setIo. We thus define aninput signatureto
be a family of sets{Io}o∈O. Given an input signatureZ = {Io}o∈O and an erratic
signatureY = {Ph}h∈H , we obtain a calculusL(Z, Y) with syntax

M ::= x | rec x. M | chooseh{Mp}p∈Ph
| inputo{Mi}i∈Io

whereh ranges overH, ando ranges overO. (We are not includingprint explic-
itly, as we explain presently.)

The commandinputo{Mi}i∈Io
has the following meaning:

(1) printo
(2) wait until the user inputs somei ∈ Io

(3) executeMi

If the user never supplies input, the program will wait forever.

Two cases of input operator are of special interest: unary and nullary.

• WhereIo is singleton, the commandinputo{M} prints o, waits for a speci-
fied input (the user hitting a SCROLL button, let us say), and then continues to
executeM . This isslightlydifferent fromprint o. M , which executesM imme-
diately after printingo. However, for the purposes of this paper, we regard them

9

as the same thing; therefore noprint primitive is required in the calculus.
• WhereIo is empty, the commandinputo{} simply prints the messageo, and

nothing further can happen. In effect, this command throws an unrecoverable
error, ando is the error message.

Remark 1 Interactive input using input signatureZ = {Io}o∈O is an example of
a computational effect(Moggi, 1991; Plotkin and Power, 2002), represented as
a monad onSet, viz. the free monad on the endofunctorRZ on Set defined by
X 7→

∑
o∈OXIo . Explicitly, this monad maps a setV to µY.(V + RZY).

Three monads appearing in (Moggi, 1991) are special cases ofthis, following (Plotkin
and Power, 2002).

• The interactive input monadV 7→ µY.(V + Y I) arises from the input signature
with one operator of arityI.

• The interactive output monadV 7→ A∗ × V arises from the signature withA
unary operators.

• The exceptions monadV 7→ V + E arises from the signature withE nullary
operators.

2

2.3 Operational Semantics of Interactive Input

In Sect. 2.1, we gave the operational semantics of a printingcalculus as a terminable
LTS. But for a calculus with interactive input, this is not quite suitable:

• If we allow both outputs and inputs to be actions, we need additional alternation
and receptivity-to-input conditions.

• If we define an action to be a pair(o, i), we do not deal with the case of an output
whose input never arrives (or, indeed, whose input set is empty).

Instead we need a transition system of the kind depicted in Fig. 1, though without
an initial state.

Definition 1 (BLTS) LetZ = {Io}o∈O be an I/O signature.

(1) A bi-labelled transition system(BLTS)M overZ consists of
• a set (which we also callM) of states, each of which is classified as either

o-interactivefor someo ∈ O, or silent
• for eacho-interactive stated, and each inputi ∈ Io, a stated : i ∈ M.
• for each silent stated, a set ofsuccessorssucc(d) ⊆ M
We writed ↓ o whend is ano-interactive state. We writed d′ whend is
silent andd′ ∈ succ(d).

10

(2) A terminable BLTSM is the same, except that there is a third kind of state:
terminal. We writeM̀ for the set of terminal states.

(3) A BLTS or terminable BLTS islively when each silent state has at least one
successor, anddeterministicwhen each silent state has precisely one succes-
sor.

2

Remark 2 DefiningRZ as in Remark 1, we can, more abstractly, define a BLTS
overZ to be a coalgebra for the endofunctorX 7→ PX + RZX onSet. 2

Let Z be an input signature andY an erratic signature. For each contextΓ =
x0, . . . , xn−1, we define a terminable BLTSL(Z, Y, Γ) overZ as follows. The states
are the termsΓ ⊢ M in the calculusL(Z, Y), with transitions given in Fig. 2. In
particular, the terminal states are the free identifiers.

Interactive commands

inputo{Mi}i∈Io
↓ o

Interactive transitions

inputo{Mi}i∈Io
: ı̂ = Mı̂ (̂ı ∈ Io)

Silent commands

rec x. M

chooseh{Mp}p∈Ph

Silent transitions

rec x. M M [rec x. M/x]

chooseh{Mp}p∈Ph
 Mp̂ (p̂ ∈ Ph)

Terminal commands

x (x ∈ Γ)

Fig. 2. Operational semantics ofL(Z, Y) as terminable BLTSL(Z, Y,Γ)

The following is trivial.

Lemma 1 SupposeΓ, x ⊢ M andΓ ⊢ N . Suppose thatM is notx.

(1) M is silent iff M [N/x] is. If, moreover,M M ′ thenM [N/x] M ′[N/x].
Conversely, ifM [N/x] Q thenM M ′ for someM ′ such thatQ =
M ′[N/x].

(2) M is ano-state iffM [N/x] is, and thenM [N/x] : i = (M : i)[N/x] for each

11

i ∈ Io.
(3) For eachy ∈ Γ, we haveM = y iff M [N/x] = y.

2

2.4 Strategies in a BLTS

As in Sect. 2.1, we can define finite traces, divergences and infinite traces. Fix an
input signatureZ = {Io}o∈O.

Definition 2 Let Z = {Io}o∈O be an input signature. Aplay over Z is a finite
or infinite sequenceo0i0o1i1 . . . whereor ∈ O andir ∈ Ior

for eachr. It awaits
Proponentif of even length, andawaitso-input if of odd length ending ino. 2

Definition 3 Let d be a state within a BLTSM overZ.

(1) An input-awaiting playo0i0 . . . on−1in−1on is afinite traceof d when there is
a sequence of states

d ∗ e0 ↓ o0

e0 : i0
∗ e1 ↓ o1

...
en−1 : in−1

∗ en ↓ on

(2) A Proponent-awaiting playo0i0 . . . on−1in−1 is adivergenceof d when there
is a sequence of states

d ∗ e0 ↓ o0

e0 : i0
∗ e1 ↓ o1

...
en−1 : in−1

ω

(3) An infinite playo0i0, o1, i1, . . . is aninfinite traceof d when there is a sequence
of states

d ∗ e0 ↓ o0

e0 : i0
∗ e1 ↓ o1

e1 : i1
∗ e2 ↓ o2

...

2

Of course, any finite prefix of a finite trace, divergence or infinite trace ofs is a
finite trace. So we make the following definition.

12

Definition 4 (1) A strategyoverZ consists of
• a setA of input-awaiting plays
• a setB of Proponent-awaiting plays
• a setC of infinite plays
such that every input-awaiting prefix of a play inA ∪ B ∪ C is in A.

(2) Let d be a state in a BLTSM overZ. Theoperational meaningof d, written
[d], is the strategy overZ given by the finite traces, divergences and infinite
traces ofd. Two statesd andd′ areinfinite trace equivalentwhen[d] = [d′].

2

In the case of a terminable BLTS, there is a fourth kind of behaviour we need to
consider.

Definition 5 (1) Let V be a set. AV -terminating playover Z is a sequence
o0i0 . . . on−1in−1v whereor ∈ O andir ∈ Ior

for eachr, andv ∈ V .
(2) Let d be a state within a terminable BLTSM overZ. (Recall thatM̀ is the

set of terminal states ofM.) A M̀-terminating playo0i0 . . . on−1in−1v is a
terminating traceof d when there is a sequence of states

d ∗ e0 ↓ o0

e0 : i0
∗ e1 ↓ o1

...
en−1 : in−1

∗ v

The input-awaiting traces, divergences and infinite tracesof s are defined as
for a state of a BLTS. Afinite trace is either an input-awaiting trace or a
terminating trace.

(3) LetV be a set. AV -terminable strategyoverZ consists of
• a setA = Ainput ∪ Atermin of input-awaiting andV -terminating plays
• a setB of Proponent-awaiting plays
• a setC of infinite plays
such that any input-awaiting prefix ofA ∪ B ∪ C is in Ainput.

(4) LetM be a terminable BLTS overZ. For any stated ∈ M, theoperational
meaningof d, written [d], is theM̀-terminable strategy overZ given by the
finite traces, divergences and infinite traces ofd.

2

Definition 6 Let V be a set. We buildV -terminable strategies overZ using the
following operations.

(1) Forv ∈ V , we defineηv to be the strategy

({v}, {}, {})

13

(2) Given a family of strategies{σi}i∈I , whereσi = (Ai, Bi, Ci, Di), we write⋃
i∈I σi for the strategy

(
⋃

i∈I

Ai,
⋃

i∈I

Bi,
⋃

i∈I

Ci)

(3) Given o ∈ O, and for eachi ∈ Io a strategyσi = (Ai, Bi, Ci), we write
inputo{σi}i∈Io

for the strategy

({o} ∪ {oil|i ∈ Io, l ∈ Ai}, {oil|i ∈ Io, l ∈ Bi}, {oil|i ∈ Io, l ∈ Ci})

2

Proposition 1 Let d be a state in a terminable BLTSM overZ. Let V be the set
of terminal states.

• If d is ano-state then[d] = inputo{[d : i]}i∈Io

• If d is a silent state then[d] =
⋃

d d′ [d
′]

• If d is a terminal state then[d] = ηd.

2

2.5 Denotational Semantics

The key result of this section is that, on the terminable BLTSL(Z, Y, Γ), we can
characterize[−] in a compositional way.

Proposition 2 In the languageL(Y, Z), we have the following.

(1) If x ∈ Γ, then[x]L(Z,Y,Γ) = ηx
(2) [chooseh{Mp}p∈Ph

]L(Z,Y,Γ) =
⋃

p∈Ph
[Mp]L(Z,Y,Γ)

(3) [inputo{Mi}i∈Io
]L(Z,Y,Γ) = inputo{[Mo]L(Z,Y,Γ)}i∈Io

(4) If Γ, x ⊢ M then

[rec x. M]L(Z,Y,Γ) = µ[M]L(Z,Y,Γ,x)

where we defineµ(A,B,C) to be

({l0 · · · ln−1l|l0x ∈ Atermin, . . . , ln−1x ∈ Atermin, l ∈ Ainput}

∪{l0 · · · ln−1ly|l0x ∈ Atermin, . . . , ln−1x ∈ Atermin, ly ∈ Atermin, y 6= x},

{l0 · · · ln−1l|l0x ∈ Atermin, . . . , ln−1x ∈ Atermin, l ∈ B}

∪{l0 · · · ln−1|l0x ∈ Atermin, . . . , ln−1x ∈ Atermin, ǫx ∈ Atermin},

{l0 · · · ln−1l|l0x ∈ Atermin, . . . , ln−1x ∈ Atermin, l ∈ C}

∪{l0l1 · · · |l0x ∈ Atermin, l1x ∈ Atermin, . . . and∀i ∈ N. li 6= ǫ})

14

(5) If Γ, x ⊢ M andΓ ⊢ N , then

[M [N/x]]L(Z,Y,Γ) = [M]L(Z,Y,Γ,x) ∗ [N]L(Z,Y,Γ)

where we define(A,B,C) ∗ (A′, B′, C ′) to be

(Ainput ∪ {ly | ly ∈ Atermin, y 6= x} ∪ {ll′|lx ∈ Atermin, l
′ ∈ A′},

B ∪ {ll′|lx ∈ Atermin, l
′ ∈ B′},

C ∪ {ll′|lx ∈ Atermin, l
′ ∈ C ′})

2

We thus define a denotational model[[rec x. M]] = µ[[M]] etc., and Prop. 2(1)–(4)
shows computational adequacy i.e.[[M]] = [M].

3 Monads and Algebraic Operations

Let Z = {Io}o∈O be an input signature.

3.1 The Monad of Nondeterministic Strategies

For any setV , we write TZ(V) for the set ofV -terminable strategies overZ.
This gives us a monad onSet—it is the monad representing the combination
of interactive input overZ, nondeterminism and divergence, under infinite trace
equivalence. The unit atV is given by Def. 6(1). The multiplication atV maps
(A,B,C) ∈ TZTZV to

(Ainput ∪ {ll′ | l(A′, B′, C ′) ∈ Atermin, l
′ ∈ A′},

B ∪ {ll′ | l(A′, B′, C ′) ∈ Atermin, l
′ ∈ B′},

C ∪ {ll′ | l(A′, B′, C ′) ∈ Atermin, l
′ ∈ C ′})

(2)

The monad laws are easily verified.

For any terminable BLTSM, Def. 5(4) gives us a functionM
[−]

// TZM̀ . This
takes the place of⇓ in Sect. 1.4.

3.2 Algebraic Operations

We can define
⋃

andinputo in a general setting.

15

Definition 7 Let X = (X, θ) be aTZ-algebra.

(1) Given a family{xi}i∈I of elements ofX, we define

⋃

i∈I

xi
def
= θ({xi | i ∈ I}, {}, {})

(2) Giveno ∈ O and a family{xi}i∈Io
of elements ofX, we define

inputo{xi}i∈Io

def
= θ({o} ∪ {oixi | i ∈ Io}, {}, {})

2

If we apply Def. 7 to the free algebra onV , we recover the constructions given in
Def. 6(2)–(3).

We recall6 the following concept from (Plotkin and Power, 2003).

Definition 8 Let T be a monad onSet and letI be a set. AnI-ary algebraic
operationα for T provides, for eachT -algebraX = (X, θ), a function

XI
αX

// X natural inX ∈ Set
T .

2

It is easy to see that Def. 7 gives us algebraic operations forTZ .

• For each setI, the operation
⋃

i∈I is anI-ary algebraic operation.
• For eacho ∈ O, the operationinputoi∈Io

is anIo-ary algebraic operation.

4 Jump-With-Argument With Type Recursion

4.1 The Language

We now want to move to a language with higher-order types. Onepossibility to
simply add higher-order types to the languageL(Z, Y), as done in (Levy, 2006b).
However, giving game semantics directly for a call-by-namelanguage is quite com-
plicated. To make the game semantics as easy as possible, we use a continuation
passing calculus “Jump-With-Argument” (JWA).

6 Although the initial formulation in (Plotkin and Power, 2003) covers freeT -algebras
only, it is shown that an algebraic operation over free algebras extendsuniquely to one over
all algebras. So we take the latter as our definition, cf. (Møgelberg and Simpson, 2007).

16

We can then use a “stack passing” transform (Levy, 2004a) to translate call-by-
push-value, a calculus that subsumes call-by-name and call-by-value (Levy, 2006a),
into JWA. On the call-by-value fragment, this is the traditional CPS transform,
while on the call-by-name fragment, it is the transform given in (Streicher and
Reus, 1998). A categorical description of how, from a model ofJWA, we can con-
struct a model of call-by-push-value is given in (Levy, 2005)

The types of JWA with type recursion are given by

A ::= ¬A |
∑

i∈IAi | 1 | A × A | X | µX.A

whereI ranges over countable sets. (We can also consider a finitary version, where
I ranges over finite sets.) The type¬A is the type of functions that take an argument
of typeA and do not return.

More formally, if Φ is a type context (list of type identifiers), we writeΦ ⊢type A
to mean thatA is a type whose free identifiers are included inΦ. This is defined
inductively in the usual way.

JWA has two kinds of term:valuesandnonreturning commands, indicated by the
judgementsΓ ⊢v V : A andΓ ⊢n M respectively. The types inΓ and the typeA
must all be closed.

For a given input signatureZ = {Io}o∈O and an erratic signatureY = {Ph}h∈H , we
defineJWA(Z, Y), i.e. JWA extended with type recursion, interactive input from
Z and erratic choice fromY . The syntax is given in Fig. 3. We writepm as an
abbreviation for “pattern-match”, and writelet to make a binding. We omit typing
rules, etc., for 1, since 1 is analogous to×.

The operational semantics is given in the same style as in Fig. 2: for each contextΓ
we define a terminable BLTSJWA(Z, Y, Γ) overZ. The states are the commands
Γ ⊢n M in JWA(Z, Y). The transitions are shown in Fig. 4.

To translate the languageL(Z, Y) into JWA(Z, Y), a commandx0, . . . , xn−1 ⊢ M
is translated into a commandx0 : ¬1, . . . xn−1 : ¬1 ⊢n M . In particular, a free
identifierx is translated asx〈〉. Recursion can be encoded in terms of type recursion
in the usual way; we omit details.

4.2 Categorical semantics of JWA

It it usual, and convenient, to use categorical structure toorganize game models,
rather than interpreting syntax directly. In this section,we recall from (Levy, 2005)
the relevant categorical structure for JWA.

Firstly, if C is a category, aleft C-moduleis a functorN : C
op

→ Set. An element

17

(x : A) ∈ Γ
Γ ⊢v x : A

Γ ⊢v V : A Γ, x : A ⊢n M

Γ ⊢n let V be x. M

Γ ⊢v V : Aı̂
ı̂ ∈ I

Γ ⊢v 〈̂ı, V 〉 :
∑

i∈IAi

Γ ⊢v V :
∑

i∈IAi Γ, xi : Ai ⊢
n Mi (∀i ∈ I)

Γ ⊢n pm V as {〈i, xi〉.Mi}i∈I

Γ ⊢v V : A Γ ⊢v V ′ : A′

Γ ⊢v 〈V, V ′〉 : A × A′

Γ ⊢v V : A × A′ Γ, x : A, y : A′ ⊢n M

Γ ⊢n pm V as 〈x, y〉. M

Γ, x : A ⊢n M

Γ ⊢v λx.M : ¬A

Γ ⊢v V : ¬A Γ ⊢v W : A

Γ ⊢n V W

Γ ⊢v V : A[µX.A/X]

Γ ⊢v fold V : µX.A

Γ ⊢v V : µX.A Γ, x : A[µX.A/X] ⊢n M

Γ ⊢n pm V as fold x. M

Γ ⊢n Mp (∀p ∈ Ph)
h ∈ H

Γ ⊢n chooseh{Mp}p∈Ph

Γ ⊢n Mi (∀i ∈ Io)
o ∈ O

Γ ⊢n inputo{Mi}i∈Io

Fig. 3. Syntax of the calculusJWA(Z, Y)

g ∈ N (R) is called anN -morphism fromR (though it is not a morphismto any-

thing), and writtenR
g

// . Given aC-morphismR
f

// S and anN -morphism

S
g

// , we define the compositeR
f

// S
g

// to beNfg.

A cartesian categoryC together with a leftC-moduleN is called aJWA judge-
ment model, because it can be used to interpret the1,× fragment of JWA, in the
following manner.

• A type denotes aC-object
• A contextΓ = A0, . . . , An−1 denotes theC-object[[Γ]] = [[A0]] × · · · × [[An−1]]
• A valueΓ ⊢v V : A denotes aC-morphism from[[Γ]] to [[A]]
• A commandΓ ⊢n M denotes aN -morphism from[[Γ]].

Given a JWA judgement model(G,S), the families construction(Abramsky and
McCusker, 1998) gives us another one which we call(famωG, famωS). A famωG-
object is a countable family ofG-objects. We define

18

Interactive commands

inputo{Mi}i∈Io
↓ o

Interactive transitions

inputo{Mi}i∈Io
: ı̂ = Mı̂ (̂ı ∈ Io)

Silent commands

let V be x. M

pm 〈̂ı, V 〉 as {〈i, xi〉.Mi}i∈I (̂ı ∈ I)

pm 〈V, V ′〉 as 〈x, y〉.M

(λx.M)V

pm fold V as fold x. M

chooseh{Mp}p∈Ph

Silent transitions

let V be x.M M [V/x]

pm 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I Mı̂[V/x] (̂ı ∈ I)

pm 〈V, V ′〉 as 〈x, y〉.M M [V/x, V ′/y]

(λx.M)V M [V/x]

pm fold V as fold x. M M [V/x]

chooseh{Mp}p∈Ph
 Mp̂ (p̂ ∈ Ph)

Terminal commands

zV where(z : ¬A) ∈ Γ

pm z as {〈i, x〉. Mi}i∈I where(z :
∑

i∈IAi) ∈ Γ

pm z as 〈x, y〉. M where(z : A × A′) ∈ Γ

pm z as fold x. M where(z : µX.A) ∈ Γ

Fig. 4. Operational semantics ofJWA(Z, Y) commands in contextΓ

(famωG)({Ri}i∈I , {Sj}j∈J)
def
=

∏

i∈I

∑

j∈J

G(Ri, Sj) (3)

(famωS)({Ri}i∈I)
def
=

∏

i∈I

S(Ri) (4)

{Ri}i∈I × {Sj}j∈J
def
= {Ri × Sj}〈i,j〉∈I×J (5)

19

and define composition and identities in the obvious way.

The structure(famωG, famωS) always provides a model of the×, 1,
∑

fragment of
JWA, using

∑
i∈I{Rij}j∈Ji

= {Rij}〈i,j〉∈
∑

i∈IJi

But to be able to model¬, we need additional structure on(G,S), as we explain.

Definition 9 A JWA pre-families structureconsists of

• a JWA judgement model(G,S)
• for each countable family ofG-objects{Ri}i∈I , a representing object for the

functor ∏

i∈I

S(−× Ri) : G
op

→ Set

i.e. an object¬i∈IRi together with an isomorphism

∏

i∈I

S(X × Ri) ∼= G(X,¬i∈IRi) natural inX ∈ G
op

.

2

If (G,S) is a JWA pre-families structure, then(famωG, famωS) is a model of JWA.
A ¬ type denotes a singleton family:

¬({Ri}i∈I) = {¬i∈IRi}

4.3 Enriched Models of JWA

In order to model JWA extended with computational effects, we need additional
structure.

Definition 10 Let T be a monad onSet.

(1) A T -enriched JWA judgement modelis a cartesian categoryC together with
a functorN : C

op

−→ Set
T , whereSet

T is the category ofT -algebras and
homomorphisms. Equivalently, it is a JWA judgement model(C,N) together

with a natural transformationTN
β

//N such that(NA, βA) is aT -algebra
for everyA ∈ ob C.

(2) If (G,S) is a T -enriched JWA judgement model, then we define anotherT -
enriched JWA judgement model(famωG, famωS) by setting

(famωS)({Ri}i∈I)
def
=

∏

i∈I

S(Ri)

as in (4), but here we are taking the product ofT -algebras.

20

2

Let (C,N , β) be aT -enriched judgement model. AnyI-ary algebraic operationα
for T induces a map

(NA)I α̃A //NA natural inA ∈ C

whereα̃A
def
= α(NA, βA). Thus in the case of the monadTZ , we obtain

⋃
and

inputo constructions on theN homsets. We can use these to interpret JWA with
input signatureZ and any erratic signature.

5 Pointer Games

5.1 Arenas

In this section we describe the pointer game semantics for JWA, adapting the
deterministic semantics given in (Levy, 2005). We assume the reader is familiar
from (Abramsky et al., 1998; Hyland and Ong, 2000; Nickau, 1996) with this style
of semantics, so we do not motivate it here; see (Lassen and Levy, 2007) for an
operational theory that is closely connected.

Definition 11 • An arenais a countable setR equipped with a relation⊢⊆ ({∗}+
R)×R that depicts a forest, i.e. for eachr ∈ R there is a unique finite sequence

∗ ⊢ r0 ⊢ · · · ⊢ rn = r

The roots of R are the elementsrt R
def
= {r ∈ R | ∗ ⊢ r}, and thechildren of

s ∈ R are the elements{r ∈ R | s ⊢ r}.
• We writeR ⊎ S for the disjoint union ofR andS, and∅ for the empty arena.
• For a countable family of arenas{Ri}i∈I , we writepti∈IRi for the arena withI

roots and a copy ofRi placed below theith root.
• If r ∈ R, we writeR↾r for the arena of elementsstrictly descended fromr.

2

Although it is not usually made explicit in the game literature, the following cate-
gory is important, as it is used for coherence isomorphisms.

Definition 12 A renamingfrom arenaR to arenaS is a functionR
f

// S , such
that, if b ∈ rt R, thenfb ∈ rt S andf restricts to an arena isomorphismR↾b∼= S↾fb.
We writeTokRen for the category of arenas and token renamings. This has finite
(and indeed countable, though it is only finite that we use) coproducts given by
disjoint union. 2

21

5.2 Pointer Game: informal definition

Given an arenaR, thepointer gameonR is informally described as follows.

• Play alternates between Proponent and Opponent, with Proponent moving first.
• In each move, an element ofR is played.
• Proponent moves byeither stating a rootr ∈ rt R, or pointing to a previous

Opponent-movem and stating a child of the element played inm.
• Opponent moves by pointing to a previous Proponent-movem and stating a child

of the element played inm.

We writeSR for the set of nondeterministic strategies for this game (wedefine this
more formally presently). We then set up a JWA pre-families structure(G,S). The
objects ofG are arenas, with finite products given by⊎ and¬ structure given by
pti∈I . The homsets are given by

G(R,S)
def
=

∏

b∈rt S

S(R ⊎ S↾b)

for all arenasR andS. And we will then define identity maps, both kinds of com-
position, etc., in the usual way.

Remark 3 G is the category defined in (Hyland and Ong, 2000), minus the con-
straints of innocence, visibility, bracketing and determinism. The question/answer
labelling is omitted, as it is redundant in the absence of thebracketing condition.2

The structure(famωG, famωS) will be used to model JWA with nondeterminism
but without I/O. In order to model JWA with an input signatureZ = {Io}o∈O, we
modify the pointer game onR:

• Proponent has a third option for playing a move: to output someo ∈ O
• Opponent then responds with somei ∈ Io

• play continues as usual.

This is depicted as follows:

awaiting arena Opponent awaitingo-input

arena move
Opponent plays

Opponent inputsi ∈ Io

arena move
Proponent plays

awaiting Proponent
Initial state

o ∈ O
Propoonent outputs

Taking nondeterministic strategies for this variant game,we obtain a JWA pre-
families structure(GZ ,NZ). We shall see that it isTZ-enriched.

22

5.3 Pointer Game Strategies: Formal Definition

Fix an input signatureZ = {Io}o∈O. We are going to define strategies wrt this
signature.

Definition 13 A justified sequences in an arenaR overZ consists of

• a finite or infinite sequences0s1s2 . . . where eachsm is either
· an element ofR (we say thatm is anarena move)
· an elemento ∈ O (we say thatm is ano-output move)
· an element ofIo, for someo ∈ O (we say thatm is ano-input move)
wheresm is ano-input move iff it follows ano-output move

• for each arena movem such thatsm is not a root, a pointer to a moveptrm such
thatptrm < m andsptrm

⊢ sm.

2

Pictorially, we describe an arena movem asptrm x sm, whereptrm
def
= ∗ in the

case thatm is a root move.

Definition 14 A playon arenaR overZ is a justified sequence such that, for every
movem,

• if m is even (e.g. 0) then it is either an output move, an arena moveplaying a
root, or an arena move pointing to an odd arena move

• if m is odd then it is either an input move or an arena move pointingto an even
arena move.

A finite play awaits Proponentor awaits Opponentaccording as its length is even
or odd. In the latter case, itawaits arena-Opponentor awaitso-input according as
its last move is an arena move or ano-output move. 2

Definition 15 A strategyon an arenaR overZ consists of

• a setA of Opponent-awaiting plays (thefinite traces)
• a setB of divergences (thedivergences)
• a setC of infinite plays (theinfinite traces)

such that ifs is in A, B or C, then every Opponent-awaiting prefix is inA. We
write SZR for the set of strategies onR overZ. 2

It is clear thatSZR is functorial inR ∈ TokRen.

As stated above, we defineGZ(R,S)
def
=

∏
b∈rt S SZ(R ⊎ S↾b) for all arenasR and

S.

23

5.4 Copycat and Composition

To define the identity morphism onR, we require for eachb ∈ rt R a strategy
idR,b on R ⊎ R ↾b. This is a “copycat” strategy: the (deterministic) strategy with
no divergences, whose finite/infinite traces are all the plays in which Proponent
initially plays∗ x inl b, and responds to

0 x inl a with ∗ x inr a

n + 1 x inl a with n x inr a

n + 1 x inr a with n x inl a

For the rest of the categorical structure, we first define an operation

GZ(R,S) × SZ(S ⊎ T)
>R,S,T//SZ(R ⊎ T)

for arenasR,S, T . We then define composition in terms of this:

R
f

// S
g

// T = λc∈rt T . f >R,S,T↾c gc (6)

R
f

// S
g

// = f >R,S,∅ g (7)

Finally, we show that> can be recovered from the categorical structure:

Proposition 3 If R
σ // S and R ⊎ T

τ // , thenσ >R,S,T τ = (σ × T); τ 2

c Intuitively, the strategyσ >R,S,T τ should executeτ until that plays a rootb of S,
then continue inσb, until that plays another move inS, then followτ again, and so
forth. But the moves inS are hidden—“parallel composition with hiding”.

Definition 16 Let s be a justified sequence onR ⊎ S ⊎ T wrt Z. Theinner thread
initiators of s are

inners(s)
def
= {∗} ∪ {root moves inS}

For q ∈ inners(s), thearena ofq is S ⊎ T if q = ∗, andR ⊎ S↾b if q playsb ∈ rt S.
2

Definition 17 Let s be a justified sequence onR ⊎ S ⊎ T wrt Z, equipped with

• for each root move inR, a pointer to an earlier root move inS
• for each output move, a pointer to an inner thread initiator.

(These additional pointers are calledthread pointers.)

(1) Theouter threadof s is the justified sequence onR⊎T consisting of all arena
moves inR andT and all I/O moves.

24

(2) Theinner thread initiated byq, whereq ∈ inners(s), is the justified sequence
on the arena ofq consisting of
• if q = ∗, all arena moves inS andT
• if q playsb ∈ rt S, all the arena moves inR descended from a root move

that thread-points toq, and all the arena moves inS strictly descended from
q

together with the output moves that thread-point toq and the input moves that
follow them.

(3) We say thats is aninteraction sequencewhen all the threads (outer and inner)
are plays.

2

Remark 4 The thread pointers of an interaction sequence are actuallyredundant.
But it is more difficult to define interaction sequence withoutthem. 2

Initial state

move inT

i ∈ Io

i ∈ Io

o ∈ O

o ∈ O

move inT

outer thread awaitso-input outer thread awaitso-input

∗ thread awaitso-input

all other inner threads await Opponent

all inner threads await Opponent

outer thread awaits Opponent,

all other inner threads await Opponent

all other inner threads await Opponent

∗ thread awaits Proponent,

all other inner threads await Opponent

move inR
move inR

l thread (wherel playsb ∈ rt S) awaitso-input

l thread (wherel playsb ∈ rt S) awaits Proponent

in l thread

in l thread

movel playingb ∈ rt S

move inS in l thread

move inS in l thread

outer thread awaits Proponent
outer thread awaits Proponent

Fig. 5. State diagram followed by an interaction sequence on arenasR, S, T overZ

An interaction sequence follows the state diagram shown in Fig. 5, giving us the
following result.

Proposition 4 Let s be an interaction sequence onR,S, T wrt Z. Then precisely
one of the following is true.

(1) s is finite. The outer thread and every inner thread await arenaOpponent.
(2) s is finite. For someo ∈ O andl ∈ inners(s), thel-inner thread awaitso-input,

as does the outer thread. All other inner theads await arena-Opponent.
(3) s is finite. For somel ∈ inners(m), the l-inner thread awaits Proponent, as

does the outer thread. All other inner theads await arena-Opponent.
(4) s is infinite. Each inner thread awaits arena-Opponent or is infinite. The outer

thread awaits Proponent.

25

(5) s is infinite. Each inner thread awaits arena-Opponent or is infinite. The outer
thread is infinite.

2

We say that an interaction sequences

• awaits outer Opponentin cases (1)–(2)
• awaitsl-inner Proponentin case (3)
• is outer-starvedin case (4)
• is outer-infinitein case (5).

Using our classification of interaction sequences, we can now define the> opera-
tion.

Definition 18 Let R,S, T be arenas, andZ an input signature. Letσ ∈ GZ(R,S)
andτ ∈ SZ(S ⊎ T). For any interaction sequences andq ∈ inners(s), we thus have
a strategyq(σ, τ) on the arena ofq, viz. τ if q = ∗, andσb if q playsb ∈ rt S.

We defineσ >R,S,T τ to be the following strategy:

finite traces the outer thread of every outer-Opponent-awaiting interaction sequence
s whoseq-inner-thread is a finite trace ofq(σ, τ) for everyq ∈ inners(s)

divergences (1)the outer thread of everyl-inner-Proponent-awaiting interaction
sequences whosel-inner thread is a divergence ofl(σ, τ) and whoseq-inner
thread is a finite trace ofq(σ, τ) for everyq ∈ inners(s)\{l}

divergences (2)the outer thread of every outer-starved interaction sequence whose
q-inner-thread is a finite trace or infinite trace ofq(σ, τ) for everyq ∈ inners(s)

infinite traces the outer thread of every outer-infinite interaction sequence whose
q-inner-thread is a finite trace or infinite trace ofq(σ, τ) for everyq ∈ inners(s).

2

Proposition 5 Definition (6) satisfies associativity and identity laws, making G a
category. Definition (7) satisfies associativity and left-identity laws, makingSZ a
left GZ-module. 2

Prop. 5 is proved by the same “zipping” argument that is used in the deterministic
case; see e.g. (McCusker, 1996).

We define an identity-on-objects functorFZ : TokRen
op

−→ GZ , takingf to the
deterministic strategy given by renaming copycat.

Proposition 6 All compositions of the formR
F

Z
f

// S
σ // T or R

F
Z

f
// S

σ //

or R
σ // S

F
Z

f
// T are obtained by token-renaming alongf . 2

26

It immediately follows that the isomorphisms given by renaming

GZ(R,S) × GZ(R, T)∼=GZ(R,S ⊎ T)
∏

i∈I

SZ(R ⊎ Si)∼=GZ(R, pti∈ISi)

are natural inR ∈ G
op

Z , and so(GZ ,SZ) is a JWA pre-families structure. Moreover,
FZ preserves finite products on the nose. Finally, we prove Prop. 3 by another
zipping argument.

5.5 Enrichment

Let Z = {Io}o∈O be an input signature. We need to make(GZ ,SZ) into a TZ-
enriched JWA judgement model. This resembles the multiplication ofTZ in Sect. 3.1:

we define the functionTZSZ(R)
γ

Z
R

//SZR to map(A,B,C) to (2). It is easy to
check that(SZ(R), γZR) is anTZ-algebra, and thatγZR is natural inR ∈ G. We
conclude that(GZ ,SZ , γZ) is aTZ-enriched JWA judgement model.

The induced operations
⋃

and input, following the construction in Def. 7, are the
same as in Def. 6(2)–(3).

5.6 Type Recursion

Recursive types are modelled following (McCusker, 1996). ForarenasR andS, we
say thatR ⊑ S when for everyr ∈ R, bothr and all its ancestors are elements of
S and⊢R is the restriction of⊢S to R. We adapt this to arena families:{Ri}i∈I ⊑
{Sj}j∈J when for eachi ∈ I, we havei ∈ J andRi ⊑ Si.

We defineE to be the large cpo of countable families of arenas, ordered by ⊑. It is
easy to see that the functions

EI

∑
i∈I // E E2 × // E E ¬ // E

are continuous.

A type contextΦ denotes[[Φ]]
def
= En, wheren is the length ofΦ. A typeΦ ⊢type A

denotes a continuous function[[Φ]]
[[A]]

// E . In particular, ifΦ, X ⊢type A andχ ∈

E |Φ| then[[µX.A]]χ is the least fixpoint ofR 7→ [[A]](χ,X 7→ R).

So in the semantics we have an “equirecursive” type:

[[µX.A]] = [[A[µX.A/X]]]

27

We accordingly define[[fold V]] to be[[V]], and interpretpm V as fold x. M the
same way aslet V be x. M .

5.7 Statement of Adequacy

Adapting diagram (1) the statement of computational adequacy is as follows. LetΓ
be a typing context, denoting the arena family{Ri}i∈I . The operational semantics

gives us a functionJWA(Z, Y, Γ)
[−]

// TZ
`JWA(Z, Y, Γ) .

The denotational semantics interprets the judgementΓ ⊢n by the algebra

(X, θ)
def
=

∏

i∈I

(SZRi, γZRi)

Computational adequacy for commandsΓ ⊢n M is the commutativity of

JWA(Z, Y, Γ)
[−]

//

[[−]]

��

TZ
`JWA(Z, Y, Γ)

T
Z

[[−]]

��

X TZXΓθ
oo

This is equivalent to the commutativity of

JWA(Z, Y, Γ)
[−]

//

[[−]]i

��

TZ
`JWA(Z, Y, Γ)

T
Z

([[−]]i)

��

SZRi TZSZRiγ
Z

Ri

oo

(8)

for everyi ∈ I. Explicitly, (8) says that, for any commandΓ ⊢n M , where[M] =
(A,B,C), the strategy

[[[M]]]i
def
= (Ainput ∪ {ll′ | lT ∈ Atermin, [[T]]i = (A′, B′, C ′), l′ ∈ A′},

(B ∪ {ll′ | lT ∈ Atermin, [[T]]i = (A′, B′, C ′), l′ ∈ B′},

(C ∪ {ll′ | lT ∈ Atermin, [[T]]i = (A′, B′, C ′)l′ ∈ C ′})

is equal to[[M]]i.

28

6 Determinism and Liveliness

6.1 Determinism

Let σ = (A,B,C) be a strategy overZ. (It could be aV -terminable strategy, or a
strategy on an arena.) We say thatσ is deterministicwhen

• for each Proponent-awaiting playl whose input-awaiting prefixes are all inA,
either
· l 6∈ B andl has a unique one-place extension inA, or
· l ∈ B and has no extension inA

• each infinite tracel whose input-awaiting prefixes are all inA is in C.

Thus a deterministic strategy(A,B,C) is determined byA.

We write

• T det
Z V for the set ofσ ∈ TZV that are deterministic

• Sdet
Z R for the set ofσ ∈ SZR that are deterministic

• Gdet
Z (R,S) for the set off ∈ GZ(R,S) that are deterministic at eachb ∈ rt S.

Then T det
Z forms a monad onSet, and (Gdet

Z ,Sdet
Z , γdet

Z) forms a T det
Z -enriched

JWA pre-families structure, just like its nondeterministic counterpart. Moreover,
the property of determinism is preserved byinputoi∈Io

for anyo ∈ O.

Remark 5 The monadT det
Z can be defined as a “free completely iterative monad”

using terminal coaglebras, in the manner of (Aczel et al., 2003; Ghani et al., 2003;
Moss, 2001). Explicitly, it maps a setV to νX.(V + RZ)⊥, whereRZ is as defined
in Remark 1. 2

We obtain

• for every deterministic terminable BLTSM, a functionM
[−]det

// T det
Z M̀

• a denotational semantics[[−]]det of JWA(Z, ∅) in (Gdet
Z ,Sdet

Z).

6.2 Liveliness

We recall that an erratic signatureY = {Ph}h∈H is lively whenPh is nonempty
for eachh ∈ H. For such a signature, the terminable BLTSL(Z, Y, Γ) is lively,
meaning that each silent state has at least one successor. Wedefine a corresponding
notion for strategies, based on (Roscoe, 1998).

29

Definition 19 Let σ = (A,B,C) be aV -terminable strategy, or a strategy on
arenaR, over input signatureZ. We say thatσ is lively when for every Proponent-
awaiting playl whose Opponent-awaiting prefixes are all inA, there is a determin-
istic strategy starting froml that is contained inσ. 2

The property of liveliness is preserved byinputoi∈Io
for anyo ∈ O, and by nonempty

union. We write

• T+
Z V for the set ofσ ∈ TZV that are lively

• S+
Z R for the set ofS ∈ SZR that are lively

• G+
Z (R,S) for the set off ∈ GZ(R,S) that are lively at eachb ∈ rt S.

ThenT+
Z forms a monad onSet, and for any terminable BLTSM overZ that is

lively, we haveM
[−]

// T+
Z M̀ .

As expected,(G+
Z ,S+

Z , γ+
Z) forms aT+

Z -enriched JWA pre-families structure. So
for any input signatureZ and lively erratic signatureY , we obtain a model of
JWA(Z, Y) consisting of lively strategies.

The following result shows that liveliness is a sufficientlyrestrictive constraint.

Proposition 7 Any lively strategyσ onR overZ is a union of a nonempty family
of deterministic strategies. 2

Proof Supposel is an infinite trace ofσ. For every Opponent-awaiting prefixl′ of
l, there is a deterministic strategyτ(l′), starting atl, contained inσ. We defineν(l)
to be the deterministic strategy whose finite traces are all the Proponent-awaiting
prefixes ofl, and, for eachl′, those finite traces ofτ(l′) that disagree withl imme-
diately afterl′. Thenν(l) hasl as an infinite trace and is contained inσ. Similarly
we can defineν(l) for each finite trace and divergence ofσ. Thenσ is the union of
ν(l) asl ranges over finite traces, divergences and infinite traces.

The family is nonempty becauseσ must have a finite trace or divergence (take a
deterministic strategy starting atǫ contained inσ). 2

7 Proving Computational Adequacy

7.1 Weak Adequacy Results

Our desired adequacy theorem can be broken into two parts:

30

[[[M]]]i⊆ [[M]]i (9)
[[M]]i⊆ [[[M]]]i (10)

where(A,B,C) ⊆ (A′, B′, C ′) meansA ⊆ A′ andB ⊆ B′ andC ⊆ C ′.

Before we embark on our proof, we note in this section that there are weak versions
of (9)–(10) that are trivial.

We begin with a one-step adequacy result.

Lemma 2 (1) If Γ ⊢n M is silent then[[M]]i =
⋃

M N [[N]]i.
(2) If Γ ⊢n M is o-interactive then[[M]]i = inputoj∈Io

[[M : j]]i.

2

Proof This follows from the categorical structure, which validates all theβ-laws.
2

Lemma 2(1) tells us thatM M ′ implies [[M ′]]i ⊆ [[M]]i. Hence

M ∗ T implies [[T]]i ⊆ [[M]]i (11)
M ∗ N ↓ o implies inputoj∈Io

[[N : j]]i ⊆ [[M]]i (12)

This immediately gives us a weak version of (9).

Lemma 3 Let Γ ⊢n M be a command. Suppose[M] = (A,B,C).

(1) If l ∈ Ainput thenl is a finite trace of[[M]]i.
(2) If lT ∈ Atermin and[[T]]i = (A′, B′, C ′) andl′ ∈ A′ (resp.B′,C ′) thenll′ is a

finite trace (resp. divergence, infinite trace) of[[M]]i.

2

Proof

(1) By induction onl. If l is justo, then this follows (12). Ifl = ojl′′, thenM ∗

N ↓ o, where[N : j] = (A′′, B′′, C ′′), andl′′ ∈ A′′. By inductive hypothesis,
l′′ is a finite trace of[[N : j]]i so by (12)ojl′′ is a finite trace of[[M]]i.

(2) Similar induction onl, using (11)–(12).

2

Corollary 8 If Γ ⊢n M , then every finite trace of[[[M]]]i is a finite trace of[[M]]i. 2

Likewise, we have a weak version of (10).

Lemma 4 Any finite trace (resp. divergence, infinite trace)l of [[M]]i is either a

31

finite trace (resp. divergence, infinite trace) or an extension of a divergence of[M].
2

Proof We will construct a sequenceM0,M1, . . . of commands in contextΓ, and a
sequencel0 ⊑ l1 ⊑ · · · of Proponent-awaiting plays7 that are prefixes ofl. For
eachk, we requirel′k

def
= l \ lk (i.e. the uniquel′ such thatl = lkl

′) to be a finite trace
(resp. divergence, infinite trace) ofMk. Fork = 0 we set

M0
def
= M l0

def
= ǫ Hencel′0 = l

Having constructedMk andlk, there are 4 possibilities.

(1) Mk is terminal. Then the sequence ends atk.
(2) Mk is silent. Then by Lemma 2(1), there existsM ′ such thatMk M ′ and

l′k is a finite trace (resp. divergence, infinite trace) ofM ′. Then we define

Mk+1
def
= M ′ lk+1

def
= lk Hencel′k+1 = l′k

(3) Mk is o-interactive andl′k = o. Then the sequence ends atk.
(4) Mk is o-interactive andl′k is of the formojl′′. Then we define

Mk+1
def
= Mk : j lk+1

def
= lkoj Hencel′k+1 = l′′

If this sequence ends in a terminal commandMK , thenlKMK is a terminating trace
of [M] and we are done.

If it ends in ano-interactive stateMK then l = lKo is an input-awaiting trace of
[M] and we are done.

If it is infinite, definelmax to besupk∈N lk, which must be a prefix ofl. Sincel is
finite, lmax must be finite, solmax = lK for someK and we have

MK MK+1 · · ·

Solmax is a divergence of[M], sol extends a divergence of[M] as required.

In the case thatl is an infinite trace of[[M]], it is also possible thatlmax is infinite, in
which caselmax is an infinite trace of[M] and we are done. 2

For a terminable BLTSM, write DF(M) for the set of states that aredivergence-
free, i.e. have no divergences. We have adequacy for deterministic, divergence-
free commands. ForΓ denoting{Ri}i∈I , this amounts to the commutativity of the

7 Just output and input moves, no arena moves

32

following variant of (8), for eachi ∈ I.

DF(JWA(Z, ∅, Γ))
[−]det

//

[[−]]deti

��

T det
Z

`JWA(Z, ∅, Γ)

T det
Z

[[−]]deti

��

Sdet
Z Ri T det

Z Sdet
Z Ri

γdet
Z

Ri

oo

(13)

To see this, supposeM ∈ DF(JWA(Z, ∅, Γ)). Write [[M]]deti = (A,B,C) and
[[[M]]]deti = (A′, B′, C ′). These are deterministic, so to prove them equal, it suffices
to proveA = A′. Lemma 8 tells usA′ ⊆ A. SinceM is divergence-free, Lemma 4
impliesA ⊆ A′.

7.2 Relating Enriched Models

Our proof is going to be based on relating two JWA pre-families structures enriched
in different monads. We set up the abstract structure first.

Let T andT ′ be monads onSet, and letT δ // T ′ be a monad morphism.

A mapping acrossδ from a T -enriched JWA pre-families structure(G,S, γ) to a
T ′-enriched JWA pre-families structure(G ′,S ′, γ′) with the same objects and object
structure is a collection of functions

G(A,B)
ǫ(A,B)

//G ′(A,B) for all A,B ∈ ob G

SA
ǫA //S ′A for all A ∈ ob G

preserving identity, both kinds of composition, product structure and¬ structure,
such that, for everyA ∈ ob G, the following commutes.

TSA
δǫA //

γA

��

T ′S ′A

γ′A

��

SA
ǫA //S ′A

(14)

Remark 6 More abstractly, writingS = (S, γ) andS ′ = (S ′, γ′), a mapping
acrossδ can be defined to be

• an identity-on-objects finite-product-preserving functor G
ǫ0 //G ′

• a natural transformationS ǫ1 //
Set

δS ′ǫ0 in [G
op

,Set
T]

preserving¬ structure. HereSet
T ′ Set

δ
//
Set

T is the functor mapping aT ′-algebra
(X, θ) to (X, (δX ; θ)). 2

33

7.3 Hiding

Suppose that we have an input signatureZ = {Io}o∈O. An input signature embed-
ding into Z consists of a setN and and an injectionN ι // O . Given such an
embedding, we define the input signatureι−1Z to be{Iι(n)}n∈N .

Our aim is to define

• a monad morphismT det
Z

δι // Tι−1Z

• a mapping(Gdet
Z ,Sdet

Z , γdet
Z)

ǫι // (Gι−1Z ,Sι−1Z , γι−1Z) acrossδι.

Thus we have to convert deterministic strategies overZ into nondeterministic strate-
gies overι−1Z. We do this by converting theinputo operators, whereo ∈ O \ ι(N),
into erratic operators. This is calledι-hiding.

Remark 7 In fact, ι-hiding could be defined onall strategies overZ, not just de-
terministic ones. But that is not needed for our adequacy proof. 2

Let l be aV -terminable play overZ, or a play on arenaR overZ. We define a play
Hideιl overι−1Z, theι-hidingof l, by removing froml everyo-output move, where
o ∈ O \ ι(N), and every input move that follows such an output move. Also,we
replace every output moveι(n), for n ∈ N , by n.

There are several possibilities forl, listed as follows.

• l awaitsι(n)-input, forn ∈ N , andHideιl awaitsn-input. (We say thatl awaits
ι-visible input.)

• (For aV -terminable play)l is terminating, and so isHideιl.
• (For a play on an arena)l awaits arena Opponent, and so isHideιl.
• l either awaitso-input, foro ∈ O \ ι(N), or awaits Proponent, andHideιl awaits

Proponent.
• l is infinite, andHideιl awaits Proponent. (We say thatl is ι-starved.)
• l is infinite, and so isHideιl. (We say thatl is ι-infinite.)

Let σ = (A,B,C) be a deterministic strategy, eitherV -terminable or on an arena,
over Z. The ι-hiding of σ, written Hideισ, is the strategy overι−1Z defined as
follows.

finite traces(1) theι-hiding of everyl ∈ A that awaitsι-visible input
finite traces (2) the ι-hiding of everyl ∈ A that is terminating / awaiting arena

Opponent
divergences (1)theι-hiding of everyl ∈ B
divergences (2)theι-hiding of everyl ∈ C that isι-starved
infinite traces theι-hiding of everyl ∈ C that isι-infinite.

34

Remark 8 An input signature embeddingN ι // O is lively when for eacho ∈
O \ ι(N), the setIo is nonempty. Ifι is lively, thenι-hiding preserves liveliness of
strategies. 2

We thus have functions

T det
Z V

διV // Tι−1ZV for every setV

Sdet
Z R

ǫιR //Sι−1ZR for every arenaR

Gdet
Z (R,S)

ǫι(R,S)
//Gι−1Z(R,S) for arenasR, S

where the first two are justHideι and the third mapsR
f

// S toλb ∈ rt S. (Hideι(fb)).
It can be verified thatδι is a monad morphism andǫι is a mapping acrossδι, as re-
quired. The only non-trivial part is proving thatǫι preserves composition; this is
proved by a zipping argument in Sect. 7.4. We also have

Hideι(input
ι(n)
i∈Io

σi) = inputni∈Io
Hideισi for n ∈ N (15)

Hideι(inputoi∈Io
σi) =

⋃

i∈Io

Hideισi for o ∈ O \ ι(N) (16)

SinceHideι commutes with renaming along aTokRen-morphismR
f

// S , the
following commutes:

TokRen
op Fdet

Z //

F
ι−1(Z) ((RRRRRRRRRRRRRR

Gdet
Z

ǫι

��

Gι−1Z

7.4 Hiding Preserves Composition

Let N
ι // O be an input signature embedding intoZ = {Io}o∈O. We wish to

show thatι-hiding preserves composition; specifically, that for arenasR,S, T we
have

Hideι(σ >R,S,T τ) = (Hideισ) >R,S,T (Hideιτ) (17)

for anyσ ∈ GZ(R,S) andτ ∈ SZ(S ⊎ T). This is proved using the same kind of
“zipping” argument that is used to prove associativity. Though we have omitted the
other zipping proofs, we give this one in detail.

DefineA to be the pointed cpo of plays overι−1Z onR⊎ T , ordered by extension.
DefineB to be the pointed cpo of interaction sequences overZ onR,S, T , ordered
by extension. DefineC to be the poset of pairs(u, v), where

35

• u is an interaction sequence overι−1Z onR,S, T
• v associates, toq ∈ inners(u) in u, a playv(q) overZ on the arena ofq whose

ι-hiding is theq-thread ofu.

The ordering makes(u, v) 6 (u′, v′) whenu is a prefix ofu′ and, for everyq ∈
inners(u), the playv(q) is a prefix of the playv′(q). We note that, inC, if (u, v) <
(u′, v′) then precisely one of the following hold.

(1) u awaits outer-arena-Opponent; then for eachq ∈ inners(u), the ι-hiding of
v(q) awaits arena-Opponent and sov(q) awaits arena-Opponent. Henceu <
u′ (becausev(q) < v′(q) impliesu < u′).

(2) u awaitsn-input (wheren ∈ N) in threadl; then theι-hiding ofv(l) awaitsn-
input, sov(l) awaitsι(n)-input; and for each inner thread-nameq ∈ inners(u)\
{l}, theι-hiding ofv(q) awaits arena-Opponent sov(q) awaits arena-Opponent.
Henceu < u′ (becausev(q) < v′(q) impliesu < u′).

(3) u is infinite; then for eachq ∈ inners(u), the ι-hiding of v(q) awaits arena-
Opponent and sov(q) awaits arena-Opponent. Henceu < u′ (becausev(q) <
v′(q) impliesu < u′)—impossible.

(4) u awaitsl-inner-Proponent; then for eachq ∈ inners(u) \ {l}, the ι-hiding
of v(q) awaits arena-Opponent and sov(q) awaits arena-Opponent. Hence
v(l) < v′(l) (becauseu < u′ impliesv(l) < v′(l), andv(q) < v′(q) implies
u < u′ if q ∈ inners(u) \ {l}). So v(l) is finite, and since theι-hiding of
v(l) awaits Proponent,v(l) either awaits Proponent or awaitso-input for some
o ∈ O \ ι(N).

In particular, we see thatu and everyv(q) must be finite. So every element ofC
with infinitely many predecessors is maximal.

We construct a commutative diagram:

B
f
∼=

//

g
��

@@
@@

@@
@ C

g′
��~~

~~
~~

~

A

Here,

• g maps an interaction sequences to theι-hiding of its outer thread
• g′ maps(u, v) to the outer thread ofu
• f maps an interaction sequences to (u, v), whereu is theι-hiding ofs, andv(q)

is theq-inner thread ofv (using the correspondence between theS-rootmoves in
s and those inu).

Clearly these are strict continuous maps and clearly the diagram commutes. The
function f is strictly monotone, because every move ins appears somewhere in
f(s). We show that ifs ∈ B and (u′, v′) ∈ C andf(s) < (u′, v′), then the set
{t ∈ B|s < t, f(t) 6 (u′, v′)} has a least elements′, by an extensive case analysis.

36

For example: iff(s) = (u, v) is of the form (1), thens is awaiting outer-arena-
Opponent. We know thatum 6 u′, andm playsn x r. Supposer ∈ R. Thenn
is a Proponent-move in some threadl ∈ inners(u). Hence(Hideιv(l))(n x r) ⊑
Hideιv

′(l), so v(l)(n x r) ⊑ v′(l). Put s′ = s(n x r); thenf(s′) = (u′′, v′′)
whereu′′ = u(n x r) andv′′(l) = v(l)(n x r) andv′′(q) = v(q) for every
q ∈ inners(u) \ {l}. Hencef(s′) 6 (u′, v′), as required. Iff(sm′) 6 (u′, v′),
thenm′ must appear inu′, so must ben x r. Hences′ is the least element of
{t ∈ B|s < t, f(t) 6 (u′, v′)}. The case wherer ∈ T , and all the other cases, are
similar.

For an element(u, v) of C, define the maximal sequence

s0 < s1 < s2 < · · · ∈ B (18)

such thatsi is the uniqueB-element of lengthi whosef -image is6 (u, v). This
is defined by induction:s0 = ǫ, and iff(si) < (u, v) thensi+1 is the least element
of {t ∈ B|si < t, f(t) 6 (u, v)}. If (18) ends insn, thenf(sn) = (u, v). If (18)
is infinite, sets∞ to be

⊔
i∈N si, thenf(s∞) 6 (u, v). But f(s∞) has infinitely

many predecessors, so it is maximal. Thus, in either case, wehaves such that
f(s) = (u, v). If f(s′) = (u, v), then every finite prefix ofs′ appears in (18), so
s′ 6 s, and, sincef is strictly monotonic,s′ = s. Thusf is a poset isomorphism.

Now suppose we are givenσ ∈ GZ(R,S) andτ ∈ SZ(S⊎T). Let t be a Proponent-
awaiting play overι−1Z onR⊎ T . Thent is a divergence ofǫι(σ > τ) iff t = g(s),
for somes ∈ B such that (condition 1)

• s awaitsl-Proponent, itsl-thread is a divergence ofl(σ, τ), and theq-thread ofs
is a finite trace ofq(σ, τ) for eachq ∈ inners(s) \ {l}, or

• s is infinite, and every inner threadq is a finite trace or infinite trace ofq(σ, τ).

And t is a divergence of(σ \ Z ′) > (τ \ Z ′) iff t = g′(u, v), for some(u, v) ∈ C
such that (condition 2)

• u awaitsl-Proponent,v(l) is a divergence ofl(σ, τ), andv(q) is a finite trace of
q(σ, τ) for eachq ∈ inners(u) \ {l}

• u awaitsl-Player,v(l) is an infinite trace ofl(σ, τ), andq(l) is a finite trace of
q(σ, τ) for eachq ∈ inners(u) \ {l}

• u is infinite, andv(q) is a finite trace or infinite trace ofq(σ, τ) for eachq ∈
inners(u).

Any s ∈ B satisfies condition 1 ifff(s) satisfies condition 2, so the two sides of
(17) have the same divergences. By a similar but easier argument, they have the
same finite traces and infinite traces.

37

7.5 Unhidings

In the next section, we shall look at anunhiding transformfrom a nondeterministic
calculus to a deterministic one. In this section, we look at the essential features such
a transform ought to have.

Definition 20 Let M be a BLTS overι−1Z and letM′ be a deterministic BLTS
overZ. A function M

f
//M′ is anunhidingwhen, for every stated ∈ M, we

have the following.

• If d is terminal thenf(d) is terminal.
• If d is n-interactive, forn ∈ N , thenf(d) is ι(n)-interactive, andf(d) : i =

f(d : i) for all i ∈ Iι(n).
• If d is silent then there exists (necessarily unique)e ∈ M′ ando ∈ O \ ι(L) such

thatf(d) ∗ e ↓ o, and furthermore

{e : i | i ∈ Io′} = {f(d′) | d → d′}

2

Lemma 5 Let M be a BLTS overι−1Z and letM′ be a deterministic BLTS over
Z. Let M

f
//M′ be an unhiding, so it restricts to a functioǹM

f
//M̀′ . Then

the range off is contained inDF(M′), and the following diagram commutes.

M
[−]

//

f

��

Tι−1ZM̀

διf

��

DF(M′)
[−]

// T det
Z M̀′

2

7.6 Adequacy Via Unhiding

Given an input signatureZ = {Io}o∈O and an erratic signatureY = {Ph}h∈H , we
want to prove the adequacy ofJWA(Z, Y), using the tools we have developed.

We define the input signatureZ ′ to beZ extended withY and a unaryX operator.
Formally it is{I ′

o}o∈O′ defined as follows. The indexing set isO′ def
= O + H + {X}.

We write O
ι // O′ and H

ι′ // O′ for the embeddings. We defineI ′
ι(o) to beIo

(for o ∈ O), we defineI ′
ι′(h) to bePh (for h ∈ H), and we defineI ′

X to be singleton.

We note thatι is an input signature embedding intoZ ′, giving ι−1Z ′ = Z.

38

Γ ⊢n M Γ ⊢n u(M)

let V be x. N let u(V) be x.X.u(N)

pm V as {〈i, x〉.Mi}i∈I pm u(V) as {〈i, x〉.X.u(Mi)}i∈I

pm V as 〈x, y〉.M pm u(V) as 〈x, y〉.X.u(M)

V W u(V)u(W)

pm V as fold x.M pm u(V) as fold x.X.u(M)

chooseh{Mp}p∈Ph
inputι′(h){u(Mp)}p∈Ph

inputo{Mi}i∈Io
inputι(o){u(Mi)}i∈Io

Γ ⊢v V : B Γ ⊢v u(V) : B

x x

〈̂ı, V 〉 〈̂ı, u(V)〉

〈V, V ′〉 〈u(V), u(V ′)〉

λx. M λx.X.u(M)

fold V fold u(V)

Fig. 6. The unhiding transform

Remark 9 If the erratic signatureY is lively, then the input signature embeddingι
is lively in the sense of Remark 8. 2

We will define two transforms. Thehiding transformh is from JWA(Z ′, ∅) to
JWA(Z, Y). This consists of

• removing every occurrence ofX
• replacing every occurrence ofinputι

′(h), whereh ∈ H, by chooseh

• replacing every occurrence ofinputι(o), whereo ∈ O, by inputo.

This transform exactly corresponds toι-hiding on the semantics.

Lemma 6 Let M be a JWA term (command or value). Then[[h(M)]] = Hideι[[M]].
2

Proof Straightforward induction, using the fact thatHideι preserves all categorical
structure, and (15)–(16). 2

We next define anunhiding transformu from JWA(Z, Y) to JWA(Z ′, ∅). This is
shown in Fig. 6.

39

Lemma 7 For any termM (command or value) ofJWA(Z, Y), we haveh(u(M)) =
M (syntactic identity). 2

The syntactic properties of unhiding are as follows. The following lemma gives the
operational properties of the unhiding transform.

Lemma 8 (1) The unhiding transformation preserves renaming and substitution.
In particular,u(M [V/x]) = u(M)[u(V)/x]

(2) For any commandΓ ⊢n M in JWA(Z, Y),
• if M is terminal thenu(M) is terminal
• if M is silent and not of the formchooseh

p∈Ph
Mp, thenM has a unique

successorM ′ andu(M) is silent with unique successorX.u(M ′).

2

Corollary 9 u is an unhiding fromJWA(Z, Y) to JWA(Z ′, ∅). 2

We now have everything in place to prove (8), by means of the diagram

JWA(Z, Y, Γ)
[−]

//

[[−]]i

��

u

))RRRRRRRRRRRRRRR
TZ

`JWA(Z, Y, Γ)

T
Z

[[−]]i

��

διu

uukkkkkkkkkkkkkk

DF(JWA(Z ′, ∅, Γ))
[−]det

//

[[−]]deti

��

T det
Z′

`JWA(Z ′, ∅, Γ)

T det
Z′

[[−]]deti

��

Sdet
Z′ Ri

ǫιRi
uukkkkkkkkkkkkkkkk

T det
Z′ Sdet

Z′ Ri
γdet

Z′
Ri

oo

διǫιRi
))TTTTTTTTTTTTTTT

SZRi TZSZRiγ
Z

Ri

oo

(19)

The top part of (19) is an instance of Lemma 5. The central partis an instance
of diagram (13). As stated in Sect. 7.3,ǫι is a mapping acrossδι, in particular
satisfying (14), which gives us the lower part.

The right part of (19) is obtained by applyingδι horizontally to the left part, and
restricting to terminal commands. So only the left part remains to be proved. It is

40

given by
JWA(Z, Y, Γ)

id

��

u

))SSSSSSSSSSSSSS

JWA(Z, Y, Γ)

[[−]]i

��

DF(JWA(Z ′, ∅, Γ))

[[−]]deti
��

hoo

Sdet
Z′ Ri

ǫιRi
uukkkkkkkkkkkkkkkk

SZRi

(20)

where the top part of (20) is Lemma 7 and the bottom part is Lemma 6. Alterna-
tively the left part of (19) can be proved directly by induction, avoiding the need to
defineh.

7.7 Empty Signatures

We briefly discuss what this adequacy argument reduces to in the case of a language
that has no I/O, i.e. where the input signatureZ is empty. In particular

• the monadT∅ is V 7→ P(V⊥)
• the monadT+

∅ is V 7→ P+(V⊥)
• the moandT det

∅ is V 7→ V⊥

If, moreover, the erratic signatureY is empty, so that the language is deterministic
as in McCusker (1996), thenZ ′ consists of a single unary operatorX. SoT det

Z′ is
V 7→ N × V + {∞}. In this situation, the unhiding transform merely adds aX for
each transition, ensuring that the translation of every term is non-divergent.

This gives a considerably simpler adequacy proof than that provided in (McCusker,
1996), which uses the relational technique of (Pitts, 1996). But each method has its
advantages: only the unhiding proof works for models of infinite trace equivalence,
and only the relational proof works for domain models.

8 The meaning of a non-lively language

8.1 Omni-errors

A valid implementation of an imperative language must execute each primitive
command, such asprint or choose, within a finite time. An implementation that
tarries forever while executing a command is incorrect. Therefore, a language built

41

from a non-lively erratic signature cannot be implemented,as it contains a com-
mand “erratically choose an element of the empty set”, whichcannot be executed.

Nevertheless, such a languagecanbe given operational meaning, using the concept
of omni-errors, as we now explain.

Take any programming language, e.g. Java. LetU be a set, whose elements we call
“omni-errors”. DefineJavaU to be the following nondeterministic language:

• the syntax is that of Java
• the operational semantics is that of Java, except that any program, at any time, is

allowed to throw anyu ∈ U , i.e. to outputu and terminate.

Note thatJava∅ is Java.

Since omni-errors can be thrown byanyterm, they do not affect (any notion of) ob-
servational equivalence. For this reason, the denotational theory ofJavaU is exactly
the same as that of Java. So the setU is denotationally immaterial.

If U is nonempty, then the extension ofJavaU with an empty choice command
can be given operational meaning: to execute empty choice, simply choose some
omni-erroru ∈ U and throw it. We accordingly say that an erratic signatureY (or
a terminable BLTS, or a strategy, or an input signature embedding) is lively with
respect toa setU of omni-errors when eitherY is lively or U is nonempty. This
means that a language that hasbothomni-errors provided byU and erratic choice
provided byY is operationally meaningful.

8.2 Finite traces and infinite trace equivalence

Recall the calculusL(A, Y) from Sect. 2.1. We writeLU(A, Y) for the extension
with a setU of omni-errors.

For a closed termM in L(A, Y), let A, B andC be the sets of finite traces, diver-
gences, and infinite traces ofM , respectively. We define

[M]
def
= (A,B,C)

[M]U
def
= (A × U,B,C) for any setU wrt whichY is lively

If Y is lively wrt U , then[M]U is the set of possible behaviours ofM in the (oper-
ationally meaningful) calculusLU(A, Y), becauseM can

• print somel ∈ A, then throw someu ∈ U
• print somel ∈ B, then diverge
• print somel ∈ C.

42

Proposition 10 Let Y be an erratic signature lively wrt a setU of omni-errors.
Then the kernel of[−]U and the kernel of[−], as equivalence relations on closed
terms inL(A, Y), are the same. 2

This justifies defining “infinite trace equivalence” onL(A, Y) to be the kernel of
[−], as we do in Sect. 2.1.

9 Further Work: General References

The adequacy proof above should be adapted to general references (Abramsky
et al., 1998), but this seems likely to go through smoothly. Furthermore, when gen-
eral references are added to JWA, the results of (Abramsky etal., 1998) ought to
give definability and full abstraction results.

Adapting Prop. 7, it appears that any lively strategy is definable in the presence of
continuum choice. (This assumes that the input signatureZ is countable.) A variant
for general (non-lively) strategies should be straightforward.

For full abstraction, we conjecture that distinct strategies overZ can be distin-
guished by a strategy overZ + {X}, whereX is a unary operator. However, the
semantics for a fixed input signatureZ might not be fully abstract.

References

Abramsky, S., 1983. On semantic foundations for applicative multiprogramming.
In: Dı́az, J. (Ed.), Automata, Languages and Programming, 10th Colloquium.
Vol. 154 of LNCS.

Abramsky, S., Honda, K., McCusker, G., 1998. A fully abstractgame semantics for
general references. In: Proceedings, 13th Annual IEEE Symposium on Logic in
Computer Science. pp. 334–344.

Abramsky, S., McCusker, G., 1998. Call-by-value games. In: Nielsen, M., Thomas,
W. (Eds.), Computer Science Logic: 11th International Workshop Proceedings.
LNCS. Springer, pp. 1–17.

Aczel, P., Ad́amek, J., Milius, S., Velebil, J., 2003. Infinite trees and completely
iterative theories: a coalgebraic view. Theoretical Computer Science 300 (1-3),
1–45.

Brookes, S., 2002. The essence of Parallel Algol. Information and Computation
179.

Broy, M., 1986. A theory for nondeterminism, parallelism, communication, and
concurrency. Theoretical Computer Science 45, 1–61.

Cattani, G. L., Winskel, G., 2003. Presheaf models for CCS-likelanguages. Theo-
retical Computer Science 300 (1-3), 47–89.

43

Escard́o, M., 1998. A metric model of PCF, unpublished research note.
Ghani, N., L̈uth, C., Marchi, F. D., Power, J., 2003. Dualising initial algebras. Math-

ematical Structures in Computer Science 13 (2), 349–370.
Harmer, R., McCusker, G., 1999. A fully abstract game semantics for finite nonde-

terminism. In: 14th Symposium on Logic in Comp. Sci. IEEE.
Hasegawa, M., 1997. Models of sharing graphs :–a categorical semantics of let and

letrec. Ph.D. thesis, University of Edinburgh.
Hyland, J. M. E., Ong, C.-H. L., 2000. On full abstraction for PCF: I, II, and III.

Information and Computation 163 (2).
Jonsson, B., 1994. A fully abstract trace model for dataflow and asynchronous net-

works. Distributed Computing 7 (4).
Lassen, S. B., Levy, P. B., 2007. Typed normal form bisimulation. In: Duparc, J.,

Henzinger, T. (Eds.), Proc., 23rd Conf. on Comp. Sci. and Logic. Vol. 4646 of
LNCS.

Levy, P. B., 2004a. Call-By-Push-Value. A Functional/Imperative Synthesis. Se-
mantic Struct. in Computation. Springer.

Levy, P. B., April 2004b. Infinite trace semantics, Proc., 2ndAPPSEM II Workshop,
Tallinn, Estonia.

Levy, P. B., 2005. Adjunction models for call-by-push-valuewith stacks. Theory
and Applications of Categories 14, 75–110.

Levy, P. B., 2006a. Call-by-push-value: Decomposing call-by-value and call-by-
name. Higher-Order and Symbolic Computation 19 (4), 377–414.

Levy, P. B., 2006b. Infinite trace equivalence. In: Proc., 21st Ann. Conf. in Mathe-
matical Foundations of Comp. Sci., Birmingham, UK, 2005. No. 155 in ENTCS.

McCusker, G., 1996. Games and full abstraction for a functional metalanguage with
recursive types. Ph.D. thesis, University of London.

Møgelberg, R., Simpson, A., 2007. Relational parametricity for computational ef-
fects. In: Proceedings, 22nd IEEE Symposium in Logic in Computer Science.
IEEE Computer Society, pp. 346–355.

Moggi, E., 1991. Notions of computation and monads. Information and Computa-
tion 93.

Moss, L. S., 2001. Parametric corecursion. Theoretical Computer Science 260 (1-
2), 139–163.

Nickau, H., 1996. Hereditarily Sequential Functionals: A Game-Theoretic Ap-
proach to Sequentiality. Shaker-Verlag, diss., Universität Gesamthochschule
Siegen.

Panangaden, P., Russell, J. R., 1989. A category-theoretic semantics for unbounded
indeterminacy. In: Proceedings, 5th Conference on Mathematical Foundations of
Programming Semantics, New Orleans. Vol. 442 of LNCS. pp. 319–332.

Pitts, A. M., 1996. Relational properties of domains. Information and Computation
127.

Plotkin, G., 1983. Domains, prepared by Y. Kashiwagi, H. Kondoh and T. Hagino.
Plotkin, G., Power, J., 2002. Notions of computation determine monads. In: Pro-

ceedings, Foundations of Software Science and Computation Structures, 2002.
Vol. 2303 of LNCS. Springer, pp. 342–356.

44

Plotkin, G. D., Power, A. J., 2001. Adequacy for algebraic effects. LNCS 2030.
Plotkin, G. D., Power, A. J., 2003. Algebraic operations andgeneric effects. Ap-

plied Categorical Structures 11 (1), 69–94.
Roscoe, A. W., 1998. Theory and Practice of Concurrency. Prentice-Hall.
Roscoe, A. W., July 2004. Seeing beyond divergence, presented at BCS FACS

meeting “25 Years of CSP”.
Streicher, T., Reus, B., 1998. Classical logic, continuation semantics and abstract

machines. Journal of Functional Programming 8 (6), 543–572.

45

