Final coalgebras from corecursive algebras

Paul Blain Levy

University of Birmingham

July 13, 2015

Paul Blain Levy (University of Birmingham) Final coalgebras from corecursive algebras

2 Solving the problem

Let \mathcal{A} be a set of labels.

An image-countable \mathcal{A} -labelled transition system consists of

- a set X
- a function $X o (\mathcal{P}_c X)^{\mathcal{A}}$

This is a coalgebra for the endofunctor on Set

$$B : X \mapsto (\mathcal{P}_c X)^{\mathcal{A}}$$

How can we construct a final coalgebra?

- Let *P* be an all-encompassing *B*-coalgebra:
- every element of every B-coalgebra is bisimilar to some element of P.

Then the strongly extensional quotient (quotient by bisimilarity) of P is a final coalgebra.

Examples of all-encompassing coalgebras, for $\mathcal{A}=1$

- (Large) The sum of all coalgebras.
- The sum of all coalgebras carried by a subset of \mathbb{N} .
- The set of non-well-founded terms for a constant and an ω -ary operation.

Hennessy-Milner logic

With countable conjunctions, non-bisimilar states can be distinguished.

$$\phi ::= \bigwedge_{i \in I} \phi_i \mid \neg \phi \mid [a]\phi \quad (I \text{ countable})$$

It's sufficient to take the \diamond -layered formulas.

$$\phi ::= \langle a \rangle \left(\bigwedge_{i \in I} \phi_i \land \bigwedge_{j \in J} \neg \phi_j \right)$$

Semantics in a colagebra (X, ζ)

$$u \models \langle a \rangle \left(\bigwedge_{i \in I} \phi_i \land \bigwedge_{j \in J} \neg \phi_j \right) \\ \longleftrightarrow \\ \exists x \in (\zeta(u))_{a}. (\forall i \in I.x \models \phi_i \land \forall j \in J. x \not\models \psi_j)$$

For a state x, write $(x) = \{\phi \mid x \models \phi\}$. For a formula ϕ , write $[\![\phi]\!]_{X,\zeta} = \{x \in X \mid x \models \phi\}$. For a state x, write $(x) = \{ \phi \mid x \models \phi \}.$

For a formula ϕ , write $\llbracket \phi \rrbracket_{X,\zeta} = \{ x \in X \mid x \models \phi \}.$

Theorem

 $x \simeq y$ iff (x) = (y)

 (\Leftarrow) is soundness.

 (\Rightarrow) is expressivity.

Theorem

 $x \sim y$ iff (x) = (y)

Gives a final coalgebra whose states are sets of formulas.

Take { $(x) \mid (X, \zeta)$ a *T*-coalgebra, $x \in X$ }.

The structure at (x) applies $X \xrightarrow{\zeta} FX \xrightarrow{F(-)} FM$ (Goldblatt; Kupke and Leal)

$\{ \llbracket x \rrbracket_{X,\zeta} \mid (X,\zeta) \text{ a } T\text{-coalgebra, } x \in X \}$

This is very similar to quotienting by bisimilarity.

It is constructed out of general coalgebras.

 $\{ \llbracket x \rrbracket_{X,\zeta} \mid (X,\zeta) \text{ a } T\text{-coalgebra, } x \in X \}$

This is very similar to quotienting by bisimilarity.

It is constructed out of general coalgebras.

Our question

Can we build a final coalgebra purely from the logic, without reference to other coalgebras?

We need to say when a set of formulas is of the form $[x]_{X,\zeta}$.

The functor is $B : X \mapsto (\mathcal{P}^{\mathsf{f}}X)^{\mathcal{A}}$.

Build the canonical model, consisting of sets of formulas deductively closed in the modal logic K.

This is a transition system.

The hereditarily image-finite elements form a final coalgebra.

The functor is $B : X \mapsto (\mathcal{P}^{\mathsf{f}}X)^{\mathcal{A}}$.

Build the canonical model, consisting of sets of formulas deductively closed in the modal logic K.

This is a transition system.

The hereditarily image-finite elements form a final coalgebra.

But what about the image-countable case?

The carrier is the set Form of theories, i.e. sets of \diamond -layered formulas. The structure α : B Form \rightarrow Form is given as follows. For $\mathcal{M} \in B$ Form, the formula $\langle a \rangle (\bigwedge_{i \in I} \phi_i \land \bigwedge_{j \in J} \neg \psi_j)$ is in $\alpha \mathcal{M}$ when there exists $M \in \mathcal{M}a$ such that $\forall i \in I$. $\phi_i \in M$ and $\forall j \in J$. $\psi_j \notin M$. Think of \mathcal{M} as describing the semantics of the successors of a node x, then $\alpha \mathcal{M}$ is the semantics of x. The B-algebra we have just seen is

- corecursive
- injectively structured.

A map from a *B*-coalgebra to a *B*-algebra

Think: to recursively define f(x), first parse x into parts, apply f to each part, then combine the results.

A map from a *B*-coalgebra to a *B*-algebra

Think: to recursively define f(x), first parse x into parts, apply f to each part, then combine the results.

A coalgebra is recursive when there's a unique map to every algebra. Corresponds to well-foundedness. (Taylor)

An algebra is corecursive when there's a unique map from every coalgebra. Our algebra of fomulas sets is corecursive. Let S be a signature, i.e. a set of operations each with an arity.

Let (Y, \ldots) be an *S*-algebra.

An element of Y is co-founded when it is of the form $c(y_i | i \in ar(c))$ with each y_i co-founded.

This is a coinductive definition.

Let S be a signature, i.e. a set of operations each with an arity.

Let (Y, \ldots) be an *S*-algebra.

An element of Y is co-founded when it is of the form $c(y_i | i \in ar(c))$ with each y_i co-founded.

This is a coinductive definition.

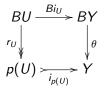
We shall generalize this to B-coalgebras

where B is an endofunctor on **Set** preserving injections.

The co-founded part of an algebra

Starting with a *B*-algebra (Y, θ) , we define a monotone endofunction *p* on $\mathcal{P}Y$.

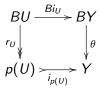
For $U \in \mathcal{P}Y$ with inclusion $i_U : U \to Y$, we have



The co-founded part of an algebra

Starting with a *B*-algebra (Y, θ) , we define a monotone endofunction *p* on $\mathcal{P}Y$.

For $U \in \mathcal{P}Y$ with inclusion $i_U : U \to Y$, we have



This is a monotone endofunction on $\mathcal{P}Y$.

A prefixpoint of p is a subalgebra of (Y, θ) .

The greatest postfixpoint νp is called the co-founded part of (Y, θ) .

It is a surjectively structured algebra, in fact the coreflection of (Y, θ) into surjectively structured algebras.

Claim The (co-founded part)⁻¹ of our algebra is a final coalgebra, and the least subalgebra is an initial algebra.

Claim The (co-founded part)⁻¹ of our algebra is a final coalgebra, and the least subalgebra is an initial algebra.

- The co-founded part of a corecursive algebra (Y, θ) is corecursive.
- If (Y, θ) is injectively structured, the co-founded part is injectively and surjectively structured, hence bijectively structured.
- Any isomorphically structured corecursive algebra gives us a final coalgebra.
- If (Y, θ) is injectively structured, then its least subalgebra is an initial algebra. (Adámek and Trnková)

Let *B* be an endofunctor on **Set** preserving injections. Take an injectively structured, corecursive *B*-algebra. Its (co-founded part)⁻¹ is a final *B*-coalgebra, and its least subalgebra is an initial *B*-algebra. We can improve and generalize this recipe

using Klin's framework of expressive modal logic on a dual adjunction.

What is an adjunction between C and D^{op} ?

$\begin{array}{l} \hline \text{Definition of dual adjunction} \\ \hline \text{Functors } \mathcal{O}_* \ : \ \mathcal{C}^{^{\text{op}}} \to \mathcal{D} \ \text{and} \ \mathcal{O}^* \ : \ \mathcal{D}^{^{\text{op}}} \to \mathcal{C}, \ \text{and} \\ \\ \mathcal{C}(X, \mathcal{O}^* \Phi) \ \cong \ \mathcal{D}(\Phi, \mathcal{O}_* X) \qquad \text{natural in } X \in \mathcal{C}^{^{\text{op}}}, \Phi \in \mathcal{D}. \end{array}$

Alternative definition of dual adjunction

A functor $\mathcal{O} \ : \ \mathcal{C}^{^{\mathsf{op}}} \times \mathcal{D}^{^{\mathsf{op}}} \to \mathbf{Set}$ (aka bimodule, profunctor), and

 $\mathcal{C}(X,\mathcal{O}^{*}\Phi) \;\cong\; \mathcal{O}(X,\Phi) \;\cong\; \mathcal{D}(\Phi,\mathcal{O}_{*}X) \quad \text{ natural in } X \in \mathcal{C}^{^{\mathrm{op}}}, \Phi \in \mathcal{D}.$

Dual adjunction for satisfaction relations

Consider this dual adjunction between Set and Set.

$$\operatorname{Set}(X, \mathcal{P}\Phi) \cong \operatorname{Rel}(X, \Phi) \cong \operatorname{Set}(\Phi, \mathcal{P}X)$$

Suppose X carries a coalgebra and Φ is the set of formulas.

 $(-) \leftrightarrow \models \leftrightarrow \llbracket - \rrbracket$

Dual adjunction for satisfaction relations

Consider this dual adjunction between Set and Set.

$$\operatorname{Set}(X, \mathcal{P}\Phi) \cong \operatorname{Rel}(X, \Phi) \cong \operatorname{Set}(\Phi, \mathcal{P}X)$$

Suppose X carries a coalgebra and Φ is the set of formulas.

 $(-) \leftrightarrow \models \leftrightarrow [-]$

Intuitions

- An object $X \in C$ is a set of states.
- An object $\Phi \in \mathcal{D}$ is a set of formulas.
- $\mathcal{O}(X, \Phi)$ is the set of satisfaction relations.
- \mathcal{O}_*X is the set of predicates on X.
- $\mathcal{O}^*\Phi$ is the set of theories of Φ .

The syntax is represented by an endofunctor L on \mathcal{D} .

 $L\Phi$ is the set of single-layer formulas with atoms in Φ .

Example: \diamondsuit -layered formulas

 \mathcal{D} is Set.

 $L\Phi$ is the set of formulas

$$\langle \mathsf{a} \rangle \; (\bigwedge_{i \in I} \phi_i \wedge \bigwedge_{j \in J} \neg \psi_j)$$
 $(\phi_i, \psi_j \in \Phi)$

More concisely $L\Phi = \mathcal{A} \times \mathcal{P}_c \Phi \times \mathcal{P}_c \Phi$.

The set of formulas form an initial *L*-algebra.

 $L\Phi$ is the set of single-layer formula with atoms in Φ .

BX is the set of single-step behaviours ending in a state in X.

 $L\Phi$ is the set of single-layer formula with atoms in Φ .

BX is the set of single-step behaviours ending in a state in X.

The semantics is given by a map

 $\rho_{X,\Phi} \ : \ \mathcal{O}(X,\Phi) \to \mathcal{O}(BX,L\Phi) \text{ natural in } X \in \mathcal{C}^{^{\mathrm{op}}}, \Phi \in \mathcal{D}^{^{\mathrm{op}}}$

 $L\Phi$ is the set of single-layer formula with atoms in Φ .

BX is the set of single-step behaviours ending in a state in X.

The semantics is given by a map

 $\rho_{X,\Phi} \ : \ \mathcal{O}(X,\Phi) \to \mathcal{O}(BX,L\Phi) \text{ natural in } X \in \mathcal{C}^{^{\mathrm{op}}}, \Phi \in \mathcal{D}^{^{\mathrm{op}}}$

Example: \diamondsuit -layered formulas

$$s(\rho_{X,\Phi}(\models))\langle a\rangle \ (\bigwedge_{i\in I} \phi_i \land \bigwedge_{j\in J} \neg \psi_j)$$
$$\Leftrightarrow$$
$$\exists x \in s_a. \ (\forall i \in I.x \models \phi_i \land \forall j \in J. \ x \not\models \psi_j)$$

Given an endofunctor B on $\mathcal{C},$ a modal logic consists of

- a dual adjunction $(\mathcal{D},\mathcal{O})$ to \mathcal{C}
- (syntax) an endofunctor L on \mathcal{D}
- (semantics) a natural transformation $\rho_{X,\Phi}$: $\mathcal{O}(X,\Phi) \rightarrow \mathcal{O}(BX,L\Phi)$

The semantics can be expressed in terms of \mathcal{O}_* :

$$\rho_*^X : L\mathcal{O}_*X \to \mathcal{O}_*BX$$

And it can be expressed in terms of \mathcal{O}^* :

$$\rho_{\Phi}^*$$
 : $B\mathcal{O}^*\Phi \to \mathcal{O}^*L\Phi$

The semantics can be expressed in terms of \mathcal{O}_* :

$$\rho_*^X : L\mathcal{O}_*X \to \mathcal{O}_*BX$$

And it can be expressed in terms of \mathcal{O}^* :

$$\rho_{\Phi}^*$$
: $B\mathcal{O}^*\Phi \to \mathcal{O}^*L\Phi$

Expressiveness (Klin)

Suppose C =**Set**, and *B* preserves injections.

The modal logic is expressive when ρ_{Φ}^* is injective for all Φ .

Let B be an endofunctor on **Set** preserving injections.

Let $(\mathcal{D}, \mathcal{O}, L, \rho)$ be an expressive modal logic, with an initial *L*-algebra. Then the *B*-algebra

$$\mathcal{BO}^*\mu L \to \mathcal{O}^*L\mu L \cong \mathcal{O}^*\mu L$$

is corecursive and injectively structured.

Let B be an endofunctor on **Set** preserving injections.

Let $(\mathcal{D}, \mathcal{O}, L, \rho)$ be an expressive modal logic, with an initial *L*-algebra. Then the *B*-algebra

$$\mathcal{BO}^*\mu L \to \mathcal{O}^*L\mu L \cong \mathcal{O}^*\mu L$$

is corecursive and injectively structured.

So its $(coinductive part)^{-1}$ is a final *B*-coalgebra

and its least subalgebra is an initial B-algebra.

Generalizing from $\ensuremath{\textbf{Set}}$ to other categories with a suitable factorization system

e.g. **Poset** and **Set**^{op}.

We can construct a final coalgebra purely from a modal logic.

We can construct a final coalgebra purely from a modal logic.

Question

The coinductive part is a greatest postfixpoint.

At what ordinal is it reached?

We can construct a final coalgebra purely from a modal logic.

Question

The coinductive part is a greatest postfixpoint.

At what ordinal is it reached?

If *B* preserves arbitrary intersections, it's ω .