
A monad for full ground reference cells
Ohad Kammar∗†§, Paul B. Levy‡, Sean K. Moss†¶, and Sam Staton∗

∗University of Oxford Department of Computer Science
†University of Cambridge §Computer Laboratory and ¶Department of Pure Mathematics and Mathematical Statistics

‡University of Birmingham School of Computer Science

Abstract—We present a denotational account of dynamic
allocation of potentially cyclic memory cells using a monad on
a functor category. We identify the collection of heaps as an
object in a different functor category equipped with a monad for
adding hiding/encapsulation capabilities to the heaps. We derive
a monad for full ground references supporting effect masking by
applying a state monad transformer to the encapsulation monad.
To evaluate the monad, we present a denotational semantics for
a call-by-value calculus with full ground references, and validate
associated code transformations.

I. INTRODUCTION

Linked lists are a common example of a dynamically
allocated, mutable, and potentially cyclic data type involving
three sorts of memory cell.
• linked list cells store values of type 1 + reflist cell,
i.e. a variant that is either a NIL value or a pointer to a
list cell;
• list cell cells store values of type refdata∗reflinked list,
i.e. a pair of pointers to a data payload and another list; and
• data cells store values of type bool, i.e., a single bit.
Such reference cells, that may contain references to other
references and create cycles, but may not store functions and
thunks, are called full ground references [25].

Here we develop a denotational semantics for languages
with full ground storage in which types denote sets-with-
structure and program terms denote structure-preserving func-
tions. When dynamic allocation is involved, such a semantics
typically uses functor categories and is called possible-world
semantics, e.g. [27], [28], [30], [33]. To motivate the functorial
structure of types, consider the type of linked list and
note that unless a memory cell has been previously allocated,
the empty list is the only possible value of this type. As we
allocate new cells, our programs can access more linked lists,
and the type of linked lists is functorial in worlds: collections
of previously allocated memory locations.

Our work builds on Moggi’s [23] theory of computational
effects and monads. Moggi [24] gave monads for dynamic
allocation of names and dynamically allocated ground storage,
where the range of storable values does not change between
worlds, such as refdata cells, which only store a bit, regardless
of what memory locations have been previously allocated.
Plotkin and Power [30] give a different monad for ground
storage on the same functor category as Moggi. Their monad
is Hilbert-Post complete with respect to the expected first-
order program equivalences [34]. Ghica’s masters thesis [10]

pioneered a functor category semantics for Idealised Algol
extended with pointers, where dangling pointers played a
crucial role in the model. The monad we propose here supports
full ground storage for ML-like references without dangling
pointers and validates the expected first-order program equiv-
alences.

Possible-world semantics for local storage typically involves
heaps, which assign a value of the appropriate type to each
of a given set of locations. The situation is straightforward
in the (ordinary) ground case, as heaps collect into a functor
contravariant in worlds, with the functorial action given by
projection. However, when heaps may contain cyclic data, this
functorial action is ill-defined. For example, projecting a heap
containing a cyclic list with two cells into a world containing
only a single cell reference results in a dangling pointer.

We give a functorial action on heaps by defining the
category of initialisations. Its objects are worlds, and its mor-
phisms are world morphisms together with initialisation data:
a specified value for each of the newly added locations in the
codomain. The collection of heaps is functorial with respect
to initialisations, and moreover, there is a way to transform
monads over functors from initialisations into monads over
functors from ordinary worlds, equipping the transformed
monad with operations for mutating and dereferencing point-
ers.

We choose a specific monad over functors from initialisa-
tion which supports hiding capabilities. Adding this hiding
capability to the heaps object gives the generalisation of
the contravariant action given by projection in the (ordinary)
ground case. The monad for full ground references is given
by transforming the hiding monad in the aforementioned way.
We define an allocation operation on this resulting monad.

To evaluate the suitability of this monad for modelling
reference cells, we use three yardsticks. First, we prove this
monad has the effect masking property: the global elements
of the monad applied to a constant functor factor uniquely
through the unit of the monad. We interpret this result as
stating that computations that do not leak references are
semantically equivalent to pure values. Second, we use the
monad to give adequate semantics to a total call-by-value
calculus with full ground references. Finally, we show that
the axioms for (non-full) ground references [30], [34] hold in
this model.

We compare several existing semantic approaches to the
denotational semantics of reference cells, to place the possible-
worlds semantics in context.978-1-5090-3018-7/17/$31.00 c©2017 IEEE

Relational models: In these models [2]–[4], [7], heaps
may associate to a location values of any type, and the
semantics is given non-functorially. Semantic equivalence in
these models does not validate some of the basic intended
equations, such as:

let x = new true in true ≡ true

These models define, in addition, a logical relations interpre-
tation, and being related by this relation implies contextual
equivalence [12]. We then validate the equations of interest
with respect to this relation. Contrasted with the semantics
we present here, relational models are much simpler, and as a
consequence they can model richer collections of effects than
what we consider here.

Step-indexing models: The key property of full ground
storage is that, when initialising a new cell, all the information
we need in order to determine its value is in the target world.
In contrast, when references can hold functions or thunks,
we also need to store the way such higher-order values will
behave in future worlds, leading to a potential cyclicity in
the semantics. Step-indexing models introduce a well-founded
hierarchy on worlds that breaks this circularity. Step-indexing
semantics to general references is given syntactically [1],
[5], [8], or relationally [5], [6]. We hope that synthesising
our technique with step-indexing models or other recursive-
domain techniques would allow us to resolve the circularity
in possible worlds and extend our model structure to general
references.

Games models: Game semantics is especially well-suited
for modelling local state in the presence of higher-order
functions, and full ground state is no exception [25]. In
game semantics, program terms denote strategies: dialogues
between a Player — the program — and an Opponent —
its environment. In such models the semantics of the heap
is implicit (though, cf. nominal game semantics [36]), and
manifest in the abilities of the Opponent. In contrast, in a
sets-with-structure semantics, the heaps are fully explicit. In
particular, it might be difficult to semantically decompose
a game semantics into a monad over a bi-cartesian closed
category for modelling pure languages.

To keep the discussion precise, we give two (general) points
of comparison between the two kinds of semantics. The sets-
with-structure semantics we present here does not validate
some equations at higher types that a game semantics would
normally validate, for example:

` λ : 1.true
≡ let x = new true in λ : 1. ! x

The reason is that the semantics allows us to inspect, for
example, whether a value depends on references [29], [34].

In contrast, a sets-with-structure semantics makes it easier
to exploit that some types are uninhabited, for example, to
prove that in a total call-by-value language:

x : 1→ 0 ` true ≡ false : bool

where 0 is the empty type. There are currently no call-by-value
game-semantics for a total language that validate this equation.
It might be possible to develop such a model, but it would be
a less natural game semantics, as these have partiality wired
in.

Parametric models: Using the semantic machinery
needed to interpret parametric polymorphism, Reddy and
Yang [31] give semantics to full ground storage. Each type
denotes a functor that has at every world, in addition to the set
of values at that world, a relation between those values. These
facilitate semantic universal and existential quantification over
worlds both at the level of types and terms. This model also
makes use of dangling pointers. We hope further work would
clarify how the extra semantic structure in such parametric
models relates to our models.

Contribution:
1) We give a new monad for full ground storage over the

category of functors from worlds and their morphisms
into sets and functions.

2) We identify the collection of heaps as a functor from
worlds and initialisations.

3) We decompose our full ground storage monad into a
global state transformer applied to a monad for encap-
sulation.

4) We evaluate the monad in three ways:
a) We prove the full ground storage monad satisfies the

effect masking property.
b) We use the monad to give adequate denotational se-

mantics to a total call-by-value calculus for full ground
storage.

c) We show this model satisfies the usual equations for
ground storage.

The rest of the paper is structured as follows. Sec. II
defines full ground storage through the syntax and operational
semantics of a calculus, and highlights where the semantic
structure we expose appears in the operational account. Sec. III
reviews the category-theoretic background and concepts we
need for our development. Sec. IV defines the category of
worlds and the category of initialisations. Sec. V gives an
explicit formula for the full ground references monad. Sec. VI
decomposes the monad into a state transformed monad for
encapsulation, and uses this decomposition to analyse both
the encapsulation monad and the full ground storage monad.
Sec. VII returns to the calculus of Sec. II, uses our monad
to give denotational semantics to this calculus, and uses its
adequacy to validate that the program equations for (ordinary)
ground state carry over to the full ground setting. Sec. VIII
concludes.

II. FULL GROUND STORAGE

Our formalism consists of two parts. First, we fix the
description of the storable data structures in a well-founded
way. We then define the syntax, type system, and semantics
of programs that manipulate data structures involving those
types.

The first component is a (typically countable) set S whose
elements c are called cell sorts. Given S, we define the set
GS of full ground types γ given inductively by

γ ::= 0 | γ1 + γ2 | 1 | γ1 ∗ γ2 | ref c

We omit the superscript in GS, and other superscripts and
subscripts, wherever possible. The second component is a
function ctype : S → G assigning to each sort its content
type: the type of values stored in cells of this sort.

Example 1. To capture the example from the introduc-
tion, choose S B {linked list, list cell, data} and set
ctype c, c ∈ S, as in the introduction.

A full ground storage signature is a pair Σ =
〈
SΣ, ctypeΣ

〉
of such a set and a content type assignment for it. We can view
a full ground storage signature as an abstract description of a
sequence of top-level data declarations. Fix such a signature
Σ for the remainder of this manuscript.

A. Syntax
Fig. 1 presents the λΣ

ref -calculus, our subject of study. We
let x range over a countable set of identifiers, and ` range over
a countably infinite set L of locations. The occurrences of x’s
in the following constructs are binding: function abstraction,
non-empty pattern matching, and allocation. It is a standard
call-by-value Church-style, higher-order calculus. We shade
the parts specific to references.

We include reference literals ` which will inhabit the
reference types ref c. The core of high-level languages like ML
does not usually have global memory locations. However, in
our core calculus we will include values for references for two
reasons. First, having values for references makes the opera-
tional semantics straightforward and similar in appearance to
the natural global state semantics. Second, the resulting calcu-
lus enables us to present some program equivalences involving
distinct memory locations without introducing additional type
constructors. The decision to include memory locations in
the base language is common practice in operational and
denotational semantics for local state [4], [7], [20], [33].

The assignment and dereferencing constructs are standard.
We use a non-standard allocation operation [20] which allows
the simultaneous initialisation of a cyclic structure. Each of the
initialisation values vi has access to each of the other newly
allocated references x1, . . . , xn. We require the initialisation
data to be given as values. Allowing computation at this point
would be unsound, as an arbitrary computation may try to
dereference the yet-uninitialised locations.

We will make use of the following syntactic sugar:

let (x : τ) = t in s ≡ (λx : τ.s) t
newct ≡ let (x : ctype c) = t in

letref (y : ref c) := x in y
(t1, . . . , tn) ≡ (t1, (· · · , tn))
τ1 ∗ · · · ∗ τn ≡ τ1 ∗ (· · · ∗ τn)

When it is clear from the context, we omit type annotations.
With these conventions in place, the examples in the introduc-
tion are special cases of full ground storage.

τ ::= types
ref c reference
| 0 empty
| τ1 + τ2 binary sum
| 1 unit
| τ1 ∗ τ2 binary product
| τ1 → τ2 function
v ::= values
` location
| x identifier
| injτ1+τ2

i v sum constructor (i = 1, 2)
| () unit
| (v1, v2) pair
| λx : τ.t function abstraction
t, s ::= terms
` location
| x identifier
| injτ1+τ2

i t sum constructor (i = 1, 2)
| () unit
| (t, s) pair
| λx : τ.t function abstraction
| match twith {}τ pattern matching: empty
| match twith binary
{inj1x1 7→ s1

| inj2x2 7→ s2}
| match twith (x1, x2) 7→ s products
| t s function application
| t := s assignment
| ! t dereferencing
| letref allocation

(x1 : ref c1) := v1,
...
(xn : ref cn) := vn

in t

Fig. 1: The types and syntax of λΣ
ref

Example 2. We allocate a cyclic list: 42 inj2 (,)
cyclic listletref

(payload : refdata) := 42,
(cyclic list: reflinked list) := inj2head,
(head : reflist cell) := (payload, cyclic list)

in cyclic list

Our type-system needs to associate a sort to each location
literal ` the program may use. A heap layout w is a partial
function with finite support w : L ⇀fin S. We write
{`1 : c1, . . . , `n : cn} for the heap layout whose support is
w B {`1, . . . , `n} defined by w(`i) = ci. When w(`) = c,
we write (` : c) ∈ w. We write w ≤ w′ when w′ extends w.
Layout extension is thus a partial order. Heap layouts are a
standard abstraction and appear under different names: state-
types [4], [7], and location worlds [31].

Typing contexts Γ are partial functions with finite support
from the set of identifiers to the set of types. We use the list-

Γ `w ` : ref c
((` : c) ∈ w)

Γ `w x : τ
((x : τ) ∈ Γ)

Γ `w t : τi

Γ `w injτ1+τ2
i t : τ1 + τ2

(i ∈ {1, 2})
Γ `w () : 1

Γ `w t1 : τ1 Γ `w t2 : τ2

Γ `w (t1, t2) : τ1 ∗ τ2
Γ, x : τ `w t : τ ′

Γ `w λx : τ.t : τ → τ ′

Γ `w t : 0

Γ `w match twith {}τ : τ

Γ `w t : τ1 + τ2 Γ, x1 : τ1 `w s1 : τ Γ, x2 : τ2 `w s2 : τ

Γ `w match t with {inj1x1 7→ s1 | inj2x2 7→ s2} : τ

Γ `w t : τ1 ∗ τ2 Γ, x1 : τ1, x2 : τ2 `w s : τ ′

Γ `w match twith (x1, x2) 7→ s : τ ′

Γ `w t : τ → τ ′ Γ `w s : τ

Γ `w t s : τ ′

Γ `w t : ref c Γ `w s : ctype c

Γ `w t := s : 1

Γ `w t : ref c

Γ `w ! t : ctype c

for i = 1, . . . , n:

Γ, x1 : ref c1 , . . . , xn : ref cn `w vi : ctype ci

Γ, x1 : ref c1 , . . . , xn : ref cn `w t : τ

Γ `w letref (x1 : ref c1) := v1,

...

(xn : ref cn) := vn in t : τ

Fig. 2: The inductive definition of the typing relation of λΣ
ref

like notation Γ, x : τ for the extension of Γ by the assignment
x 7→ τ , and the membership-like notation (x : τ) ∈ Γ to
state that Γ(x) = τ . The type system is given in Fig. 2 via
an inductively defined quaternary relation Γ `w t : τ between
contexts Γ, layouts w, terms t, and types τ .

Location literals ` are limited to the locations in the layout
w, which does not change throughout the typing derivation. To
assign, the type of the assigned value needs to match the sort
of the reference, and similarly the type of the dereferenced
value matches that of the reference. Finally, for allocation, the
initialisation values may refer to each of the newly allocated
references, as does the remainder of the computation.

By construction, every typeable term has a unique type in
a given context.

A value substitution θ is a partial function with finite support

from the set of identifiers to values. Defining capture avoiding
substitution t[θ] and proving the substitution lemma is standard
and straightforward. In the sequel we will hand-wave around
the standard issues with α-equivalence, and omit the standard
freshness conditions on bound variables.

Finally, the type system is monotone with respect to layout
extension: Γ `w t : τ , and w′ ≥ w implies Γ `w′ t : τ .
In particular, if we define τw to be the set of closed values
of type τ assuming layout w, τw is functorial in w in the
following sense: for every w ≤ w′, τw ⊆ τw′.

B. Operational semantics

We present a big-step operational semantics. We expect
a small-step semantics or stack-machine semantics to be
similarly straightforward.

An untyped heap η is a partial function with finite support
wη from L to values. A typed heap η consists of a pair of a
layout wη , and a function from the set of locations in wη to
values that assigns to every (` : c) ∈ wη a well-typed closed
value: `wη η(`) : ctype c. We denote the set of heaps with
layout w by Hw. For every layout w, an untyped heap can be
turned into a typed heap from Hw in at most one way. Note
that Hw is not functorial with respect to layout extension:
there is no obvious way to turn an arbitrary heap in Hw into
a heap in Hw′ for every w′ ≥ w.

A configuration is a pair 〈t,η〉 consisting of a term t and an
untyped heap η. A terminal configuration is one whose term is
a value. We say that a sequence of locations `1, . . . , `n is fresh
for layout w, and write #w 〈`1, . . . , `n〉, when the locations
are pairwise distinct and collectively disjoint from w’s support.
Fig. 3 defines the evaluation relation 〈t,η〉 ⇓ 〈v,η′〉 between
configurations and terminal configurations.

Locations, as values, are fully evaluated. Assignment up-
dates the heap, and dereferencing retrieves the appropriate
value from the heap. The rule for allocation requires the newly
allocated locations to be fresh for the current heap, and then
extends the heap with the given initialisation values with the
new locations substituted in. It then carries the execution in
the body of the allocation with those new locations substituted
in. As the only requirement of the new location is to be fresh,
this semantics is not deterministic, and a phrase might evaluate
to several different configurations with different heap layouts.

We prove Felleisen-Wright soundness for λΣ
ref .

Theorem 1 (preservation). Evaluation preserves typeability:
for every well-typed closed term `w t : τ and for every w1 ≥
w and η1 ∈ Hw1, if 〈t,η1〉 ⇓ 〈v,η2〉, then there is some
w2 ≥ w1 such that `w2

v : τ and η2 ∈ Hw2.

The proof is by straightforward induction on the evaluation
relation after strengthening the induction hypothesis to closed
substitutions in open terms.

Theorem 2 (totality). All well-typed closed programs fully
evaluate: for every `w t : τ , w1 ≥ w and η1 ∈ Hw1 there
exist some w2 ≥ w1, `w2 v : τ , and η2 ∈ Hw2 such that
〈t,η1〉 ⇓ 〈v,η2〉.

〈`,η〉 ⇓ 〈`,η〉
〈t,η〉 ⇓ 〈v,η′〉〈

injτ1+τ2
i t,η

〉
⇓
〈
injτ1+τ2

i v,η′
〉

〈(),η〉 ⇓ 〈(),η〉
〈t1,η〉 ⇓ 〈v1, η̂〉 〈t2, η̂〉 ⇓ 〈v2,η

′〉
〈(t1, t2),η〉 ⇓ 〈(v1, v2),η′〉

〈λx : τ.t,η〉 ⇓ 〈λx : τ.t,η〉

〈t,η〉 ⇓
〈
injτ1+τ2

i v̂, η̂
〉

〈si[xi 7→ v̂], η̂〉 ⇓ 〈v,η′〉
〈match twith {inj1x1 7→ s1 | inj2x2 7→ s2},η〉 ⇓ 〈v,η′〉

〈t,η〉 ⇓ 〈(v1, v2),η′〉
〈s[x1 7→ v1, x2 7→ v2],η′〉 ⇓ 〈v,η′′〉

〈match twith (x1, x2) 7→ s,η〉 ⇓ 〈v,η′′〉

〈t,η〉 ⇓ 〈λx : τ.t′,η1〉 〈s,η1〉 ⇓ 〈v′,η2〉
〈t′[x 7→ v′],η2〉 ⇓ 〈v,η′〉
〈t s,η〉 ⇓ 〈v,η′〉

〈t,η〉 ⇓ 〈`, η̂〉 〈s, η̂〉 ⇓ 〈v,η′〉
〈t := s,η〉 ⇓ 〈(),η′[` 7→ v]〉

(` ∈ wη′)

〈t,η〉 ⇓ 〈`,η′〉
〈! t,η〉 ⇓ 〈η′(`),η′〉

(` ∈ wη′)

〈
t[θ],η

[
`i 7→ vi[θ]

]n
i=1

〉
⇓ 〈v,η′〉

where θ B [xi 7→ `i]
n
i=1

〈 letref

(x1 : ref c1) := v1,

...

(xn : ref cn) := vn in t

,η

〉
⇓ 〈v,η′〉

(#wη
〈`1, . . . , `n〉)

Fig. 3: The operational semantics of λΣ
ref

The proof is standard using Tait’s method [35] and Kripke
logical predicates, and a w-indexed predicate on Hw that is
not Kripke, as Hw is not functorial in layout extensions.

We focus on the following aspects from the allocation case
in the course of this proof. In that case, the allocation construct
is typed with respect to heap layout w, but operates on a
heap with an extended layout w ≤ w′. We can find fresh
locations `1, . . . , `n, and then form the following square of
layout extensions

w ≤ w ⊕{`1 : c1, . . . , `n : cn}≤ ≤

w′ ≤ w′⊕{`1 : c1, . . . , `n : cn}

where the operation ⊕ denotes layout extension by the given
locations and sorts. The initialisation data in the allocation
construct is given for the top extension. The crucial step in the
proof in this case is that we can transform this initialisation
data into initialisation data for the extension in the bottom row.
Applying this transformed initialisation data on the given heap
is precisely the functorial action of the collection of heaps.

C. Observational equivalence

To define observational equivalence, we need a few more
technical definitions. Let Γ, Γ′ be two typing contexts. We
say that Γ′ extends Γ, and write Γ′ ≥ Γ when Γ′ extends Γ
as a function from identifier names to types. In the sequel we
write Γ `w t, s : τ to indicate that the quintuple 〈Γ, w, t, s, τ〉
belongs to the quinary relation given by the conjunction Γ `w
t : τ and Γ `w s : τ .

Consider any two terms Γ `w t, s : τ . We define the
set of contexts plugged with Γ `w t, s : τ , which we denote
by C[Γ `w t, s : τ], as the smallest quinary relation jointly
compatible with the typing rules that contains the quintuples
〈Γ′, w′, t, s, τ〉 for every Γ′ `w′ t, s : τ , Γ′ ≥ Γ, and w′ ≥ w.

We say that two terms Γ `w t1, t2 : τ are observationally
equivalent when for all closed boolean plugged contexts `w′
s1, s2 : bool ∈ C[Γ `w t1, t2 : τ], heaps η′ ∈ Hw′ and
boolean values ` v : bool, we have:

∃η1(〈s1,η
′〉 ⇓ 〈v,η1〉) ⇐⇒ ∃η2(〈s2,η

′〉 ⇓ 〈v,η2〉)

Note that by the Preservation Theorem 1, if such heaps ηi
exist, they can be typed.

III. PRELIMINARIES

We assume familiarity with categories, functors, and natural
transformations. We denote by Set the category of sets and
functions. Let C be a small category. We denote the category
of functors X,Y : C → Set and natural transformations
between them by [C,Set]. As we will interpret types in such
a category, we recall its bi-cartesian closed structure: its sums
and products are given component-wise, and the exponential is
given by an end formula (see below). We assume familiarity
with ends and coends over Set, which we will use in the
explicit description of the full ground storage monad. To fix
terminology and notation, given a mixed variance functor
P : Cop×C→ Set, we denote its end and its ending wedge
as follows, for all w′ ∈ C:

πw′ :

∫
w∈C

P (w,w)→ P (w′, w′)

We denote its coend and its coending wedge as follows:

qw′ : P (w′, w′)→
∫ w∈C

P (w,w)

Consider any functor u : E → W between two
small categories. Precomposition with u induces a functor
u∗ : [W,Set]→ [E,Set]. By generalities, this functor has
a right adjoint u∗ : [E,Set] → [W,Set] called the right
Kan extension along u, which we will use to establish the

existence of the monoidal strength structure for our monad.
Let w ∈ W be an object in W. We will use the following
specific kind of comma category in our ends and coends. The
comma category w ↓ u has as objects pairs 〈e, ρ〉 where
e ∈ E is an object and ρ : w → ue is a morphism in
W. Its morphisms ε : 〈e1, ρ1〉 → 〈e2, ρ2〉 are morphisms
ε : e1 → e2 in E such that uε ◦ ρ1 = ρ2. As we assumed
E and W are small, so is w ↓ u. Precomposition with
the projection functor π : (w ↓ u)→ E turns every mixed
variance functor P : Eop × E → Set into a mixed variance
functor P : (w ↓ u)

op × (w ↓ u) → Set. There is then a
canonical isomorphism:∫

w↓u
P =

∫
〈e,ρ〉∈w↓u

P (e, e) ∼=
∫
e∈E

(P (e, e))W(w,ue)

Also recall the end formula for exponentials in [W,Set]:

XY w ∼=
∫
w′∈W

(Xw′)W(w,w′)×Y w′ ∼=
∫
ρ:w→w′∈w↓idW

(Xw′)(Y w′)

To describe the tensorial strengths for our monads, we
assume familiarity with symmetric monoidal closed cate-
gories, though concretely we will only use a cartesian struc-
ture. The following concept will simplify the presentation of
the strengths. Let W = 〈W,⊗, I, a, l, r〉 be a symmetric
monoidal closed category. A monoidal W-action category,
also known as a W-actegory, is a tuple E = 〈E,�, α, λ〉
where:
• � : W ×E→ E is a two-argument functor;
• αX,Y,A : (X ⊗ Y) � A → X � (Y � A) is a natural

isomorphism; and
• λA : I �A→ A is a natural isomorphism

subject to the following coherence axioms:

αX,Y,Z�A ◦ αX⊗Y,Z,A
= idX � αY,Z,A ◦ αX,Y⊗Z,A ◦ aX,Y,Z � idA

idX � λA ◦ αX,I,A = rX � idA

We say that a W-actegory E is bi-closed if the following two
right adjoints exist:
• − �A a A(− : E→W for every A ∈ E
• X �− a X � − : E→ E for every X ∈W.

We denote the natural bijection of the first adjunction by
curry(

X,A,B : W(X � A,B) → E(X,A (B), its inverse
by uncurry(, and its counit by eval(, and similarly for �.

As the name suggests, a W-actegory is a W-category (W-
enriched category) with the structure permuted:

Theorem ([11], [13]). These data are canonically isomorphic:
• a bi-closed W-actegory E; and
• a W-category E with powers and copowers.

and moreover, the adjoints (and � enrich.

Up to isomorphism, the enrichment is given by the adjoint
(, the copowers by the monoidal action �, and the powers by
the adjoint �. The relevance of W-actegories to our situation
is that the monoidal action in our setting is much simpler than

the enrichment. Working with monoidal actions thus simplifies
many calculations.

Finally, we assume familiarity with monads, formulated as
Kleisli triples. Let T = 〈T, return, >>=〉 be a monad over
a W-actegory E. A tensorial strength for T is a natural
transformation str : X � TA → T (X � A) satisfying the
following coherence axioms:

TλA ◦ strI,A = λTA

strX,Y�A ◦ idX � strY,A ◦ αX,Y,TA = TαX,Y,A ◦ strX⊗Y,A

strX,A ◦ idX � returnA = returnX�A

(>>= idT (X�A)) ◦ T strX,A ◦ strX,TA = strX,A ◦ idX�>>= idTA

Let T and S be two such strong monads. We say that a monad
morphism m : T → S is strong when for all X ∈W, A ∈ E:
mX�A ◦ strX,A = strX,SA ◦ idX � m. When the actegory
is bi-closed, the data for a strong monad and the data for a
W-monad are canonically isomorphic (cf. [15]).

We are now ready to describe the state monad transformer
that will give our monad for reference cells, as a straight-
forward consequence of transforming a monad across the
adjunction −�A a A(− (see also e.g. [22]):

Proposition 3. Let W be a symmetric monoidal closed
category and E be a bi-closed W-actegory. Let A be an object
in E. For every strong monad P over E, we have a strong
monad T = {T, return, >>=, str} over W given by:

TA B A(P (−�A)

returnTX B curry(
X,A,P (A�A)

(
returnPX�A

)
>>=TX,Y f B A((>>=PX�A,Y�A uncurry(

X,A,P (Y�A) f)

strTX,Y B curry(
X⊗TY,A,P ((X⊗Y)�A)

(Pα−1
X,Y,A ◦ strPX,Y�A ◦ (idX � eval(A,P (Y�A)) ◦ αX,TY,A)

and for every strong monad morphism m : P 1 → P 2 we
have a strong monad morphism mT : T1 → T2 between the
corresponding monads, given by:

mT
X B A((mX�A)

W E

−�H

H(−

P>

IV. WORLDS AND INITIALISATIONS

In Sec. II, we arranged the terms and values of λΣ
ref based

on their heap layout assumptions, w, and this arrangement is
functorial with respect to layout extension w ≤ w′. We saw
that heaps also divide based on layouts, but not functorially.
And finally, we highlighted that the proof of the Totality
Theorem 2 makes use of the fact that initialisation data can
be promoted along world extension. We will now expose this
structure semantically.

w−
w+

(a) Heaplets η ∈ H(w−, w+) (b) Heaplet concatenation H⊕

ρ(`1) :

ρ(`2) :

`′3 :

`′4 :

`′5 :

: ι⊕1 `1
: ι⊕1 `2
: ι⊕2 `

′
3

: ι⊕2 `
′
4

: ι⊕2 `
′
5

(c) H(w2
∼=←−w1 ⊕ (w2 	 ρ), w)

uε(`1) :

uε(`2) :
uε(`3) :

(d) Initialisation data

◦ =

(e) Composing init. data

Fig. 4: Heaplets, initialisations, and their operations

A. Worlds

The categoryW of worlds has as objects the heap layouts of
Sec. II, i.e., partial functions w : L⇀fin S with finite support
w ⊆ L. A morphism ρ : w → w′ is an injection ρ : w� w′

such that (` : c) ∈ w implies (ρ(`) : c) ∈ w′. For brevity,
we refer to heap layouts as worlds and to W-morphisms as
(world) injections.

We define several layout-manipulation operations on W.
While we work concretely, these operations can be axioma-
tised by universal properties using Simpson’s independence
structures [32], and we will use his vocabulary as much as
possible.

Let # : N
∼=−→ L be an enumeration of the set of locations.

Given a world w, define |w| to be the smallest index beyond
all the locations in w, i.e. min{n ∈ N|∀i ≥ n.# i /∈ w}. Given
two worlds w1, w2 ∈ W, we can embed their supports into
the following subset of L:

w1 ⊕ w2 B w1 ∪ {# (|w1|+ n)|#n ∈ w2}

by setting ι⊕1 (`) B ` and ι⊕2 (#n) B #(|w1| + n). We
then have that for every ` ∈ w1 ⊕ w2 there is exactly one
i ∈ {1, 2} and `i ∈ wi such that ` = ι⊕i `i. We define
the independent coproduct w1 ⊕ w2 whose support is given
by w1 ⊕ w2 by setting (w1 ⊕ w2)(ι⊕i `) B wi(`). Then
ι⊕i : wi → w1 ⊕ w2 are world injections which we call
the independent coprojections. Moreover, the construction ⊕
extends to a functor ⊕ : W×W→W and each coprojection
is a natural transformation. The independent coproduct is not a
coproduct in W, for example, there is no codiagonal injection
w ⊕ w → w for w = {` : c}. Independent coproducts are
the semantic counterparts to extending a world with fresh
locations.

Given an injection ρ : w1 → w2, its complement is the injec-
tion ρ{ : w2 	 ρ→ w2 whose domain w2 	 ρ := w2 \ Im (ρ)
are all the locations in w2 that ρ misses, and the action of
ρ{ is given by that of w2. There are canonical isomorphisms
w1 ⊕ (w2 	 ρ) ∼= w2 and (w1 ⊕ w2) 	 ι⊕i ∼= w3−i. We use
complements to define initialisation data below.

Given two injections ρi : w → wi, i = 1, 2, we define their
local independent coproduct by

ρ1 ⊕w ρ2 := w ⊕ (w1 	 ρ1)⊕ (w2 	 ρ2)

We have morphisms w1
ρ∗1ρ2−−−→ ρ1 ⊕w ρ2

ρ?2ρ1←−−− w2 such that:

w w2

ρ1 ⊕w ρ2w1

ρ2

ρ1 ρ?2ρ1

ρ∗1ρ2

=

We define the functor category W := [W,Set] in which
we will interpret the types of the λΣ

ref -calculus. We interpret
the full ground types, defining ⟦−⟧ : G→W by:

⟦0⟧ B O ⟦γ1 + γ2⟧ B ⟦γ1⟧+ ⟦γ2⟧
⟦1⟧ B 1 ⟦γ1 ∗ γ2⟧ B ⟦γ1⟧× ⟦γ2⟧

⟦ref c⟧w B {` ∈ w|w(`) = c} (⟦ref c⟧ ρ)` B ρ(`)

We can interpret references more compactly by noting that
⟦ref c⟧ ∼= W({` : c} ,−).

B. Initialisations

The account so far has been standard for possible-world
semantics of local state. We now turn to defining the semantic
counterpart to initialisation data.

Define the mixed-variance functor H : Wop ×W→ Set:

H(w−, w+) B
∏

(`:c)∈w−
⟦ctype c⟧w+

Its contravariant action is given by projection, and its co-
variant action is given component-wise by the actions of
⟦ctype c⟧. Elements of H(w−, w+) are heaplets [26] whose
layout is given by w−, and whose values assume the layout
w+ (Fig. 4a). As in separation logic, heaplets are a composable
abstraction facilitating local reasoning about the heap. This
functor preserves the independent coproducts in the sense that
H(w1 ⊕ w2, w) and H(ι⊕i , w) : H(w1 ⊕ w2, w)→ H(wi, w)
form the product ofH(w1, w) andH(w2, w), and thatH(∅, w)
is the singleton. Consequently, we have canonical isomor-
phisms H∅ : 1

∼=−→ H(∅, w) and, depicted in Fig. 4b,
H⊕ : H(w1, w)×H(w2, w)

∼=−→ H(w1⊕w2, w). Fig. 4c depicts
the contravariant action of H on the canonical isomorphism
w2
∼= w1 ⊕ (w2 	 ρ).

The category E of initialisations has worlds as objects, and
as homsets E(w1, w2) B

∑
ρ:w1→w2

H(w2 	 ρ, w2) whose
elements we call initialisations. Explicitly, an initialisation
ε : w1 → w2 is a pair 〈uε, ηε〉 consisting of an injection

uε : w1 → w2 and a heaplet ηε containing the initiali-
sation data required to transition from heap layout w1 to
w2 (Fig. 4d). This heaplet may contain cyclic dependencies
on the newly added locations, or on locations already present
in w1. Identities idEw in E are given by identities in W, and
formally as

〈
idWw ,H

∅
〉

, as no initialisation data is required.
The composition of two initialisations is given by composing
their underlying injections, and appending their initialisation
data, suitably promoted to the later world (Fig. 4e).

The collection of (semantic) heaps now becomes a repre-
sentable functor H : E→ Set, given at world w by setting

Hw B H(w,w) ∼= E(∅, w)

The latter bijection follows from the canonical isomorphism
w 	 idw ∼= ∅ in W. The functorial action of E(∅,−) then
equips H with a functorial action over initialisations: given a
heap η ∈ Hw1 and an initialisation ε : w1 → w2, promote η
to a heaplet in H(w1, w2), and append the initialisation data
to create a heap in Hw2. Given (` : c) ∈ w, we use projection
to define a look-up operation given for any η ∈ Hw by setting
η(`) B π`η, and an update operation, given for any η ∈ Hw
and x ∈ ⟦ctype c⟧w by setting

η[` 7→ x](`′) B

{
x `′ = `

η(`′) otherwise

w1 ηε

w′ ηρ?ε

Fig. 5: Promoting init. data

Finally, given any injection
ρ : w1 → w′ and initialisation
ε : w1 → w2, the injection
ρ∗uε : w′ → ρ ⊕w1

uε in fact
has an initialisation structure
ρ?ε : w′ → ρ⊕w1

uε, where the
initialisation data ηρ?ε is given
using the isomorphism

(h⊕w1
uε)	 ρ?uε ∼= w2 	 uε

and promotion along uε?ρ. We denote uε?ρ by ε?ρ. This
process is the semantic counterpart for the promotion of ini-
tialisation data we use in the proof of the Totality Theorem 2.

V. THE MONAD

Consider the functor category E := [E,Set], which con-
tains the heaps functor as an object. As we have a forgetful
functor u : E → W projecting out the underlying injection,
we obtain a functor u∗ : W → E given by precomposition.
In the following, consider the cartesian closed structure of W
as a symmetric monoidal closed structure.

We equip E with a bi-closed W-actegory structure:

X �A := u∗X ×A := (X ◦ u)×A

A(B := u∗
(
BA
)

X � A := Au
∗X

αX,Y,A : 〈〈x, y〉, a〉 7→ 〈x, 〈y, a〉〉 λA : 〈?, a〉 7→ a

This structure can be alternatively described as transporting the
self-enrichment of E via the cartesian closed structure along
the geometric morphism 〈u∗, u∗〉 from E to W.

We can give an explicit end formula for the enrichment:

(A(B)w :=

∫
w→w′∈w↓u

(Bw′)Aw
′

πρ′:w2→w′2(A(B)(
w1

ρ↓
w2

)(α) := πρ′◦ρα

πρ:w→w′(curry(
X,A,B f(x))(a) = fw′(Xρx, a)

(eval(X,A)w(α, a)) = πidwα a

We can now give an explicit description of the full ground
storage monad T : W→W. The action on worlds is

(TX)w B

∫
w→w′∈w↓u

(∫ w′→w′′∈w↓u
(X ◦ u)w′′ ×Hw′′

)Hw′
This definition is subtle. First, the argument of the coend
is covariant in w′ → w′′ ∈ w ↓ u, and so this coend
is an ordinary colimit. We keep the coend notation for its
more convenient presentation. The second subtlety is that,
while the inner coend is contravariant in w′, the action with
respect to which we define the outer end is different, and
is in fact covariant in the object w → w′ of the comma
category w ↓ u. To describe it explicitly, take any morphism
ε : 〈w′1, ρ′1〉 → 〈w′2, ρ′2〉 in the comma category, i.e., an
initialisation ε : w′1 → w′2 such that uε ◦ ρ′1 = ρ′2. Consider a
generic element in the coend

∫ w′1→w′′∈w↓u(X ◦u)w′′×Hw′′
namely some qρ(x, η), for some ρ : w′1 → w′′, x ∈ Xw′′ and
η ∈ Hw′′. We promote the initialisation ε to an initialisation
ρ?ε : w′′ → ρ⊕w′1uε, and map the generic element as follows:

qρ(x, η) 7→ quε?ρ:w′2→ρ⊕w′1uε
(X(u(ρ?ε))x,H(ρ?ε)η)

This subtlety is the main conceptual reason for the decomposi-
tion of this monad we present in the next section. We do indeed
use the contravariant action of the coend, implicitly below, and
explicitly in the next section, to define the hiding/encapsulation
operation. This subtlety also appears in the (ordinary) ground
storage monad [30] when defining the functorial action of TX .
The end gives the functorial action in the full ground setting:

(πρ2:w2→w′2(TX(
w1

ρ↓
w2

)α))(η2) = πρ2◦ρ(α)(η2)

The monadic unit is given by (πρ:w→w′ ◦ returnTwx)η B
qidw′ (Xρx, η). Given any morphism f : X → TY in W
and α ∈ TX , define (πρ:w→w′(α >>= f))(η′) = qρ′′◦ρ′(y, η

′′′)
where

(πρα)η′ = qρ′:w′→w′′(x, η
′′)

(πidw′′ ◦ fw′′(x))(η′′) = qρ′′:w′′→w′′′(y, η
′′′)

Define the strength for any x ∈ Xw and α ∈ TXw:

(πρ:w→w′ ◦ strTw(x, α))η′ = qρ′(〈X(ρ′ ◦ ρ)x, y〉 , η′′)

where (πρα)η′ = qρ′′:w′→w′′(y, η
′′). Finally, from the other

definitions we calculate the functorial action of T on any
morphism f : X → Y : (πρ:w→w(Tfα))η′ = qρ′(fw′′(x), η′′)
where (πρα)η′ = qρ′:w′→w′′(x, η

′′).

On this monad we define the state manipulation operations
by setting, for every ρ : w → w′, two E-morphisms:

getc : ⟦ref c⟧→ T ⟦ctype c⟧
(πρ ◦ getc(`))(η1) = qidw′ (η(ρ(`)), η)

setc : ⟦ref c⟧× ⟦ctype c⟧→ T1
(πρ ◦ setc(`, a))(η1)= qidw′ (?, η[ρ(`) 7→ ⟦ctype c⟧ ρa])

To define the allocation operation, first define, for every w0

in W the functor ∂w0
: W → W that evaluates at a later

world, namely ∂w0
X B X(−⊕ w0). Using the isomorphism

ϕ : (w⊕w0)	 ι⊕1 ∼= w0, we can then define the W-morphism
that constructs an initialisation from given initialisation data:

initw0,w :
∏

(`:c)∈w0
∂w0 ⟦ctype c⟧w → E(w,w ⊕ w0)

〈a`〉`∈w0
7→
〈
ι⊕1 ◦ ϕ, 〈aϕ`〉`

〉
and define:

neww0
:
∏

(`:c)∈w0
∂w0⟦ctype c⟧→ T

∏
(`:c)∈w0

⟦ref c⟧
(πρ ◦ neww0

〈a`〉)η1= qε?ρ(〈ε?ρ(`)〉`∈w0
,H(ρ?ε)η1)

where ε B init 〈a`〉.

VI. HIDING AND MASKING

We now analyse the functorial action of the inner coend in
T ’s definition, which is given by a W-strong monad P on E.

A. The hiding monad

Consider any A ∈ E, and define for every w:

PAw B

∫ w→w′∈w↓u
A

Given an extension ρ : w → w′, we think of locations in w′	ρ
as private locations, and of locations in w as public locations.

Example 3. On the left we depict two representatives for
a value in PH {` : data}. The left representative has no
private locations, whereas the right representative has the two
private locations {`0 : linked list, `1 : list cell}. As we
can initialise the right representative from the left, the two
representatives are equivalent.

42 ∼ inj2 (,) 42 inj2 (,) 42

On the right we depict a representative for a value in
PH {` : linked list}, whose private locations are given by
{`0 : list cell, `1 : data}.

The contravariant action of the coend gives, for every
injection ρ : w1 → w2, a function hideρ : PAw2 → PAw1

defined by qρ′:w2→w′(a) 7→ qρ′◦ρ(a) (Fig. 6a). The unit is
given by returnPw B qidw : A → PA (Fig. 6b). For every
g : A→ PB, define >>= g : PA→ PB by (Fig. 6c)

(qρ:w→w′(a) >>= g) B hideρ(gw′(a))

For every initialisation ε : w1 → w2, we derive the functorial
action PAε : PAw1 → PAw2 (Fig. 6d):

PAε(qρ:w1→w′(a)) B qε?ρ(A(ρ?ε)(a))

Finally, for every X ∈W and A ∈ E, define the strength:

str(x, qρ:w→w′(a)) B qρ(〈Xρx, a〉)

Proposition 4. The data P = 〈P, return, >>=, str〉 define a
strong monad over the W-actegory E.

As a consequence of Proposition 3, we obtain a monad over
W, and further calculation using the explicit description of(
shows this monad is the monad T for full ground storage from
the previous section.

B. Effect masking

To evaluate the monad T , we show it can mask hidden
effects. First, we define a semantic criterion for not leaking any
locations. We say that a functor X ∈W is constant when, for
every ρ : w → w′ inW, the function Xρ is a bijection. We say
that a world w is constant if, for every (` : c) ∈ w, the functor
⟦ctype c⟧ is constant. When w is constant, so is every sub-
world ŵ → w, and the covariant action of the partially applied
functor H(w,−) is a natural isomorphism. Given ρ : w → w′,
we can then project any heap in Hw′ to a heap in Hw.

Lemma 5. If w is constant, then the monadic unit is invertible
returnP

H
: Hw

∼=−→ PHw. In particular, PH∅ ∼= 1.

We use this result when we prove the Effect Masking
Theorem 7, as well as when working with concrete examples.

Lemma 6. For every constant functor X ∈ W and every
A ∈ E, the tensorial strength strPX,A is an isomorphism.

While technical, this last result is useful, as it plays the role
of the mono requirement [23] in λΣ

ref ’s adequacy proof.
We can now prove that morphisms that do not leak locations

are denotationally equivalent to pure values:

Theorem 7 (effect masking). For every pair of constant
functors Γ, X ∈ W, every morphism f : Γ→ TX factors
uniquely through the monadic unit:

Γ

X

TX
f

runST f returnT
=

The proof of this theorem is conceptually high-level using
our decomposition of T as H(P (−�H):
Proof sketch:
As Γ is constant, it suffices to prove the theorem for Γ = 1.
Calculate as in Fig. 7, chasing a generic morphism upwards.�

We named the factored morphism runSTf as we can
use it to interpret a monadic metalanguage [23] containing
a construct similar to Haskell’s runST [17].

As usual in functor categories, two different functors may
have the same global elements. Thus, even if TX has the same
global elements as X , for any constant X , the two functors
might differ, for example, for X = 1 and the signature from
Example 1. The fact that T1 6∼= 1 for this signature will be
an immediate consequence of λref ’s adequacy (see Example 4

(a) PAw2
hideρ−−−−→ PAw1 (b) Return (c) Bind: Hw′

gw′−−−→ PHw′ (left), Hw
>>=g−−→ Hw (right)

ηε

P

 =

(d) Functorial action (derived)

Fig. 6: The hiding monad P

1 −→ H(P (X �H) in W

H −→ P (X �H) in E

H −→ X � PH in E, by Lemma 6

E(∅,−) −→ X � PH in E

1 −→ (X � PH)∅ in Set, by Yoneda

1 −→ X∅ in Set, by Lemma 5

1 −→ X in W

Fig. 7: High-level proof of the Effect Masking Theorem 7

below). However, computations that do not assume anything
about the heap nor leak references are pure:

Proposition 8. For every constant X ∈ W, we have
returnTX : X∅

∼=−→ TX∅.

To see why it holds, note that the initiality of ∅ in W means
we can bijectively turn an arbitrary element of TX∅ into a
global element. We then bijectively apply effect masking to
get a global element of X , equivalently an element of X∅,
and further calculation shows the monadic unit induces it.

VII. SEMANTICS FOR FULL GROUND STORAGE

We now return to the λref -calculus.

A. Semantics

Fig. 8 presents the interpretation of λΣ
ref ’s types as functors

in W. It extends the interpretation of full ground types by
interpreting function types using the exponentials in W and
the full ground storage monad T .

We define two semantic functions, for values in Fig. 9 and
for terms in Fig. 10, by induction on typing judgements. These
functions have the following types:

⟦Γ `w v : τ⟧v: W(w,−)× ⟦Γ⟧→ ⟦τ⟧
⟦Γ `w t : τ⟧ : W(w,−)× ⟦Γ⟧→ T ⟦τ⟧

The two semantic functions relate by ⟦v⟧ = returnT ◦ ⟦v⟧v
and consequently we omitted from Fig. 10 the definitions
implied by this relationship. The two interpretations take as
argument a location environment ρ, assigning a location in

⟦ref c⟧w B {` ∈ L|(` : c) ∈ w} ⟦ref c⟧ ρ(`) B `

⟦0⟧ B O ⟦τ1 + τ2⟧ B ⟦τ1⟧+ ⟦τ2⟧ ⟦1⟧ B 1

⟦τ1 ∗ τ2⟧ B ⟦τ1⟧× ⟦τ2⟧ ⟦τ1 → τ2⟧ B (T ⟦τ2⟧)⟦τ1⟧

⟦Γ⟧ B
∏

(x:τ)∈Γ

⟦τ⟧

Fig. 8: Type semantics

⟦`⟧v (ρ, e) B ρ(`) ⟦x⟧v (ρ, e) B e(x)

⟦injτ1+τ2
i v⟧v (ρ, e) B ιi(⟦v⟧v (ρ, e)) ⟦()⟧v (ρ, e) B ?

⟦(v1, v2)⟧v (ρ, e) B 〈⟦v1⟧v (ρ, e), ⟦v2⟧v (ρ, e)〉

⟦λx : τ.t⟧v (ρ, e) B curry ⟦t⟧ (ρ, e)

Fig. 9: Value semantics

the current world for every location in the heap layout the
term assumes, and the more standard (identifier) environment
e, assigning a value of the appropriate type to every identifier
in the type context.

The definition makes use of the symmetry, dual strength,
and the double strength morphisms:

swap B 〈π2, π1〉 : X × Y → Y ×X
str′ B T swap ◦ str ◦ swap : (TX)× Y → T (X × Y)
dstr B (>>= str) ◦ str′ : (TX)× (TY)→ T (X × Y)

The double strength is given explicitly by

(πρ1dstr(α, β))(η1) = qρ3◦ρ2(〈Xρ3x, y〉 , η3)

where (πρ1α)η1 = qρ2(x, η2) and (πρ2◦ρ1β)η2 = qρ3(y, η3).
The value semantics is standard, with locations interpreted

by the location environment. The term semantics is standard.
The interpretation of the empty match construct is given by
the empty morphism [] : O → T ⟦τ⟧, as having a morphism
⟦t⟧ : W(w,−) × ⟦Γ⟧ → O necessitates W(w,−) × ⟦Γ⟧
is isomorphic to O. The interpretations of the three storage
operations use the corresponding three operations for the
monad T from Sec. V. There are two steps in defining the

⟦injτ1+τ2
i t⟧ (ρ, e) B Tιi(⟦t⟧ (ρ, e))

⟦(t, s)⟧ (ρ, e) B dstr 〈⟦t⟧ (ρ, e), ⟦s⟧ (ρ, e)〉

⟦match twith {}τ⟧ = []

LPPPPPN

match twith

{inj1x1 7→ s1

| inj2x2 7→ s2}

MQQQQQO
(ρ, e) B ⟦t⟧ (ρ, e) >>= λιia.

⟦ti⟧ (ρ, e[xi 7→ a])

⟦match twith (x1, x2) 7→ s⟧(ρ, e) B
str(〈ρ, e〉 , ⟦t⟧ (ρ, e)) >>= ⟦s⟧

⟦t s⟧ (ρ, e) B dstr(⟦t⟧ (ρ, e), ⟦s⟧ (ρ, e)) >>= eval

⟦t := s⟧ (ρ, e) B dstr(⟦t⟧ (ρ, e), ⟦s⟧ (ρ, e)) >>= set

⟦! t⟧ (ρ, e) B ⟦t⟧ (ρ, e) >>= get

LPPPPPPPPPPPPN

letref

(x1 : ref c1) := v1,

...
(xn : ref cn) := vn

in t

MQQQQQQQQQQQQO

(ρ, e)

B

str(〈ρ, e〉 ,new{`1:c1,...,`n:cn}〈⟦vi⟧v(ρ, e
[
xi 7→ ι⊕2 `i

]n
i=1

)
〉n
i=1

)
>>= ⟦t⟧

Fig. 10: Term semantics

semantics of allocation. First, we interpret the initialisation
data in the world extended with w0, which gives us the
appropriate input to the new morphism from Sec. V. The
morphism new then returns the newly allocated locations,
which we bind to the remainder of the computation.

The semantics satisfies the usual substitution lemma. It is
also uniform with respect to the heap layout in the typing
judgement. To phrase it, note that every layout extension
w ≤ w′ denotes the world injection given by inclusion.

Lemma 9. For every layout extension w ≤ w′ we have:

⟦Γ `w′ v : τ⟧vw′ (idw′ ,−) = ⟦Γ `w v : τ⟧vw′ (w ≤ w′,−)
⟦Γ `w′ t : τ⟧w′ (idw′ ,−) = ⟦Γ `w t : τ⟧w′ (w ≤ w′,−)

This lemma is the semantic counterpart to the monotonicity
of the type system.

B. Soundness and adequacy

To phrase our denotational soundness result, we first ex-
tend the semantics to heaps. For brevity’s sake, we de-
fine the following notation for closed program phrases
⟦`w v⟧v? B ⟦v⟧vw (idw, ?), and ⟦`w t⟧? B ⟦t⟧w (idw, ?). Next,
for every typed heap η ∈ Hw define:

⟦η⟧ B 〈⟦`w η(`) : ctype c⟧v?〉(`:c)∈w ∈ Hw

The semantic heap operations are compatible with the syntac-
tic heap operations, in the sense that for every syntactic heap
η ∈ Hw1, location (` : c) ∈ w1, and value `w1 v : ctype c we
have: ⟦η(`)⟧v? = ⟦η⟧ (`) and ⟦η[` 7→ v]⟧ = ⟦η⟧ [` 7→ ⟦v⟧v?].
For allocation, we need to be more careful. Consider any
extension w ≤ w1, heap η1 ∈ Hw1, and fresh locations
#w1 〈`1, . . . , `n〉. Then let w′ B w ⊕ {`1 : c1, . . . , `n : cn}
and w′1 B w1 ⊕ {`1 : c1, . . . , `n : cn}. Then consider
any initialisation data 〈`w′ vi : ctype ci〉ni=1, and let ε B
init〈⟦vi⟧v?〉ni=1 be the corresponding initialisation. We then

have that ⟦η1 [`i 7→ vi]
n
i=1⟧ = H(

w1

(w≤w1)?ε↓
w′1

)(⟦η1⟧).
The operational and denotational semantics agree:

Theorem 10 (soundness). The operational and denotational
semantics agree: for every closed, well-typed term `w t : τ ,
extensions w ≤ w′ ≤ w′′, value `w′′ v : τ and heaps η′ ∈
Hw′ and η′′ ∈ Hw′′, if 〈t,η′〉 ⇓ 〈v,η′′〉 then

(πw≤w′ ⟦t⟧?) ⟦η′⟧ = qw′≤w′′(⟦v⟧v?, ⟦η′′⟧)
The proof is by induction on typing judgements, using the

explicit description of T given in Sec. V.
Given two terms Γ `w t, s : τ , recall the set C[Γ `w t, s : τ]

of contexts plugged with t and s from Subsec. II-C.

Theorem 11 (compositionality). For every pair of plugged
contexts Γ′ `w′ s1, s2 : τ ′ ∈ C[Γ `w t1, t2 : τ], if ⟦t1⟧ = ⟦t2⟧
then ⟦s1⟧ = ⟦s2⟧.

The proof is by induction on contexts, using the fact that
the semantics is given compositionally in terms of sub-terms.

Theorem 12 (adequacy). For all terms Γ `w t1, t2 : τ , if
⟦t1⟧ = ⟦t2⟧ then Γ `w t1 'ctx t2 : τ .

The proof is standard using the Compositionality and
Soundness theorems. In the final step, where the mono re-
quirement is usually used, use Lemma 6 to project out the
shared return value of the contexts.

Example 4. As promised, we show T1 6∼= 1 in the signature
from Example 1. Consider the two program phrases:

`{`0,`1:data}(), let x = ! `0 in
`0 := ! `1;
`1 := x : 1

We can distinguish the two phrases by dereferencing `0. Had
T1 ∼= 1, they would have equal denotations, and so the result
follows from the Adequacy Theorem 12.

C. Program equivalences
There are fourteen program equivalences (ordinary) ground

reference cells are expected to satisfy [20], [34], and Staton has
shown they are Hilbert-Post complete. While we do not check
their Hilbert-Post completeness here, we validate them for full
ground references. As some equations require locations to be
distinct, we use the heap layout assumption to avoid aliasing:

v1 : ctype c1, v2 : ctype c2 `{`1:c1,`2:c2}

`1 := v1;
`2 := v2

≡ `2 := v2;
`1 := v1 : 1

VIII. CONCLUSIONS AND FURTHER WORK

We gave a monad for full ground references. An important
ingredient was to view the collection of heaps as functorial on
initialisations. Using standard developments in enrichment [9],
[19], [34], we decomposed it into a monad for hiding trans-
formed with state capabilities to better account for subtleties
in the monad’s definition. We gave evidence that the monad is
appropriate for modelling reference cells: we showed it yields
adequate semantics for the calculus of full ground references,
and also validates the equations expected from a local state
monad, as well as the effect masking property.

Further work abounds. We would like to use the Effect
Masking Theorem 7 to account for Haskell’s runST con-
struct [17] by tying the denotational semantics derived from
said theorem with a more operational account. We would also
like to use our semantics to investigate the combination of
polymorphism and reference cells, as the issues motivating
ML’s value restriction [37] surface with full ground storage.

We would also like to find monads for general storage, and
not just full ground references. As it is possible to tie Landin’s
knot [16] with general references and implement full recursion,
we expect to need to solve some recursive equation to obtain
the category of worlds. It might be possible to do so with
a traditional recursive domain equation [18], or using step-
indexing methods [5].

We would like to find an algebraic presentation for our
monad in the style of Plotkin and Power [30], and investigate
its completeness [34]. Doing so would allow us to account
for effect-dependent program transformations [14]. We would
also like to give a simpler description of the monad’s action
at (full) ground types. Our decomposition of the full ground
references monad differs from existing decompositions for
ground storage [21], [34]. Repeating this decomposition in the
ordinary ground case would lead to new insights into existing
and new models.

ACKNOWLEDGEMENTS

Supported by the ERC grant ‘events causality and sym-
metry — the next-generation semantics’, EPSRC grants
EP/N007387/1 and EP/N023757/1, an EPSRC Studentship,
and a Royal Society University Research Fellowship. The
authors would like to thank Bob Atkey, Simon Castellan,
Pierre Clairambault, Marcelo Fiore, Martin Hyland, Sam Lind-
ley, James McKinna, Paul-André Melliès, Kayvan Memarian,
Dominic Mulligan, Jean Pichon-Pharabod, Gordon Plotkin,
Uday Reddy, Alex Simpson, Ian Stark, Kasper Svendsen, and
Conrad Watt for fruitful discussions and comments.

REFERENCES

[1] A. J. Ahmed, “Semantics of types for mutable state,” Ph.D. dissertation,
Princeton University, 2004.

[2] N. Benton, M. Hofmann, and V. Nigam, “Abstract effects and proof-
relevant logical relations,” in Proc. POPL. ACM, 2014, pp. 619–632.

[3] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann, “Relational
semantics for effect-based program transformations with dynamic al-
location,” in Proc. PPDP. ACM, 2007, pp. 87–96.

[4] N. Benton and B. Leperchey, “Relational reasoning in a nominal
semantics for storage,” in TLCA. Springer, 2005, pp. 86–101.

[5] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
and H. Yang, “Step-indexed Kripke models over recursive worlds,” in
POPL. ACM, 2011, pp. 119–132.

[6] L. Birkedal, K. Støvring, and J. Thamsborg, “Realisability semantics
of parametric polymorphism, general references and recursive types,”
Math. Structures Comput. Sci., vol. 20, no. 4, pp. 655–703, 2010.

[7] N. Bohr and L. Birkedal, “Relational reasoning for recursive types and
references,” in Proc. APLAS. Springer, 2006, pp. 79–96.

[8] D. Dreyer, G. Neis, and L. Birkedal, “The impact of higher-order state
and control effects on local relational reasoning,” J. Funct. Program,
vol. 22, no. 4-5, pp. 477–528, 2012.

[9] J. Egger, R. E. Møgelberg, and A. Simpson, “The enriched effect
calculus,” J. Logic Comput., vol. 24, no. 3, p. 615, 2014.

[10] D. R. Ghica, “Semantics of dynamic variables in Algol-like languages,”
Queen’s University, Ontario, Canada, Masters Thesis, March 1997.

[11] R. Gordon and A. Power, “Enrichment through variation,” J. Pure Appl.
Algebra, vol. 120, no. 2, pp. 167 – 185, 1997.

[12] M. Hofmann, “Correctness of effect-based program transformations,” in
Formal Logical Methods for System Security and Correctness, O. Grum-
berg, T. Nipkow, and C. Pfaller, Eds. IOS Press, 2008, pp. 149–173.

[13] G. Janelidze and G. Kelly, “A note on actions of a monoidal category.”
Theory and Applications of Categories, vol. 9, pp. 61–91, 2001.

[14] O. Kammar and G. D. Plotkin, “Algebraic foundations for effect-
dependent optimisations,” in Proc. POPL. ACM, 2012, pp. 349–360.

[15] A. Kock, “Strong functors and monoidal monads,” Archiv der Mathe-
matik, vol. 23, no. 1, pp. 113–120, 1972.

[16] P. J. Landin, “The mechanical evaluation of expressions,” The Computer
Journal, vol. 6, no. 4, pp. 308–320, 1964.

[17] J. Launchbury and S. L. P. Jones, “Lazy functional state threads,” in
PLDI. ACM, 1994, pp. 24–35.

[18] P. B. Levy, “Possible world semantics for general storage in call-by-
value,” in Proc. CSL. Springer, 2002, pp. 232–246.

[19] ——, Call-By-Push-Value: A Functional/Imperative Synthesis, ser. Se-
mantics Structures in Computation. Springer, 2004, vol. 2.

[20] ——, “Global state considered helpful,” ENTCS, vol. 218, pp. 241 –
259, 2008, MFPS XXIV.

[21] P. Melliès, “Local states in string diagrams,” in Proc. RTA-TLCA, ser.
LNCS, G. Dowek, Ed., vol. 8560, 2014, pp. 334–348.

[22] R. E. Møgelberg and S. Staton, “Linear usage of state,” Logical Methods
in Computer Science, vol. 10, no. 1, 2014.

[23] E. Moggi, “Computational lambda-calculus and monads,” in Proc. LICS.
IEEE Computer Society, 1989, pp. 14–23.

[24] ——, “An Abstract View of Programming Languages,” Edinburgh
University, Technical Report, 1989. [Online]. Available: http://www.
lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-113/

[25] A. S. Murawski and N. Tzevelekos, “Algorithmic games for full ground
references,” in Proc. ICALP. Springer, 2012, pp. 312–324.

[26] P. W. O’Hearn, Scalable Specification and Reasoning: Challenges for
Program Logic. Springer, 2008, pp. 116–133.

[27] P. W. O’Hearn and R. D. Tennent, “Semantics of local variables,”
Applications of categories in computer science, pp. 217–238, 1992.

[28] F. J. Oles, “A category-theoretic approach to the semantics of program-
ming languages,” Ph.D. dissertation, Syracuse University, Aug. 1982.

[29] A. M. Pitts and I. D. B. Stark, “Observable properties of higher order
functions that dynamically create local names, or what’s new?” in Proc.
MFCS. Springer, 1993, pp. 122–141.

[30] G. D. Plotkin and J. Power, “Notions of computation determine monads,”
in Proc. FOSSACS. Springer, 2002, pp. 342–356.

[31] U. Reddy and H. Yang, “Correctness of data representations involving
heap data structures,” Sci. Comput. Program., vol. 50, no. 1-3, 2004.

[32] A. K. Simpson, “Category-theoretic structure for independence and con-
ditional independence,” Faculty of Mathematics and Physics, University
of Ljubljana, preprint, 2017.

[33] I. Stark, “Names and higher-order functions,” Ph.D. dissertation, Univer-
sity of Cambridge, Dec. 1994, also available as Technical Report 363,
University of Cambridge Computer Laboratory.

[34] S. Staton, “Completeness for algebraic theories of local state,” in Proc.
FOSSACS, L. Ong, Ed. Springer, 2010, pp. 48–63.

[35] W. W. Tait, “Intensional interpretations of functionals of finite type I,”
The journal of symbolic logic, vol. 32, no. 02, pp. 198–212, 1967.

[36] N. Tzevelekos, “Nominal game semantics,” Ph.D. dissertation,
Brasenose College, University of Oxford, 2008.

[37] A. K. Wright, “Simple imperative polymorphism,” Lisp and Symbolic
Computation, vol. 8, no. 4, pp. 343–355, 1995.

