
Functional Programs that Explain their Work

Roly Perera

University of Birmingham & MPI-SWS

rolyp@mpi-sws.org

Umut A. Acar

Carnegie Mellon University & MPI-SWS

umut@cs.cmu.edu

James Cheney

University of Edinburgh

jcheney@inf.ed.ac.uk

Paul Blain Levy

University of Birmingham

P.B.Levy@cs.bham.ac.uk

Abstract

We present techniques that enable higher-order functional compu-
tations to “explain” their work by answering questions about how
parts of their output were calculated. As explanations, we con-
sider the traditional notion of program slices, which we show can
be inadequate, and propose a new notion: trace slices. We present
techniques for specifying flexible and rich slicing criteria based on
partial expressions, parts of which have been replaced by holes.
We characterise program slices in an algorithm-independent fash-
ion and show that a least slice for a given criterion exists. We then
present an algorithm, called unevaluation, for computing least pro-
gram slices from computations reified as traces. Observing a limi-
tation of program slices, we develop a notion of trace slice as an-
other form of explanation and present an algorithm for computing
them. The unevaluation algorithm can be applied to any subtrace of
a trace slice to compute a program slice whose evaluation generates
that subtrace. This close correspondence between programs, traces,
and their slices can enable the programmer to understand a compu-
tation interactively, in terms of the programming language in which
the computation is expressed. We present an implementation in the
form of a tool, discuss some important practical implementation
concerns and present some techniques for addressing them.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and debugging—Tracing; D.3.4 [Programming Lan-
guages]: Processors—Debuggers

Keywords program slicing; debugging; provenance

1. Introduction

Many problem domains in computer science require understanding
a computation and how a certain result was computed. For exam-
ple, in debugging we aim to understand why some erroneous result
was computed by a program. This goal of understanding and ex-
plaining computations and their results often runs against our desire
to treat a computation as a black box that maps inputs to outputs.
Indeed, we lack rich general-purpose techniques and tools for un-
derstanding and explaining computations and their relationship to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

their outputs. One such technique is program slicing, which was
first explored in the imperative programming community.

Originally formulated by Weiser [27], a program slice is a re-
duced program, obtained by eliminating statements from the origi-
nal program, that produces the behavior specified by a slicing cri-
terion. A slice is called static if it makes no assumptions on the
input—it works for any input—and dynamic if it works only for the
specified input. Originally defined to yield backward slices, which
identify parts of a program contributing to a specific criterion on the
output, slicing techniques were later extended to compute forward
slices. Since it pertains to a specific execution, and explains the re-
lationship between a computation and its result, dynamic backward
slicing is considered more relevant for the purposes of understand-
ing a computation. In this paper, we consider dynamic, backward
slicing only. While primarily motivated by debugging and program
comprehension, other applications of slicing have also been pro-
posed, including parallelization [4], software maintenance [5], and
testing [3]. For a comprehensive overview of the slicing literature,
we refer the reader to existing surveys [26, 28].

While slicing has been studied extensively in the context of im-
perative languages, there is comparatively less work in functional
languages. Slicing techniques developed for imperative programs
do not translate well to the functional setting for two reasons. First,
in the functional setting, higher-order values are prevalent; it is not
clear whether slicing techniques for imperative programs can be ex-
tended to handle higher-order values. Second, functional programs
typically manipulate complex values such as recursive data types,
whereas slicing techniques in imperative programs often perform
slicing at the granularity of variables, which is too coarse a grain to
be effective for functional programs.

Reps and Turnidge [21] present slicing technique for functional
programs. Their techniques compute static slices, however, and
apply only to first-order functional programs; they also do not
preserve the semantics of strict functional programs. Biswas [6]
considers strict, higher-order functional programs and proposes
slicing techniques with a single form of criterion: the entire output
of the program. Ochoa, Silva, and Vidal [19] present techniques
that allow more flexible criteria but which only apply to first-
order, lazy functional languages. To the best of our knowledge, the
problem of slicing of strict, higher-order functional programs with
rich criteria has remained an open problem.

In this paper, we develop techniques for computing program
slices for strict, higher-order functional programs based on rich
slicing criteria and propose techniques for more powerful exami-
nations of computations via trace slices.

To enable expressing rich queries on the computation, we con-
sider two forms of slicing criteria: partial values and differential
partial values. We define a partial value as a value where some sub-
values are replaced by a hole, written !. Intuitively, a partial value
discards parts of a value that are of no interest to the user. For ex-
ample, the partial value (!,2) specifies a pair where the first com-
ponent is of no interest; the partial value cons(!,cons(2,!))
specifies a list where the first element and the second tail are of no
interest. While partial values help throw away parts of a value that
are of no interest, they may not always be used to focus on a spe-
cific part of a value, because the “path” to the part of interest cannot
be replaced by a hole, e.g., we cannot focus on the second part of
a tuple without specifying there being a tuple. To make it possible
to focus on parts of a value, we define differential partial values,
which can highlight subvalues of interest. For example the differ-
ential partial value cons(!,cons(2 ,!)) specifies a list where
the second element is of interest.

For slicing criteria consisting of (differential) partial values, we
define program slices in an algorithm-independent way and show
that least program slices exists (Section 3). We define a partial
program as a program where some subexpressions are replaced
by holes and give an operational semantics for partial programs
(expressions). We call a partial program a program slice for a
partial value if executing the partial program yields that partial
value as an output. We then exhibit a family of Galois connections
between partial programs and partial values which guarantees the
existence of a least program slice for a given partial value.

Our characterization of program slices shows that it is possible
to compute least program slices but does not provide an algorithm
that does so. To efficiently compute least program slices, we de-
velop an unevaluation algorithm (Section 4). Unevaluation relies
on traces that represent an evaluation by recording the evaluation
derivation as an unrolled expression. Our use of traces are inspired
by self-adjusting computation [1], but we structure them differently
to enable their use in computation comprehension. Given a slicing
criterion, our unevaluation algorithm uses the trace to “push” the
criterion, a partial value, backward through the trace, discarding
unused parts of the trace and rolling the remaining parts up into a
least program slice for the criterion.

Our program slices can give valuable explanations about a com-
putation, but as with any slicing technique, they can lose their ef-
fectiveness in complex computations. Intuitively, the reason for this
is that each expression in a program slice must subsume the many
different behaviors that the expression exhibits in an execution. In-
deed, even though program slices were motivated by debugging,
they are of limited assistance when the bug involves different exe-
cution paths along the same piece of code, which a program slice
cannot distinguish. For example, we show how program slices be-
come ineffective when trying to understand a buggy mergesort im-
plementation (Section 2.3).

Motivated by the limitations of program slices, we introduce
the concept of trace slicing (Section 5). As the name suggest, the
high-level idea is to compute a slice of a trace for a given slicing
criterion by replacing parts of the trace that are not relevant to the
criterion with holes. We call the resulting reduced trace a partial
trace; a partial trace explains a partial value (slicing criterion) if the
trace contains enough information to unevaluate the partial value.
We then present a trace-slicing algorithm for computing the least
partial trace which explains a given partial value. When computing
a least trace slice, it is critical to compute least slices of any higher-
order values; our trace-slicing algorithm defers to unevaluation to
do this.

When used in combination, our techniques can offer an inter-
active and precise approach to understanding computations. The
user can execute a program with some input and then compute a

(least) program slice for a desired slicing criterion. If interested in
understanding the computation in more depth, the user can then
ask for a trace slice, which will present a precise description of
how the computation has unfolded, eliminating subtraces that do
not contribute to the slicing criterion, and highlighting those that
contribute. Since the trace slices reflect closely the program code
itself, the user can read the trace slice as an unrolled program. Ex-
planations are expressed in the same programming language as the
computation itself.

We present a tool, Slicer, that enables interactive trace explo-
ration for source code written in an ML-like language that we call
TML (Transparent ML). Slicer itself is implemented in Haskell and
takes advantage of the lazy evaluation strategy of Haskell to avoid
constructing traces except when needed. Inspired by Haskell’s lazi-
ness, we present a technique for trading space for time by a form
of controlled lazy evaluation that can also be used in the context of
strict languages.

Our contributions include the following:
1. Techniques for specifying flexible slicing criteria based on dif-

ferential and partial values.
2. An algorithm-independent formulation of least program slices.
3. An algorithm, called unevaluation, for computing least slices of

strict, higher-order functional programs.
4. The concept of trace slices and an algorithm for computing

them.
5. Proofs of relevant correctness and minimality properties.
6. The Slicer tool for computing and visualizing program and trace

slices.
Proofs that are omitted due to space restrictions can be found in

the companion technical report [20].

2. Overview

We present an overview of our techniques considering examples
with increasing sophistication. All the figures presented here were
produced by our tool, Slicer. Slicer accepts programs written in
TML and allows them to be executed and queried by using partial
values to generate partial programs and traces. Slicer enables visu-
alizing partial programs and traces in an interactive way, allowing
the programmer to “browse” them. By default, Slicer prints out the
outermost nesting level of traces and hides the deeper levels under
ellipses written as “. . .”. The user can click on ellipses to see the
hidden contents. This invites the user to think of the execution of
an expression as an “unrolling” of that expression. Slicer can also
display the (partial) value associated with a step in the computa-
tion, which is a feature that we often utilize; such partial values are
printed in shaded (gray) boxes.

Slicer prints holes, written as ! throughout the formalism, as
", because the user can ask for what is hidden behind the hole to
be displayed.

2.1 Example: List Length

Consider using the standard length function to compute the length
of a list with three elements:

let fun length xs =
case xs of
Nil -> 0
Cons(x,xs) -> 1 + length xs’

in length (Cons(1,Cons(2,Cons(3,Nil))))

To understand the computation, we ask Slicer to compute the
partial slice for the result 3, which is shown in Figure 1. The in-
teresting point about the program slice (Figure 1(a)) is that the el-
ements of input are all replaced by a hole, because they do not
contribute to the output. This is consistent with our expectation of
length that its output does not depend on the elements of the input

(a)

let length =

fun length xs →

case xs of

Nil → 0

Cons(x,xs') →

+ 1

length xs'

in

length Cons(,Cons(,Cons(,Nil)))

…

3

(b)

let length =

fun length xs →

case xs of

Nil → 0

Cons(x,xs') →

+ 1

length xs'

in

length xs:Cons(,Cons(,Cons(,Nil)))

→ case xs of

Nil →
Cons(x,xs') →

+ 1

length xs'

…

2

3

Figure 1. (a) slice of length; (b) expanded by one step

list. The slice also illustrates that all of the function length is rel-
evant to the output, i.e., all branches were exercised to compute the
result. To see the trace slice for the actual computation, we unroll
the ellipses at the end of the program slice. The trace slice, shown
in Figure 1(b) following the expression slice of length, illustrates
how the result is actually computed, throwing away subtraces not
contributing to the result. The trace slice is an unrolling of the case
expression constituting the body of length, leading to a recursive
call which returns 2.

2.2 Example: List Map

Consider applying the standard list primitive map to increment each
element of the list Cons(6,Cons(7,Cons(2,Nil))) by one:

let fun map f xs =
case xs of

Nil -> Nil
Cons y -> Cons (f (fst y), map f (snd y))

in map (fn x => x + 1) (Cons(6,Cons(7,Cons(2,Nil))))

After performing this computation in Slicer, we can ask for
a trace slice with the partial value Cons(",Cons(8,")). Fig-
ure 2(a) shows the trace slice computed by Slicer. (Please ignore
for now the shaded green boxes.) The trace slice starts with a slice
of the definition of map, where the Nil branch is a hole. This in-
dicates that the Nil branch was unused – indeed, the partial value
does not end with Nil but with a hole. The trace slice continues
with the application of map to the increment function and the in-
put list, where parts of the input are replaced with holes. What is
interesting here is that the way the list argument to map has been
sliced shows that both the first Cons cell, without the head, and the
second Cons cell, without the tail, contribute to the partial result.
Indeed, making changes to any of these elements could change the
parts of the result relevant to the criterion.

The partial trace for the partial value Cons(",Cons(8,"))
enhances our understanding of how the second element was com-
puted. To understand how exactly the second element, 8, is com-
puted from the input, we ask Slicer to isolate it by using as a slic-
ing criterion the differential partial value Cons(",Cons(8 ,")).
Slicer returns a trace slice where parts contributing directly to the

(a)

let map =

fun map f xs →

case xs of

Nil →
Cons(x,xs') →

Cons f x

map f

xs'

in

map f:fun incr x →

+ x

1

xs:Cons(,Cons(7,))

→ case xs of

Nil →
Cons(x,xs') →

Cons
map f

xs'

…

Cons(8,)

Cons(,Cons(8,))

(b)

let map =

fun map f xs →

case xs of

Nil →
Cons(x,xs') →

Cons
map

xs'

in

map f:
xs:Cons(,Cons(,))

→ case xs of

Nil →
Cons(x,xs') →

Cons
map

xs'

…

Cons(,)

Cons(,Cons(,))

Figure 2. Slice of map incr [6,7,2]

second element are also highlighted in green, as shown in Fig-
ure 2(a). The highlighted parts show that the second element is
computed by applying the increment function to the second ele-
ment.

We generate differential trace slices by taking advantage of
a monotonicity property of partial traces. Consider two partial
values u, v where v is greater than u in the sense that v replaces
with actual values some holes of u. As we show in Section 5,
the trace slice for v is greater in the same sense than the trace
slice for u. This property allows us to compute the delta between
two partial traces which have a common structure in this way
by performing a trace traversal. To compute the differential trace
slice for Cons(",Cons(8 ,")), we compute the delta between
the trace slice for Cons(",Cons(8,")) and then trace slice for
Cons(",Cons(",")). It is this difference that is highlighted in
Figure 2(a). For the purposes of comparison, we show the trace
slice for Cons(",Cons("))) in Figure 2(b). Note that the green
highlighted parts are exactly those parts that are holes in the trace
(b) that are not holes in the trace (a).

2.3 Example: Mergesort

Our final example is merge sort, an algorithm that significantly
restructures its input to produce an output in a way that can be
difficult to understand. We consider a buggy implementation and
describe how Slicer can help us locate the bug. Our implementation
is entirely standard: it splits non-singleton lists into two, sorts them

mergesort Cons(1,Cons(2,Cons(3,Nil)))

→ case xs of

Nil → …

Cons(x,xs') →

case xs' of

Nil → …

Cons(y,ys) →

let p =

split xs

…

Pair(Cons(1,Cons(3,Nil)),Cons(2,Nil))

in

merge mergesort fst pCons(1,Cons(3,Nil))

…

Cons(1,Cons(3,Nil))

mergesort snd pCons(2,Nil)

…

Cons(2,Nil)

→ case xs of

Nil → …

Cons(x,xs') →

case ys of

Nil → …

Cons(y,ys') →

case < x

y

True of

True →

Cons x

merge xs'

ys

→ case xs of

Nil → …

Cons(x,xs') →

case ys of

Nil → …

Cons(y,ys') →

case < x

y

False of

True → …

False →

Cons x

merge xs

ys'

…

Cons(3,Nil)

Cons(3,Cons(3,Nil))

False → …

Cons(1,Cons(3,Cons(3,Nil)))

Figure 3. Outermost merge phase of mergesort.

recursively, and merges the results to produce the sorted output
list. The bug is in the merge function: the “else” branch should be
Cons(y, . . .) instead of Cons(x, . . .). Here is the buggy code
for merge:

fun merge xs ys =
case xs of

Nil -> ys
Cons (x,xs’) ->

case ys of
Nil -> xs
Cons (y,ys’) -> case x < y of

True -> Cons(x,merge(xs’,ys))
False -> Cons(x,merge(xs,ys’))

When used to sort the list Cons(1,Cons(2,Cons(3,Nil)))
the buggy merge sort returns the list Cons(1,Cons(3,Cons(3,Nil))).
To identify the bug, we slice the trace with respect to the differen-
tial value Cons(1,Cons(3 ,Cons(3,Nil))) isolating the sec-
ond element. Unfortunately, the program slice computed by Slicer
provides no information. This is an example where program slices
are not, and cannot be, precise enough, even though they are least
slices for the supplied criterion. We therefore inspect the actual
trace slice. Figure 3 illustrates the outermost level of the trace slice
including the outermost level of the merge function. As the figure
illustrates, Slicer highlights precisely the offending statement of
the merge function in the trace showing where the 3 in the output
comes from Cons statements in the False branch of the merge
function, the buggy expression.

3. A Characterisation of Program Slicing

Before we discuss traces and their role in calculating program
slices, we formalize our notions of slicing criteria and program
slices in the setting of a typed, call-by-value reference language
with familiar functional programming constructs such as recursive
types and higher-order functions. We formulate the problem of

Types τ ::= 1 | b | τ1 + τ2 | τ1 × τ2 | τ1 → τ2 | µα.τ | α

Contexts Γ ::= • | Γ, x : τ

Expressions e ::= x | () | c | e1 ⊕ e2 | fun f(x).e | e1 e2
| (e1, e2) | fst e | snd e | inl e | inr e
| case e of {inl(x1).e1; inr(x2).e2} |
| roll e | unroll e

Values v ::= c | (v1, v2) | inl v | inr v | roll v
| 〈ρ, fun f(x).e〉

Environments ρ ::= • | ρ[x &→ v]

Figure 4. Reference language: abstract syntax

computing least (minimal) dynamic slices under flexible criteria
in an algorithm-independent fashion and show that least dynamic
slices exist.

3.1 The reference language

The syntax of the reference language is given in Figure 4. Types
include the usual unit, sum, product and function types, plus iso-
recursive types µα.τ , type variables α, and primitive types b. Vari-
able contexts are defined inductively in the usual way. Expres-
sions include the unit value (), standard introduction and elimi-
nation forms for products, sums and recursive functions, roll and
unroll forms for recursive types, primitive constants c, and ap-
plications e1 ⊕ e2 of primitive operations. The typing judgments
Γ " e : τ for expressions and Γ " ρ are given in Figure 6; the latter
means that ρ is a well-formed environment for Γ. The signature Σ
assigns to every primitive constant c the primitive type c : b ∈ Σ,
and to every primitive operation ⊕ the argument types and return
type ⊕ : b1 × b2 → τ ∈ Σ.

Evaluation for the reference language is given by a conventional
call-by-value big-step semantics, shown in Figure 5. The judgment
ρ, e ⇓ref v states that expression e evaluates in closing environ-
ment ρ to value v. Values include the usual forms, plus closures
〈ρ, fun f(x).e〉. The choice of an environment-based semantics
is deliberate: environments will be helpful later when we want to
record an execution as an unrolling of the program syntax. As usual
⊕̂ means ⊕ suitably interpreted in the meta-language.

Evaluation is deterministic and type-preserving. We omit the
proofs, which are straightforward inductions.

Lemma 1 (Type preservation for ⇓ref). If Γ " e : τ and Γ " ρ and
ρ, e ⇓ref v then " v : τ .

Lemma 2 (Determinism of ⇓ref). If ρ, e ⇓ref v and ρ, e ⇓ref v′

then v = v′.

The language used in our examples and implementation can be
easily desugared into the reference language just described.

3.2 Characterizing program slices

In an imperative language, a program can often be sliced by sim-
ply deleting some of its statements. This approach is unsuitable for
functional languages, which tend to be expression-based. We there-
fore introduce a new expression constructor ! called hole, which
inhabits every type, and use holes to represent deleted sub-terms of
an expression or value. For example we can “slice” the expression
inl (3⊕ 4) by replacing its left sub-expression by !, obtaining
inl (!⊕ 4). The additional syntax rules are given at the top of
Figure 7.

Introducing ! into the syntax gives rise to a partial order)
on expressions. This follows immediately from the standard con-
struction of expressions as sets of odd-length paths, where a path is
an alternating sequence 〈k0, n0, . . . , ki−1, ni−1, ki〉 of construc-
tors k and child indices n. In order to represent an expression, a
set of such paths must satisfy two properties characteristic of “tree-

ρ, e ⇓ref v

ρ, x ⇓ref ρ(x) ρ, c ⇓ref c

ρ, e1 ⇓ref c1 ρ, e2 ⇓ref c2

ρ, e1 ⊕ e2 ⇓ref c1 ⊕̂ c2

ρ, fun f(x).e ⇓ref 〈ρ, fun f(x).e〉

ρ, e1 ⇓ref v1
ρ, e2 ⇓ref v2 ρ′[f &→ v1][x &→ v2], e ⇓ref v

ρ, e1 e2 ⇓ref v
v1 = 〈ρ′, fun f(x).e〉

ρ, e1 ⇓ref v1 ρ, e2 ⇓ref v2

ρ, (e1, e2) ⇓ref (v1, v2)

ρ, e ⇓ref (v1, v2)

ρ, fst e ⇓ref v1

ρ, e ⇓ref (v1, v2)

ρ, snd e ⇓ref v2

ρ, e ⇓ref v

ρ, inl e ⇓ref inl v

ρ, e ⇓ref v

ρ, inr e ⇓ref inr v

ρ, e ⇓ref inl v1 ρ[x1 &→ v1], e1 ⇓ref v

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ref v

ρ, e ⇓ref inr v2 ρ[x2 &→ v2], e2 ⇓ref v

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ref v

ρ, e ⇓ref v

ρ, roll e ⇓ref roll v

ρ, e ⇓ref roll v

ρ, unroll e ⇓ref v

Figure 5. Reference language: call-by-value evaluation

Γ " e : τ

Γ (() : 1 Γ (x : τ
x : τ ∈ Γ

Γ (c : b
c : b ∈ Σ

Γ (e1 : b1 Γ (e2 : b2

Γ (e1 ⊕ e2 : τ
⊕ : b1 × b2 → τ ∈ Σ

Γ, f : τ1 → τ2, x : τ1 (e : τ2

Γ (fun f(x).e : τ1 → τ2

Γ (e1 : τ1 → τ2 Γ (e2 : τ1

Γ (e1 e2 : τ2

Γ (e1 : τ1 Γ (e2 : τ2

Γ ((e1, e2) : τ1 × τ2

Γ (e : τ1 × τ2

Γ (fst e : τ1

Γ (e : τ1 × τ2

Γ (snd e : τ1

Γ (e : τ1

Γ (inl e : τ1 + τ2

Γ (e : τ2

Γ (inr e : τ1 + τ2

Γ (e : τ1 + τ2 Γ, x1 : τ1 (e1 : τ Γ, x2 : τ2 (e2 : τ

Γ (case e of {inl(x1).e1; inr(x2).e2} : τ

Γ (e : µα.τ

Γ (unroll e : τ [µα.τ/α]

Γ (e : τ [µα.τ/α]

Γ (roll e : µα.τ

Γ " ρ

• (•

Γ (ρ (v : τ

Γ, x : τ (ρ[x &→ v]

" v : τ

(() : 1 (c : b
c : b ∈ Σ

Γ (ρ Γ, f : τ1 → τ2, x : τ1 (e : τ2

(〈ρ, fun f(x).e〉 : τ1 → τ2

(v1 : τ1 (v2 : τ2

((v1, v2) : τ1 × τ2

(v : τ1

(inl v : τ1 + τ2

(v : τ2

(inr v : τ1 + τ2

Γ (v : τ [µα.τ/α]

Γ (roll v : µα.τ

Figure 6. Reference language: typing judgments

hood”: prefix-closure, and deterministic extension. Prefix-closure
means that if a path is in the set, then each of its prefixes is in the

set; deterministic extension means that all paths agree about the
value of ki for a given position in the tree.

The partial order) is simply the inclusion order on these sets.
For example, that inl (3⊕!) and inl (3⊕ 4) are related by
) comes about because the sets of paths that comprise the two
expressions are similarly related:

︷ ︸︸ ︷

〈inl〉,
〈inl, 0,⊕〉,
〈inl, 0,⊕, 0, 3〉

︸ ︷︷ ︸

inl (3⊕!)

*

︷ ︸︸ ︷

〈inl〉,
〈inl, 0,⊕〉,
〈inl, 0,⊕, 0, 3〉,
〈inl, 0,⊕, 1, 4〉

︸ ︷︷ ︸

inl (3⊕4)

(The child indices are shown in bold to avoid ambiguity.)
Clearly, an expression smaller than a given expression e is

a variant of e where some paths have been truncated in a way
which preserves prefix-closure. It is e with some sub-expressions
“missing”, with the absence of those sub-expressions indicated in
the conventional syntax by the presence of a !. It is natural to talk
about such a truncated expression as a prefix of e, and so we denote
the set of such expressions by Prefix(e).

Definition 1 (Prefix of e). Prefix(e) = {e′ | e′) e}

What is more, the set Prefix(e) forms a finite, distributive lattice
with meet and join denoted by * and +. To see why, consider
two prefixes e1 and e2 of e. We can take their meet e1 * e2 by
taking the intersection of the sets of paths that comprise e1 and e2;
intersection preserves prefix-closure and deterministic extension,
and so yields another prefix of e which is the greatest lower bound
of e1 and e2.

Dually, we can take the join e1 + e2 by taking the union of
the sets of paths comprising e1 and e2. Set union will not in
general preserve deterministic extension (consider taking the union
of inl 3⊕ 4 and inl 3⊕ 5, for example) but it does so whenever
the two expressions have compatible structure. Here, e1 and e2 do
have compatible structure because both are prefixes of e. And so
union also yields a prefix of e, in this case the least upper bound of
e1 and e2, as illustrated by the following example:

︷ ︸︸ ︷

〈inl〉,
〈inl, 0,⊕〉,
〈inl, 0,⊕, 0, 3〉

︸ ︷︷ ︸

inl (3⊕!)

+

︷ ︸︸ ︷

〈inl〉,
〈inl, 0,⊕〉,
〈inl, 0,⊕, 1, 4〉

︸ ︷︷ ︸

inl (!⊕4)

=

︷ ︸︸ ︷

〈inl〉,
〈inl, 0,⊕〉,
〈inl, 0,⊕, 0, 3〉,
〈inl, 0,⊕, 1, 4〉

︸ ︷︷ ︸

inl (3⊕4)

Finally, we note that the greatest element of Prefix(e) is e itself,
and the least element is !.

3.3 Slicing with respect to partial output

We now have a way of representing programs with missing parts:
we simply replace the parts we want to delete with appropriately
typed holes. What we need next is a way of saying whether the
missing bits “matter” or not to some part of the output. We will do
this by enriching the base language with rules that allow programs
with holes in to be executed.

The intuition we want is that if we encounter a hole during
evaluation, then we had better be computing a part of the output that
was also unneeded. In other words, ⇓ref is free to consume a hole,
but only in order to produce a hole. We capture this informal notion
by extending the ⇓ref rules with the additional rules for propagating
holes given in Figure 7. Hole itself evaluates to !, and moreover for
every type constructor, there are variants of the elimination rules
which produce a hole whenever an immediate sub-computation
produces a hole. From now on, by ⇓ref we shall mean the extended
version of the rules.

Expressions e ::= . . . | !

Values v ::= . . . | !

Γ " e : τ

. . . Γ (! : τ

" v : τ

. . . (! : τ

ρ, e ⇓ref v

. . . ρ,! ⇓ref !

ρ, e1 ⇓ref !

ρ, e1 ⊕ e2 ⇓ref !

ρ, e1 ⇓ref c1 ρ, e2 ⇓ref !

ρ, e1 ⊕ e2 ⇓ref !

ρ, e1 ⇓ref !

ρ, e1 e2 ⇓ref !

ρ, e ⇓ref !

ρ, fst e ⇓ref !

ρ, e ⇓ref !

ρ, snd e ⇓ref !

ρ, e ⇓ref !

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ref !

ρ, e ⇓ref !

ρ, unroll e ⇓ref !

Figure 7. Additional rules for partial expressions

Since evaluation can produce partial values, clearly environ-
ments may now map variables to partial values. This gives rise
to a partial order on environments. Specifically, we overload)
so that ρ) ρ′ iff there exists dom(ρ) = dom(ρ′) and ∀x ∈
dom(ρ).ρ(x)) ρ′(x). For any Γ, we will write !Γ for the least
partial environment for Γ, viz. the ρ such that ρ(x) = ! for ev-
ery x ∈ dom(Γ). Again, the set Prefix(ρ) forms a finite dis-
tributive lattice where the join ρ + ρ′ is the partial environment
{x -→ ρ(x) + ρ′(x) | x ∈ dom(ρ)}, and analogously for meet.

It follows from the inductive definition of environments that en-
vironment extension with respect to a variable x is a lattice isomor-
phism. Suppose Γ " ρ and " v : τ . Then for any x, the bijection
−[x -→ −] from Prefix(ρ) × Prefix(v) to Prefix(ρ[x -→ v]) satis-
fies:

(ρ′ * ρ′′)[x -→ u * u′] = ρ′[x -→ u′] * ρ′′[x -→ u′′] (1)

and similarly for joins.
Now suppose ρ, e ⇓ref v and some partial output u) v. We are

now able to say what it is for a partial program (ρ′, e′)) (ρ, e)
to be a “correct” slice of (ρ, e) for u. The idea is that if running
(ρ′, e′) produces a value u′ at least as big as u, then (ρ′, e′) is
“correct” in the sense that it is at least capable of computing the
part of the output we are interested in. We say that (ρ′, e′) is a slice
of (ρ, e) for u.

Definition 2 (Slice of ρ, e for u). Suppose ρ, e ⇓ref v and u) v.
Then any (ρ′, e′)) (ρ, e) is a slice of (ρ, e) for u if ρ′, e′ ⇓ref u

′

with u′ / u.

This makes precise our intuition above: a slice for partial output
u is free to evaluate holes as long as the resulting holes in the output
are subsumed by those already specified by u, the slicing criterion.

3.4 Existence of least slices

We have defined what it is to be a slice for some partial output u.
Now let us turn to the question of whether there is a unique minimal
slice for u. We shall see that introducing holes into the syntax, and
then extending evaluation with hole-propagation rules, induces a
family of Galois connections between partial programs and partial
values and that this guarantees the existence of least slices.

Suppose a terminating computation ρ, e ⇓ref v. Evaluation has
several important properties if we restrict the domain of evaluation

to just the prefixes of (ρ, e), which we will write as evalρ,e. The
first is that evalρ,e is total: the presence of a hole cannot cause
a computation to get stuck, but only to produce an output with a
hole in it. Second, evalρ,e is monotonic. Third, evalρ,e preserves
meets. Since this third property implies the second, we just state
the following.

Theorem 1 (evalρ,e is a meet-preserving function from Prefix(ρ, e)
to Prefix(v)). Suppose ρ, e ⇓ref v. Then:

1. If (ρ′, e′)) (ρ, e) then evalρ,e(ρ
′, e′) is defined: there exists u

such that ρ′, e′ ⇓ref u.

2. evalρ,e(ρ, e) = v.

3. If (ρ′, e′)) (ρ, e) and (ρ′′, e′′)) (ρ, e) then evalρ,e(ρ
′ *

ρ′′, e′ * e′′) = evalρ,e(ρ
′, e′) * evalρ,e(ρ

′′, e′′).

Technically, evalρ,e is a meet-semilattice homomorphism. Using
this property for the cases that involve environment extension, we
can now prove Theorem 1:

Proof. Part (2) of Theorem 1 is immediate from the definition of
⇓ref . For parts (1) and (3), we proceed by induction on the deriva-
tion of ρ, e ⇓ref v, using the hole propagation rules in Figure 7
whenever the evaluation would otherwise get stuck, and Equation 1
for the binder cases.

Finally we are ready to show that a least slice for a given v
exists and give an explicit characterisation of it by considering a
basic property of meet-semilattice homomorphisms. Every meet-
preserving mapping f∗ : A → B is the upper adjoint of a unique
Galois connection. The lower adjoint of f∗, sometimes (confus-
ingly) written f∗ : B → A, which preserves joins, inverts f∗ in the
following minimising way: for any output b of f∗, the lower adjoint
yields the smallest input a such that f∗(a) / b. Extensionally, the
lower adjoint satisfies f∗(b) =

!
{a ∈ A | f∗(a) / b}.

Corollary 1 (Existence of least slices). Suppose ρ, e ⇓ref v. Then
there exists a function unevalρ,e from Prefix(v) to Prefix(ρ, e)
satisfying:

unevalρ,e(u) =
"

{

(ρ′, e′) ∈ Prefix(ρ, e) | evalρ,e(ρ
′, e′) / u

}

Proof. Immediate from Theorem 1.

So for any terminating computation ρ, e ⇓ref v, there is a total
function, which we call unevalρ,e, from partial values to partial
programs which, for any u) v, yields the least slice of (ρ, e) for
u. Extensionally, unevalρ,e(u) is the meet of all the slices of (ρ, e)
for u. This smallest slice is, in the parlance of the slicing literature,
a dynamic slice: it pertains to a single execution, namely ρ, e ⇓ref v.

But the fact that unevalρ,e is uniquely determined by evalρ,e
does not give us an efficient algorithm for computing it. We will
turn to this in the next section.

3.5 Differential slices

As discussed in Section 2, the difference between two slices can
be useful for diagnosing the cause of a problem. To focus on
a partial subterm of a partial value, we can use a pair ∆(u, v)
where u) v. Here, the inner part u shows the context and
the outer part v shows the additional part of the value that we
are more interested in. Given an algorithm for computing least
slices unevalρ,e, we can then simply define the differential slice as
diffρ,e(∆(u, v)) = ∆(unevalρ,e(u), unevalρ,e(v)). Thus, differ-
ential slicing is straightforward once we have a slicing algorithm.

Traces T ::= ! | x | c | T1 ⊕c1,c2 T2 | (T1, T2)

| fst T | snd T | inl T | inr T

| case T of {inl(x1).T1; inr(x2).e2}

| case T of {inl(x1).e1; inr(x2).T2}

| fun f(x).e | T1 T2 $ f(x).T

| roll T | unroll T

Figure 8. Syntax of traces

4. Program Slicing as Backwards Execution

In Section 3, we showed that for an arbitrary prefix v of the output
of a computation, there is a least dynamic program slice. To calcu-
late the least slice for v, we could in principle consider every prefix
of the program, and take the meet of those large enough to compute
v. Clearly such an approach would not lead to a practical algorithm.
Instead what we would like to do is somehow infer backwards from
unneeded parts of the output to unneeded parts of the input. To this
end, we record, as a trace, certain information during execution to
allow the computation to be “rewound” by an unevaluation algo-
rithm that given slicing criterion (a partial output) reconstructs a
the least partial program that evaluates to a result consistent with
that criterion.

4.1 Abstract syntax

Figure 8 gives the abstract syntax of traces, which closely mirrors
that of expressions. We will explain the trace forms in more detail
when giving the tracing semantics in Section 4.2 below. Traces
also include a hole form !; as with expressions, this induces a
partial order on traces, which we again denote by), and a lattice
Prefix(T) of prefixes of a given trace T . The typing rules for traces
are given in Figure 9; the judgment Γ " T : τ states that T has
type τ in Γ. When we are not concerned with τ but only with Γ, we
sometimes write this as Γ " T . The only potentially surprising
typing rule is for application traces, where T may be typed in
an arbitrary Γ′ extended with bindings for f and x. Note that if
Γ " T : τ and S) T , then Γ " S : τ .

The Slicer implemention associates every trace node with a
value, as shown in our examples earlier, but this is not necessary
in order to compute slices, so we omit the value annotations from
the formalism.

4.2 Tracing semantics

We now define a tracing semantics for the reference language
presented earlier. The rules, given in Figure 10, are identical to
those for ⇓ref , except that they construct a trace as well as a value.
Tracing evaluation for an expression Γ " e : τ in environment ρ
for Γ, written ρ, e ⇓ v, T , yields both a value v : τ and a trace
Γ " T : τ describing how the value was computed.

Before explaining what the trace records, we dispense with a
few preliminary properties. Where the proofs are straightforward
inductions or closely analogous to those for the reference language
they are omitted. First, tracing evaluation is deterministic:

Lemma 3 (Determinism of ⇓). If ρ, e ⇓ v, T and ρ, e ⇓ v′, T ′

then v = v′ and T = T ′.

The tracing semantics and the reference semantics agree on
values:

Theorem 2. ρ, e ⇓ref v ⇐⇒ ∃T.ρ, e ⇓ v, T

Tracing evaluation is both type-preserving and, when domain-
restricted to the prefixes of a terminating computation (ρ, e), a
meet- and join-preserving function. For the latter property, we do
not state a theorem since we will use the reference semantics where
possible in what follows.

Γ " T : τ

Γ (! : τ Γ (() : 1 Γ (x : τ
x : τ ∈ Γ

Γ (c : b
c : b ∈ Σ

Γ (T1 : b1
(c1 : b1 Γ (T2 : b2 (c2 : b2

Γ (T1 ⊕c1,c2 T2 : τ
⊕ : b1 × b2 → τ ∈ Σ

Γ, f : τ1 → τ2, x : τ1 (e : τ2

Γ (fun f(x).e : τ1 → τ2

Γ (T1 : τ1 → τ2
Γ (T2 : τ1 Γ′, f : τ1 → τ2, x : τ1 (T : τ2

Γ (T1 T2 $ f(x).T : τ2

Γ (T1 : τ1 Γ (T2 : τ2

Γ ((T1, T2) : τ1 × τ2

Γ (T : τ1 × τ2

Γ (fst T : τ1

Γ (T : τ1 × τ2

Γ (snd T : τ2

Γ (T : τ1

Γ (inl T : τ1 + τ2

Γ (T : τ2

Γ (inr T : τ1 + τ2

Γ (T : τ1 + τ2 Γ, x1 : τ1 (T1 : τ Γ, x2 : τ2 (e2 : τ

Γ (case T of {inl(x1).T1; inr(x2).e2} : τ

Γ (T : τ1 + τ2 Γ, x1 : τ1 (e1 : τ Γ, x2 : τ2 (T2 : τ

Γ (case T of {inl(x1).e1; inr(x2).T2} : τ

Γ (T : µα.τ

Γ (unroll T : τ [µα.τ/α]

Γ (T : τ [µα.τ/α]

Γ (roll T : µα.τ

Figure 9. Typing rules for traces

Lemma 4 (Type preservation for ⇓). If Γ " e : τ and Γ " ρ with
ρ, e ⇓ v, T , then " v : τ and Γ " T : τ .

With these properties in mind, we can explain the tracing eval-
uation judgment. The idea is that tracing evaluation equips every
value with a trace which describes how it was computed, where the
trace takes the form of an unrolling of the original expression, akin
to inlining the definition of functions into every call site.

Least elements are preserved, so the trace of the expression
! is the trace !. The trace of a variable x is the corresponding
trace form x; in general the trace of Γ " e : τ is not closed
but is instead also typed in Γ. The traces of other nullary ex-
pressions are just the corresponding nullary trace form. For non-
nullary forms, such as projections, pairs, and case expressions,
the general pattern is to produce a trace which looks like the
original expression except that any executed sub-expressions have
been inflated into their traces. For example a trace of the form
case T of {inl(x1).T1; inr(x2).e2} records the scrutinee and
the taken branch unrolled into their respective executions. The non-
taken branch e2 is kept in the trace to be consistent with our notion
of a trace as an unrolled expression.

Primitive operations are special because they are black boxes:
we have no information about how their outputs relate to their in-
puts. For subsequent slicing, we therefore record not only operand
traces, but also the values of the operands. This allows the uneval-
uation algorithm to proceed through a primitive operation into the
operand computations. Alternative approaches to primitives are dis-
cussed in Section 4.3 below.

The main point at which traces diverge from expressions is with
function calls. An application trace T1 T2 $ f(x).T records not
only the evaluation T1 and T2 of the function and argument, but
also the evaluation T of the function body, which may contain free
occurrences of f and x. The notation f(x).T denotes that f and x
are re-bound at this point in the trace.

ρ, e ⇓ v, T

ρ,! ⇓ !,! ρ, x ⇓ ρ(x), x ρ, c ⇓ c, c

ρ, e1 ⇓ c1, T1 ρ, e2 ⇓ c2, T2

ρ, e1 ⊕ e2 ⇓ c1 ⊕̂ c2, T1 ⊕c1,c2 T2

ρ, e1 ⇓ !, T1

ρ, e1 ⊕ e2 ⇓ !,!

ρ, e1 ⇓ c1, T1 ρ, e2 ⇓ !, T2

ρ, e1 ⊕ e2 ⇓ !,!

ρ, fun f(x).e ⇓ 〈ρ, fun f(x).e〉, fun f(x).e

ρ, e1 ⇓ v1, T1 ρ, e2 ⇓ v2, T2

ρ′[f &→ v1][x &→ v2], e ⇓ v, T

ρ, e1 e2 ⇓ v, T1 T2 $ f(x).T
v1 = 〈ρ′, fun f(x).e〉

ρ, e1 ⇓ !, T1

ρ, e1 e2 ⇓ !,!

ρ, e1 ⇓ v1, T1 ρ, e2 ⇓ v2, T2

ρ, (e1, e2) ⇓ (v1, v2), (T1, T2)

ρ, e ⇓ (v1, v2), T

ρ, fst e ⇓ v1, fst T

ρ, e ⇓ !, T

ρ, fst e ⇓ !,!

ρ, e ⇓ (v1, v2), T

ρ, snd e ⇓ v2, snd T

ρ, e ⇓ !, T

ρ, snd e ⇓ !,!

ρ, e ⇓ v, T

ρ, inl e ⇓ inl v, inl T

ρ, e ⇓ v, T

ρ, inr e ⇓ inr v, inr T

ρ, e ⇓ inl v1, T ρ[x1 &→ v1], e1 ⇓ v, T1

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓
v, case T of {inl(x1).T1; inr(x2).e2}

ρ, e ⇓ inr v2, T ρ[x2 &→ v2], e2 ⇓ v, T2

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓
v, case T of {inl(x1).e1; inr(x2).T2}

ρ, e ⇓ !, T

ρ, case e of {inl(x1).e1; inr(x2).e2} ⇓ !,!

ρ, e ⇓ v, T

ρ, roll e ⇓ roll v, roll T

ρ, e ⇓ roll v, T

ρ, unroll e ⇓ v, unroll T

ρ, e ⇓ !, T

ρ, unroll e ⇓ !,!

Figure 10. Tracing semantics: call-by-value evaluation

Finally the hole propagation rules, which apply when for exam-
ple a scrutinee evaluates to !, always produce a hole trace.

4.3 Program slicing via unevaluation

We are now able to define a deterministic program slicing algo-
rithm, called unevaluation, which utilises the information in a trace
in order to run a computation backwards and recover a prefix of
the original program. The definition is given in Figure 11. For a
value " v : τ and trace Γ " T : τ , the judgment v, T ⇓−1 ρ, e
states that T can be used to unevaluate v to partial environment
Γ " ρ and partial expression Γ " e : τ . Later we will show that
these side-conditions are satisfied whenever T is produced by trac-
ing evaluation to v (Theorem 4 below) or by slicing another trace
with respect to v (Theorem 7, Section 5).

A key part of the definition which for convenience is omitted
from Figure 11 is as follows. Every time a rule takes the join of two
values or environments there is an implicit side-condition requiring
that the joins exist. For example, the application rule has a side-
condition stating that v1) v1

′ and 〈ρ, fun f(x).e〉) v1
′ have a

least upper bound, plus another side-condition stating that ρ1 and
ρ2 have a least upper bound.

v, T ⇓−1 ρ, e where Γ " T : τ

!, T ⇓−1
!Γ,! v, x ⇓−1

!Γ.x %→v, x
v ,= !

c, c ⇓−1
!Γ, c

c2, T2 ⇓−1 ρ2, e2 c1, T1 ⇓−1 ρ1, e1

v, T1 ⊕c1,c2 T2 ⇓−1 ρ1 + ρ2, e1 ⊕ e2
v ,= !

〈ρ, fun f(x).e〉, fun f(x).e′ ⇓−1 ρ, fun f(x).e

v, T ⇓−1 ρ[f &→ v1][x &→ v2], e
v2, T2 ⇓−1 ρ2, e2 v1 + 〈ρ, fun f(x).e〉, T1 ⇓−1 ρ1, e1

v, T1 T2 $ f(x).T ⇓−1 ρ1 + ρ2, e1 e2
v ,= !

v2, T2 ⇓−1 ρ2, e2 v1, T1 ⇓−1 ρ1, e1

(v1, v2), (T1, T2) ⇓
−1 ρ1 + ρ2, (e1, e2)

(v1,!), T ⇓−1 ρ, e

v1, fst T ⇓−1 ρ, fst e
v1 ,= !

(!, v2), T ⇓−1 ρ, e

v2, snd T ⇓−1 ρ, snd e
v2 ,= !

v, T ⇓−1 ρ, e

inl v, inl T ⇓−1 ρ, inl e

v, T ⇓−1 ρ, e

inr v, inr T ⇓−1 ρ, inr e

v, T1 ⇓−1 ρ1[x1 &→ v1], e1 inl v1, T ⇓−1 ρ, e

v, case T of {inl(x1).T1; inr(x2).e2} ⇓−1

ρ1 + ρ, case e of {inl(x1).e1; inr(x2).!}

v ,= !

v, T2 ⇓−1 ρ2[x2 &→ v2], e2 inr v2, T ⇓−1 ρ, e

v, case T of {inl(x1).e1; inr(x2).T2} ⇓−1

ρ2 + ρ, case e of {inl(x1).!; inr(x2).e2}

v ,= !

v, T ⇓−1 ρ, e

roll v, roll T ⇓−1 ρ, roll e

roll v, T ⇓−1 ρ, e

v, unroll T ⇓−1 ρ, unroll e
v ,= !

Figure 11. Slicing rules: unevaluation

Unevaluation traverses the trace and folds it back into an expres-
sion from which the unneeded bits have been discarded. As with
evaluation, least elements are preserved, which simply means that
“holes map to holes”: unevaluating the value ! produces the ex-
pression ! and !Γ, the least environment for Γ. Unevaluating the
trace of a variable x with v yields x as an expression and the least
environment for Γ mapping x to v, which we write as !Γ.x %→v .

The general pattern for non-nullary trace constructors is that the
traces of the sub-computations are unevaluated and the resulting
partial environments joined. For example we unevaluate a pair trace
with a pair (v1, v2) by unevaluating the respective components with
v1 and v2 and joining the results. When binders are involved, the
fact that traces are typed allows us to safely extract partial values
for the bound variables. For example with a case trace for inl, the
selected branch is unevaluated, producing a partial environment of
the form ρ1[x -→ v1], where v1 is a partial value which is then
injected into the sum type and used to slice the scrutinee.

Unevaluating the application of a primitive operation retrieves
the values c1 and c2 previously cached in the trace and uses those to
unevaluate the arguments. We treat all primitive operations as strict
in both operands; it would be straightforward to extend the seman-
tics and slicing rules to accommodate non-strict operations. There
are also alternatives to the caching approach. One is to require that
every primitive operation provide its own adjoint slicing operation,
although this places additional burden on the implementer.

The application rule is the most interesting. For a trace T1 T2 $
f(x).T , we unevaluate T to obtain a slice e of the original function
body, plus an environment ρ[f -→ v1][x -→ v2] where ρ is a slice

of the environment in which the closure was captured, and v1 and
v2 are slices describing the usage of f and x respectively inside T .
Since T contains all recursive uses of the function, v1 (which is a
partial closure) captures how much of f was used below this step
of the computation. We then join v1 with 〈ρ, fun f(x).e〉 to merge
in information about the usage of the function at the present step,
and use it to unevaluate T1.

4.4 Correctness of tracing evaluation

Unevaluation is deterministic, which is again a straightforward
induction, relying on the v 3= ! side-conditions in Figure 11:

Lemma 5 (Determinism of unevaluation). If v, T ⇓−1 ρ, e and
v, T ⇓−1 ρ′, e′ then (ρ, e) = (ρ′, e′).

Not every well-typed trace T can be used to unevaluate a value
v of the same type. First, T might have some strange (but well-
typed) structure that could never be produced by evaluation, so that
the required joins do not exist. Second, T might have the right
structure, but also some holes, and not enough trace is available
to unevaluate v. So a key property of T with respect to v is whether
it is able to guide the unevaluation of v. When T has this property,
we say that it explains v. We can think of the unique (ρ, e) such that
v, T ⇓−1 ρ, e as the “explanation” of v which T produces. Note
that there is not a unique trace which explains v.

Definition 3 (T explains v). For any value v and trace T , we say
that T explains v iff there exist ρ, e such that v, T ⇓−1 ρ, e.

The key correctness property of tracing evaluation is as follows.
If evaluating a program yields v and T , then T explains v. Before
proving this, we first show that a trace T of v where v, T ⇓−1 ρ, e
gives rise to a monotonic function tr-unevalv,T from Prefix(v) to
Prefix(ρ, e). In fact tr-unevalv,T also preserves meets and joins,
but monotonicity is sufficient here.

Definition 4 (tr-unevalv,T). Suppose T explains v. Then define
tr-unevalv,T to be ⇓−1 domain-restricted to {(u, T) | u) v}.

We omit the v subscript when it is clear from the context that
the argument to tr-unevalv,T is a prefix of v.

Theorem 3 (Monotonicity of explanation).
Suppose T explains v. Then:

1. For any u) v, tr-unevalT (u) is defined.

2. If u) u′) v then tr-unevalT (u)) tr-unevalT (u
′).

Proof. See Appendix (supplementary material).

Monotonicity means that smaller values have smaller explana-
tions. Now we establish that tracing evaluation to v does indeed
produce a trace able to explain v. Moreover, unevaluation after
evaluation is deflationary: explanation of values are smaller than
the programs which compute them. We state and prove these simul-
taneously. Again, we drop the ρ, e subscript from tr-evalρ,e when
it is clear from the context that the argument is a prefix of (ρ, e).

Theorem 4 (Explanations are program prefixes).
Suppose ρ, e ⇓ v, T . Then T explains v. Moreover, for any
(ρ′, e′)) (ρ, e):

tr-unevalT (eval(ρ
′, e′))) (ρ′, e′)

Proof. See Appendix (supplementary material).

4.5 Correctness of unevaluation

As we sketched in Section 3, the intuition is that a slice, or expla-
nation, is “correct” if it can evaluate to at least the slicing criterion.
We now show that we compute slices which have this property.

First we make the following observation. If we are able to
unevaluate v with T , then for any trace U of a sub-computation
of T which was used to unevaluate an intermediate value u 3= !,
we must also have had U 3= !, since otherwise unevaluation would
have got stuck. But dually, we can also observe that if U were used
to unevaluate an intermediate value u = !, then U was discarded
in its entirety. In fact whenever T suffices to unevaluate v, any
larger trace is equally good:

Lemma 6. Suppose S explains v. Then any T / S explains v.
Moreover, for any u) v, we have tr-unevalS(u) = tr-unevalT (u).

Proof. See Appendix (supplementary material).

It is also useful to have a lemma which composes some of our
previous observations.

Lemma 7. Suppose ρ, e ⇓ v, T and (u, S)) (v, T). If S explains
u then tr-unevalS(u)) (ρ, e).

Proof.

Suppose ρ, e ⇓ v, T and (u, S)) (v, T) where S explains u.
Then:

tr-unevalS(u)
= tr-unevalT (u) (T / S and Lemma 6)
) tr-unevalT (v) (Theorem 3)
) (ρ, e) (Theorem 4)

Theorem 5 (Correctness of ⇓−1). Suppose ρ, e ⇓ v, T . If (u, S))
(v, T) and S explains u then eval(tr-unevalS(u)) / u.

Proof. See Appendix (supplementary material).

4.6 Computation of least slices

It is now easy to see that the unevaluation of u is the smallest
program slice large enough to evaluate to u. Moreover, any program
slice as large as the unevaluation of u is large enough to evaluate to
u:

Corollary 2 (Computation of least slices). Fix a terminating com-
putation ρ, e ⇓ v, T . For any u) v and (ρ′, e′)) (ρ, e) we have:

u) eval(ρ′, e′) ⇐⇒ tr-unevalT (u)) (ρ′, e′)

Proof. For the =⇒ direction, suppose ρ′, e′ ⇓ u′, S with u′ / u.
Note that S) T and u′) v by monotonicity.

tr-unevalT (u) = tr-unevalS(u) (S) T , Lemma 6)

) tr-unevalS(u
′) (Theorem 3)

) (ρ′, e′) (Theorem 4)

For the ⇐= direction, suppose tr-unevalv,T (u)) (ρ′, e′). Then:

eval(ρ′, e′) / eval(tr-unevalT (u)) (Theorem 1)

/ u (Theorem 5)

5. Trace Slicing

As discussed in Section 2, program slices omit information that
can be essential for understanding how a program computed a
result. Indeed, it is common that distinct criteria on the output (for
example picking out different elements of a list) yield the same
program slice. This is often because the program is computing
some aggregate property of its input, such as an average or total
order.

In this section, we show how given a trace T which explains
v, we can calculate a least prefix S of T which still preserves

v, T ↘ ρ, S where Γ " T : τ

!, T ↘ !Γ,! v, x ↘ !Γ.x %→v, x
v ,= !

c, c ↘ !Γ, c

c2, T2 ↘ ρ2, S2 c1, T1 ↘ ρ1, S1

v, T1 ⊕c1,c2 T2 ↘ ρ1 + ρ2, S1 ⊕c1,c2 S2
v ,= !

〈ρ, fun f(x).e〉, fun f(x).e′ ↘ !Γ, fun f(x).!

v, T ↘ ρ[f &→ v1][x &→ v2], S v, T ⇓−1 , e
v2, T2 ↘ ρ2, S2 v1 + 〈ρ, fun f(x).e〉, T1 ↘ ρ1, S1

v, T1 T2 $ f(x).T ↘ ρ1 + ρ2, S1 S2 $ f(x).S
v ,= !

v2, T2 ↘ ρ2, S2 v1, T1 ↘ ρ1, S1

(v1, v2), (T1, T2) ↘ ρ1 + ρ2, (S1, S2)

(v1,!), T ↘ ρ, S

v1, fst T ↘ ρ, fst S
v1 ,= !

(!, v2), T ↘ ρ, S

v2, snd T ↘ ρ, snd S
v2 ,= !

v, T ↘ ρ, S

inl v, inl T ↘ ρ, inl S

v, T ↘ ρ, S

inr v, inr T ↘ ρ, inr S

v, T1 ↘ ρ1[x1 &→ v1], S1 inl v1, T ↘ ρ, S

v, case T of {inl(x1).T1; inr(x2).e2} ↘
ρ1 + ρ, case S of {inl(x1).S1; inr(x2).!}

v ,= !

v, T2 ↘ ρ2[x2 &→ v2], S2 inr v2, T ↘ ρ, S

v, case T of {inl(x1).e1; inr(x2).T2} ↘
ρ2 + ρ, case S of {inl(x1).!; inr(x2).S2}

v ,= !

v, T ↘ ρ, S

roll v, roll T ↘ ρ, roll S

roll v, T ↘ ρ, S

v, unroll T ↘ ρ, unroll S
v ,= !

Figure 12. Trace slicing

the “explanatory power” of T with respect to v, in that S retains
sufficient information to unevaluate v. Least slices can provide
more specific information about which parts of the computation
contribute to a part of the output. The missing proofs can be found
in the companion technical report [20].

The judgment v, T ↘ ρ, S, defined in Figure 12, states that
slicing Γ " T : τ with respect to a partial value " v : τ yields
partial environment Γ " ρ and partial trace S) T . As with
unevaluation, there are side-conditions, which we omit from the
figure for convenience, on the rules which take joins, asserting that
the joins exist.

The rules are similar in flavour to those for unevaluation, but
sub-computations are sliced, rather than unevaluated back to ex-
pressions. The significant differences are in the function and ap-
plication cases. For function traces, we produce the least environ-
ment for Γ and the least function trace smaller than T , namely
fun f(x).!. For application traces, we both slice and unevalu-
ate T : we slice to obtain a trace slice S for the function body, and
we unevaluate to obtain expression slice e for the function body,
so that it can be merged into v1 and used as the slicing criterion
for T1. Unevaluation of the function body also yields a partial en-
vironment, but it is identical to the one obtained by slicing, so we
disregard it. (See Theorem 6 below.)

5.1 Correctness of trace slicing

Trace slicing is deterministic. The proof is a straightforward induc-
tion, relying on the v 3= ! side-conditions in Figure 12.

Lemma 8. Suppose v, T ↘ ρ, S and v, T ↘ ρ′, S′. Then ρ = ρ′

and S = S′.

If T explains v then we can slice T with v. Moreover the
partial environment we obtain is the one we would obtain via
unevaluation:

Theorem 6. v, T ⇓−1 ρ, e =⇒ ∃S.v, T ↘ ρ, S.

Proof. Straightforward induction on the derivation of v, T ⇓−1

ρ, e. The only non-trivial case is the application rule, because we
invoke the ⇓−1 judgment from the ↘ judgment. Then we use that
⇓−1 is deterministic (Lemma 5).

The key correctness property of trace slicing with v is that it
yields a partial trace able to explain v. Moreover, the resulting trace
is smaller than the original trace:

Theorem 7 (Correctness of trace slicing). If v, T ↘ ρ, S then S
explains v and S) T .

The fact that slicing produces a smaller trace means that if
we can slice T with v, then it must be that T explains v. By
determinism the judgments agree on environments.

Corollary 3. v, T ↘ ρ, S =⇒ ∃e.v, T ⇓−1 ρ, e.

Proof. Suppose v, T ↘ ρ, S. Then S explains v and S) T by
Theorem 7. But if S) T , then T also explains v by Lemma 6.
Then there exist ρ′, e such that v, T ⇓−1 ρ′, e. But then ρ = ρ′ by
Theorem 6 and the fact that ↘ is deterministic (Lemma 8).

5.2 Computation of least trace slices

When we slice T with v to obtain S, although S may be strictly
smaller than T , by Lemma 6 the program slice obtained by uneval-
uating v with S is the same as would be obtained by unevaluating
with T . But S is the canonical explanation of v compatible with T ,
in that it is the least prefix of T which still explains v:

Theorem 8 (Trace slicing computes the least trace explaining v).
Suppose v, T ′ ↘ ρ, S, and any T) T ′ that explains v. Then
S) T .

6. Implementation and Tracing Strategies

We have completed a prototype implementation, in Haskell, of
our slicing techniques, as a tool that we call Slicer. As with most
dynamic program slicers or debuggers, Slicer records a trace of the
computation, consuming space linear in the number of execution
steps of the program. Slicing and debugging information is often so
critical that programmers routinely pay the space and time cost of
recording the trace. We briefly outline two strategies for controlling
tracing costs and present preliminary experimental results.

Our first strategy relies on Haskell’s lazy evaluation to construct
the trace lazily, which is possible because the trace is not needed
until it is sliced. Since slicing can throw away a portion of the trace,
laziness may successfully avoid the redundant work of building
the parts thrown away. Our second strategy, which we call delayed
tracing, is a form of controlled laziness. It takes advantage of the
fact that, in our design, a trace is essentially a recursive unfolding
of an expression. This makes it possible to reduce the size of a trace
dramatically by substituting it with the expression that generated it.
When the trace is needed during slicing, we rerun the expression
to generate the full trace, but after slicing, retain only the slice.
Delaying thus pushes the cost of tracing from a run to slicing, and
can thus be helpful in the cases where slices are small or computed
interactively on demand. For comparison we also implemented a
third strategy, eager. The three strategies are summarised below:
• The eager strategy involves adding strictness annotations to

the datatype for traces, along with seqs used for implementing
our eager evaluation semantics in Haskell, so that the trace is
completely constructed before we begin slicing it.

Test
Eval(s)

Slice/Trace
Strategy Trace(s) Slice(s) Total (s)

sort eager 0.17 0.48 0.65
0.07 lazy 0.12 0.21 0.33

447K/500K delay 0.01 0.38 0.39
rbtree eager 0.88 2.41 3.29

0.29 lazy 0.66 1.31 1.97
1.55M/1.61M delay <0.01 2.48 2.49
rbtree-len eager 0.9 0.02 0.92

0.29 lazy 0.67 0.04 0.71
9K/1.61M delay <0.01 0.01 0.01
vec-sum eager 0.16 <0.01 0.16

0.13 lazy 0.13 <0.01 0.13
20/220K delay <0.01 <0.01 <0.01

Table 1. Comparison of eager, lazy and delayed tracing strategies.
Times are in seconds. Eval is the time to evaluate without tracing,
and Trace and Slice are the additional time needed for tracing and
slicing respectively. Slice/Trace is the ratio of number of nodes in
the trace slice to the full trace.

• The lazy strategy uses Haskell’s default lazy evaluation order
for the traces. This still has a runtime cost, because thunks are
constructed that capture intermediate values that may ultimately
be needed to reconstruct parts of the trace.

• The delayed strategy uses a new trace form called a delay to
record the current environment and expression instead of the
full trace. We insert delays during evaluation at function calls
when a given recursion depth is exceeded. When we encounter
a delay trace during during slicing, we run the expression with
tracing enabled, which may lead to a trace with additional
delays. In our prototype implementation, we make no attempt
to avoid multiple evaluations of an expression. We use an initial
depth bound of 10, which doubles during re-tracing so that we
collect more detailed traces as we get closer to our goal.
Table 1 shows preliminary timing measurements for eager,

lazy and delayed tracing. The programs involved are sort, which
mergesorts a list, rbtree, which builds a red-black tree from a list,
rbtree-len, which builds a pair of a red-black tree and the length
of a list, and vec-sum, which does a vector addition of two lists.
The list lengths are 1000 for sort, rbtree, and rbtree-len and
10000 for vec-sum. For vec-sum and sort, we slice the first ele-
ment of the result list, for rbtree we slice the root value, and for
rbtree-len we slice the second (length) component of the result.
The trace slices for vec-sum and rbtree-length are small com-
pared to the full trace, while for the other two examples, the trace
slice is almost as large as the original trace. We used GHC 6.12.1
with optimization level -O2 running on a MacBook Pro (2.8 GHz
Intel Core Duo, 4GB RAM).

The timing results show that the lazy strategy successfully re-
duces tracing costs compared to eager by around 30%. Slicing costs
are also reduced, though, so the total overhead of tracing and slic-
ing is almost 50% less than the eager strategy. Delayed tracing al-
most eliminates initial tracing costs, and when the resulting slice is
small, the slicing cost is also negligible. When a slice is close to
the full trace, however, delaying is more expensive than lazy slic-
ing, because expressions may be re-evaluated multiple times in our
prototype implementation. Preliminary memory profiling suggests
that lazy uses much less memory for both tracing and slicing on the
benchmarked programs than eager, while delay usually uses less
memory for both tracing and slicing in all examples except tree,
often by more than an order of magnitude.

These measurements are consistent with the brief conceptual
discussion of the strategies, suggesting that a careful implementa-
tion that uses lazy and delayed tracing can further reduce overhead.

7. Related Work

We mentioned in the introduction some of the related work from
the large literature on program slicing and related techniques; here
we discuss more closely-related work, as well as other related work
on provenance, debugging, and execution indexing.

Program slicing. Biswas’s [6] and Ochoa et al.’s [19] work are
the closest to our program slicing techniques. The main difference
between Biswas’ work and ours is that we support more flexible
slicing criteria that permit arbitrary portions of the output to be
thrown out or selected—Biswas considers only slicing with respect
to the entire output. Ochoa et al. present techniques for computing
slices under more flexible slicing criteria, but consider only first-
order lazy programs. Our techniques appear to be the first where
flexible criteria can be used in a strict, higher-order setting. We
also realize a limitation of program slices and propose computation
slices as a fine-grained techniques for understanding computations.

In terms of technique, Biswas’ and Ochoa et al.’s approach
both rely on labelling parts of the program and propagating the
labels through execution to determine which parts of the program
contribute to the output. Both can be viewed as constructing an
execution trace: Biswas constructs an implicit trace by propagating
labels through the execution and Ochoa et al. construct an explicit
trace in form of a redex trail [23] so that expressions that are
lazily evaluated can be identified. Our techniques also rely on
construction of a trace, but our traces reflect closely the syntax
of expressions. This allows us to “unevaluate” trace slices back to
expressions and to handle higher-order programs in a simple way.

Provenance. Provenance concerns the auditing and analysis of
the origins and computational history of data. Provenance is a
growing field with applications in databases [8, 9, 13, 14], secu-
rity [10, 25] and scientific workflow systems [7, 12, 22]. The
techniques employed sometimes rely on traces but have to date
mainly been developed for languages of limited expressiveness
(e.g., monotone query languages) rather than general-purpose lan-
guages and often without proper formal foundations. Provenance
extraction seems to be an important future application area for
language-based tracing and slicing techniques. Some efforts in this
direction include Hidders et al. [15], who model workflows using a
core database query language extended with nondeterministic, ex-
ternal function calls, and partially formalize a semantics of runs
which are used to label the operational derivation tree for the com-
putation. Recent work on security and provenance [2] by some of
the present authors is also based on big-step techiques similar to
those presented here. The authors present a “disclosure slicing” al-
gorithm similar to our trace slicing algorithm, which ensures that a
trace retains enough information to show how an output was pro-
duced. However, that work does not investigate program slicing or
unevaluation, and is unable to slice higher-order values.

View ML [24] has similar high-level goals to ours but is techni-
cally quite different to our approach. VML allows the programmer
to define special functions called views that carry some intensional
information in the form of a datatype constructor with arguments
showing how parameters were set. These can later be inspected or
pattern-matched. This is a useful form of user-defined provenance,
but is distinct from that provided by detailed tracing. On the other
hand, views could provide a mechanism for abstraction/granularity
control with larger traces, potentially addressing some of the issues
of scale that we leave as future work.

Debugging. Debugging techniques often involve tracing. The
problem of scale – in terms of both resource usage and human cog-
nitive capacity – has received some attention in this area. Nilsson’s
“piecemeal” tracing for lazy languages [18] builds a trace in the
form of an evaluation-dependency tree, but allows the trace to be

started at selected, suspected functions, akin to setting a breakpoint
in a traditional debugger. Claessen et al.’s work on Hat [11], based
on redex trails, explores efficient storage and visualisation tech-
niques and demonstrates that trace-based approaches are feasible
for large, multi-module programs. Both these systems also support
the declaration of “trusted” components for which no internal trace
is recorded.

Execution monitoring. An alternative to tracing is the execution
monitoring of Kishon and Hudak [17]. A generic instrumented
interpreter provides observation events to a monitor, which can use
this information to calculate various properties of the execution.
This has the advantage of avoiding creating large intermediate data
structures like traces or redex trails. A disadvantage is that it is not
possible to manipulate or transform the view of execution after the
fact, short of building an explicit trace as we do.

Execution indexing. Execution indexing is a technique, some-
times implemented using execution monitoring, for setting up a
correspondence or alignment between the execution traces of two
different runs of a program. Recent applications of execution in-
dexing include a form of differential slicing [16]. Their differential
slices differ from ours in supporting comparison of distinct runs,
unlike our technique which only allows two slices of the same com-
putation to be compared. However, these techniques have been de-
veloped only for imperative languages.

8. Conclusions

We often treat computation as a “black box”, but debugging, com-
prehension and analysis problems require breaking this abstraction
and looking inside the box. Opening the box exposes a great deal
of useful information to the programmer but also presents several
implementation and user-interface challenges. In this paper, we fo-
cused on foundations. We presented a novel algorithm-independent
characterisation of the problem of calculating a least dynamic pro-
gram slice, showed how to support fine-grained differential slicing
criteria in the presence of higher-order functions, and showed how
to slice reified computations, or traces, as well as programs. Our
techniques, realised in our tool Slicer, enable the user to interact
with a computation and understand it in terms of the programming
language the program was expressed in.

The main challenge that lies ahead for our approach is scaling
it to large programs. In the present paper, we briefly described
techniques for reducing the overhead of tracing by delaying tracing
until it is needed for slicing. Previous work in the area of functional
debugging has explored several complementary techniques which
may be of use in making trace-based approaches more scalable,
including piecemeal construction of traces, “trusted” components
for which tracing is disabled, and offline storage. Investigating the
applicability of these and other techniques we defer to future work.

References
[1] U. A. Acar. Self-Adjusting Computation. PhD thesis, Department of

Computer Science, Carnegie Mellon University, May 2005.

[2] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core calculus for
provenance. In Proceedings of the First Conference on Principles of
Security and Trust (POST), pages 410–429. Springer, 2012.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion
of control dependence to data dependence. In POPL, pages 177–189.
ACM, 1983.

[4] D. C. Atkinson and W. G. Griswold. Implementation techniques for
efficient data-flow analysis of large programs. In ICSM, pages 52–61.
IEEE, 2001.

[5] T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow.
In Proceedings of the First International Workshop on Automated and

Algorithmic Debugging, pages 206–222, London, UK, 1993. Springer-
Verlag.

[6] S. Biswas. Dynamic Slicing in Higher-Order Programming Lan-
guages. PhD thesis, University of Pennsylvania, 1997.

[7] R. Bose and J. Frew. Lineage retrieval for scientific data processing: a
survey. ACM Comput. Surv., 37(1):1–28, 2005.

[8] P. Buneman, J. Cheney, and S. Vansummeren. On the expressiveness
of implicit provenance in query and update languages. ACM Transac-
tions on Database Systems, 33(4):28, November 2008.

[9] P. Buneman, S. Khanna, and W. Tan. Why and where: A character-
ization of data provenance. In ICDT, number 1973 in LNCS, pages
316–330, 2001.

[10] A. Cirillo, R. Jagadeesan, C. Pitcher, and J. Riely. Tapido: Trust and
authorization via provenance and integrity in distributed objects. In
ESOP, volume 4960 of LNCS, pages 208–223, 2008.

[11] K. Claessen, C. Runciman, O. Chitil, J. Hughes, and M. Wallace.
Testing and tracing lazy functional programs using Quickcheck and
Hat. In In 4th Summer School in Advanced Functional Programming,
number 2638 in LNCS, pages 59–99. Springer LNCS, 2003.

[12] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD, pages 1345–1350, New
York, NY, USA, 2008.

[13] J. N. Foster, T. J. Green, and V. Tannen. Annotated XML: queries and
provenance. In PODS, pages 271–280, 2008.

[14] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
In PODS, pages 31–40, 2007.

[15] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and
J. Van den Bussche. A formal model of dataflow repositories. In
DILS, volume 4544 of LNCS, pages 105–121, 2007.

[16] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant, P. Poosankam,
D. Reynaud, and D. Song. Differential slicing: Identifying causal
execution differences for security applications. In IEEE Symposium
on Security and Privacy, 2011.

[17] A. Kishon and P. Hudak. Semantics directed program execution
monitoring. J. Funct. Prog., 5(4):501–547, 1995.

[18] H. Nilsson. Tracing piece by piece: affordable debugging for lazy
functional languages. In Proceedings of the 1999 ACM SIGPLAN
international conference on Functional programming, pages 36–47,
Paris, France, Sept. 1999. ACM Press.

[19] C. Ochoa, J. Silva, and G. Vidal. Dynamic slicing of lazy functional
programs based on redex trails. Higher Order Symbol. Comput., 21(1-
2):147–192, 2008.

[20] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs
that explain their work. Technical Report MPI-SWS-2012-003, Max
Planck Institute for Software Systems, July 2012.

[21] T. Reps and T. Turnidge. Program specialization via program slicing.
In O. Danvy, R. Glc̈k, and P. Thiemann, editors, Partial Evaluation,
volume 1110 of LNCS, pages 409–429. Springer-Verlag, 1996.

[22] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance
in e-science. SIGMOD Record, 34(3):31–36, 2005.

[23] J. Sparud and C. Runciman. Complete and partial redex trails of
functional computations. In IFL 1997, number 1467 in LNCS, pages
160–177. Springer-Verlag, 1998.

[24] E. Sumii and H. Bannai. VMλ: A functional calculus for scientific
discovery. In Z. Hu and M. Rodrguez-Artalejo, editors, Functional
and Logic Programming, volume 2441 of Lecture Notes in Computer
Science, pages 290–304. Springer Berlin / Heidelberg, 2002.

[25] N. Swamy, B. J. Corcoran, and M. Hicks. Fable: A language for en-
forcing user-defined security policies. In IEEE Symposium on Security
and Privacy, pages 369–383, 2008.

[26] F. Tip. A survey of program slicing techniques. J. Prog. Lang., 3(3),
1995.

[27] M. Weiser. Program slicing. In ICSE, pages 439–449, 1981.

[28] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of
program slicing. SIGSOFT Softw. Eng. Notes, 30:1–36, March 2005.

