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Abstract

Reynolds’ view of a storage cell as an expression-acceptor pair has been widely used by researchers. We
present a different way of organizing semantics of state, and in particular game semantics, by adding to
typing contexts a zone for global state. This has the following advantages.
Firstly, it causes the “good variable” equations for references to be validated, and also the noninterference
equations between distinct references, as enumerated by Plotkin and Power.
Secondly, it gives a cleaner categorical structure based on the configurations (state + program) used to
describe operational semantics.
Thirdly, it leads to a simpler proof that the game semantics is sound and adequate with respect to the
operational semantics.
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1 Introduction

Languages with state often have special types for storage cells, such as ref types

in ML, and var types in Algol-like languages. Some denotational models inter-

pret these as a type of distinguishable names [9,14,22], but in other models that is

unsuitable. Reynolds [20] suggested that a cell could be regarded as an “expression-

acceptor pair”, i.e. a function that returns the current value, together with a pro-

cedure that updates it. This suggestion was successfully adopted in both possible

world [15] and game semantics [1,2,19].

It was noted, however, that a cell is not an arbitrary expression-acceptor pair,

but enjoys some special properties. For example, writing to a cell and then read-

ing it gives the value just written. These so-called “good variable” properties 2

were enumerated in [18] in order to axiomatize the computational effect of global

state. Recent papers in game semantics have addressed the “good variable” issue

by restricting strategies in various ways [12,13].

In this paper, we propose a different approach that entirely avoids this problem.

We do not have cell types at all. Instead, we have two-zone contexts ∆; Γ, where Γ

1 Email: pbl@cs.bham.ac.uk
2 The call-by-name nature of Idealized Algol obscures this issue, because a var type is a type not of cells
but of state-dependent expressions that return a cell. Such expressions are not necessarily “good variables”.
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is an ordinary context, and ∆ (the “storage context”) is a list of cells. For example,

a context n : bool, n′ : bool, n′′ : bool; f : nat → nat means that n, n′, n′′ are bound

to distinct cells storing booleans, and f is bound to a function.

A two-zone context of this kind is hardly novel, as it has been used for the

formulation of operational semantics in [4,5] and Chapter 5 of [21]. But in our

formulation the new construct binds cells from the storage context ∆, which is less

familiar, though it does appear in [17].

We shall look at the impact of this arrangement on game semantics of state. For

illustration, let us consider the following call-by-value term M : nat in the above

two-zone context:

n := true.

n := false.

n′′ := false.

read n as {

true. f(3) + 4

false. f(7) + 5

}

In the traditional game semantics in [2], M denotes a set of dialogues between

Proponent (P) and Opponent (O) such as the following.

P: Set n to be true.

O: OK.

P: Set n to be false.

O: OK.

P: Set n′′ to be false.

O: OK.

P: What is n currently?

O: True.

P: I call f with argument 3.

O: Your call returns 2.

P: I return 6.

Note that this play involves unnecessary information (the first call to n) and an

impossible response from Opponent (that n is true). The assignment and reading

commands are seen as no different from function calls.

In the game semantics we shall present, here is an example dialogue of M pro-

ceeding from the initial state n 7→ true, n′ 7→ false, n′′ 7→ true.

P: I call f with argument 7, in state n 7→ false, n′ 7→ false, n′′ 7→ false.

O: Your call returns 14, in state n 7→ false, n′ 7→ true, n′′ 7→ false.

P: I return 19, in state n 7→ false, n′ 7→ true, n′′ 7→ false.

Now the entire global state must be described in each move, but no moves are

required to read or assign to a cell. Note that Opponent assigns to n′—it is a global

cell, so both players have access to it.
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It is clear how to calculate the denotation of M ′ def
= new n′′ := true. M from the

denotation of M . The effect of new is to make n′′ into a private cell that Opponent

does not have access to. So we look at those dialogues in which n′′ is initially true,

and Opponent never changes n′′—such as the dialogue we saw—and then erase all

mention of n′′

It is also clear how to weaken M by calculating its denotation in the bigger

context n : bool, n′ : bool, n′′ : bool, n′′′ : nat; f : nat → nat. This time, we

consider those plays where Proponent never changes the contents of n′′′ and erasing

n′′′ yields a play on M .

These two operations, hiding and weakening, in combination with the tradi-

tional strategy operations of composition and copycat, provide a simple categorical

structure from which the semantics of the individual syntactic constructs is eas-

ily obtained. Indeed the game semantics in this paper is not new—it is the same

as [1]—it is only the organization which is different 3 . Moreover, the soundness of

the model wrt operational semantics is immediate, and this had previously proved

challenging, especially in the setting of higher-order store. And the method of [11]

can easily be applied to give computational adequacy.

Structure of Paper First we look at a calculus without store, its categorical

semantics and then game semantics. Then we do the same with store. Along the

way, we shall need in Sect. 3.1 to develop the theory of expansions in order to

formulate an injective renaming lemma.

2 Basic Language

2.1 Syntax

To make the game semantics as simple as possible, we work with a calculus JWA

where functions are called (by value) but do not return. The types are given by

A ::= ¬A |
∑

i∈IAi | 1 | A × A | X | rec X. A

where I ranges over finite sets (or countable, for an infinitary variant). The type

¬A corresponds to A → 0 in call-by-value. There are two kinds of terms, values

and nonreturning commands, indicated by the judgements Γ ⊢v V : A and Γ ⊢n M

respectively. The types in Γ and A are all closed. The syntax is shown in Fig. 1.

A renaming Γ
θ // Γ′ maps each identifier in Γ to one of the same type in Γ′,

whereas a substitution Γ
k // Γ′ maps each identifier in Γ to a value. These induce

operations θ† and k∗ on terms in the usual way. They are used in the operational

semantics (Fig. 2.1) and the equational theory (Fig. 3). We write xM to mean M

weakened by x.

Remark 2.1 For recursive types, we have included only the most rudimentary

equations—merely asserting an isomorphism rec X. A ∼= A[rec X. A/X].

3 Another recent categorical semantics for higher-order store is that of [8], but this has been applied to
different kinds of games.
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(x : A) ∈ Γ
Γ ⊢v x : A

Γ ⊢v V : A Γ, x : A ⊢n M

Γ ⊢n let V be x. M

Γ ⊢v V : Aı̂
ı̂ ∈ I

Γ ⊢v 〈̂ı, V 〉 :
∑

i∈IAi

Γ ⊢v V :
∑

i∈IAi Γ, xi : Ai ⊢
n Mi (∀i ∈ I)

Γ ⊢n pm V as {〈i, xi〉.Mi}i∈I

Γ ⊢v V : A Γ ⊢v V ′ : A′

Γ ⊢v 〈V, V ′〉 : A × A′

Γ ⊢v V : A × A′ Γ, x : A, y : A′ ⊢n M

Γ ⊢n pm V as 〈x, y〉. M

Γ, x : A ⊢n M

Γ ⊢v λx.M : ¬A

Γ ⊢v V : ¬A Γ ⊢v W : A

Γ ⊢n V W

Γ ⊢v V : A[rec X. A/X]

Γ ⊢v fold V : rec X. A

Γ ⊢v V : rec X. A Γ, x : A[rec X. A/X] ⊢n M

Γ ⊢n pm V as fold x. M

Fig. 1. Syntax of JWA with type recursion (the 1 type is omitted)

Transitions Terminal configurations

let V be x. M  M [V/x]

pm 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I  Mı̂[V/x] pm z as {〈i, x〉.Mi}i∈I

pm 〈V, V ′〉 as 〈x, y〉. M  M [V/x, V ′/y] pm z as 〈x, y〉. M

pm fold V as fold x. M  M [V/x] pm z as fold x. M

(λx.M)V  M [V/x] zV

Fig. 2. Operational semantics on commands in fixed context Γ

let V be x. M = M [V/x]

pm 〈̂ı, V 〉 as {〈i, x〉.Mi}i∈I = Mı̂[V/x]

pm 〈V, V ′〉 as 〈x, y〉. M = M [V/x, V ′/y]

pm fold V as fold x. M = M [V/x]

(λx.M)V = M [V/x]

M [V/z] = pm V as {〈i, x〉. xM [〈i, x〉/z]}i∈I

M [V/z] = pm V as 〈x, y〉. x,yM [〈x, y〉/z]

M [V/z] = pm V as fold x. xM [fold x/z]

V = λx. xV x

Fig. 3. Equational laws for JWA
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2.2 Semantics of Types, Contexts, Renamings

We recall the “families” construction from [3]: if C is a category, then an object of

fam(C) is a family of C-objects. The homset from {Ai}i∈I to {Bj}j∈J is given by
∏

i∈I

∑
j∈JG(Ai, Bj). This inherits finite products from C.

An arena is a countable forest; we write ⊢ to mean “is a parent of”, and say

∗ ⊢ r when r is a root. We write rt R for the roots of R, and R ↾ r for the arena of

proper descendants of r. We write ⊎ for disjoint union, and pti∈IRi for the arena

with I roots and a copy of Ri placed below the ith root.

A closed type denotes an arena family 4 , in the following manner:

1
def
= {∅}〈〉∈1

{Ri}i∈I × {Sj}j∈J
def
= {Ri ⊎ Sj}〈i,j〉∈I×J

∑
i∈I{Rij}j∈Ji

def
= {Rij}〈i,j〉∈I×J

¬{Ri}i∈I
def
= {pti∈IRi}〈〉∈1

The semantics of (open types and) recursive types follows [3], giving an arena iso-

morphism [[rec X. A]] ∼= [[A[rec X. A/X]]]. A context Γ denotes an arena family using

the 1 and × operations.

An arena renaming morphism is a function R
f

// S that maps each root

b ∈ rt R to a root fb ∈ rt S and restricts to an arena isomorphism R↾b
fb // S↾fb .

These form a cocartesian category TokCh. Renamings between contexts are inter-

preted in B
op

where B
def
= fam(TokCh

op

). The category B is a countably distributive

and equipped with an endofunctor ¬ on its isomorphism groupoid Isos B. Such a

category is called a JWA base.

2.3 Categorical Structure

For a category C, a left C-module is a functor C
op N // Set . We think of N (R) as a

homset—its elements are “morphisms from R” and written R
f

// . We use them

to interpret nonreturning commands.

Definition 2.2 (i) A first-order JWA model on a base B consists of
• a category C, with the same objects as B
• a left C-module N
• an identity-on-objects functor B

K // C

4 Throughout this paper, “family” means countable family.
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such that all the following functions are isomorphisms

C(A, B × B′) −→ C(A, B) × C(A, B′) C(A, 1) −→ 1

f 7−→ 〈(f ; Kπ), (f ; Kπ′)〉 f 7−→ 〈〉

C(A ×
∑

i∈IBi, C) −→
∏

i∈IC(A × Bi, C)

N (A ×
∑

i∈IBi) −→
∏

i∈IN (A × Bi)

f 7−→ λi.((A × ini); f))

A JWA model on B is a first-order JWA model together with an isomorphism

N (A × B) ∼= C(A,¬B) natural in A ∈ C
op

, B ∈ Isos B (1)

We write FOJWA(B) for the (large) category of first-order JWA models on base

B, and JWA(B) for the (large) category of JWA models on base B. Morphisms

are identity on objects.

We emphasize that, in the semantics of JWA, a renaming is interpreted in B
op

,

whereas a substitution is interpreted in C
op

.

2.4 Strategies

If S is a left G-module, then fam(S) : {Ri}i∈I 7→
∏

i∈I S(Ri) is a left fam(C)-module.

Using this construction, we will build a JWA model (C,N ) = (fam(G), fam(S)) on

the base B
def
= fam(TokCh

op

).

Definition 2.3 (NB Proponent begins) Let R be an arena. We define ∗
def
= −1.

(i) A (finite) justified sequence on an arena R is a sequence m0, . . . , mn−1 where

each mi = (pi, ri) consists of a pointer ∗ 6 pi < i and an element ri ∈ R such

that rpi
⊢ ri, where r∗

def
= ∗.

(ii) A justified sequence is a play when i − pi is odd for every i < n. In a play, a

move i < n is a Proponent move or an Opponent move according as i is even

or odd. A play is prior or posterior according as its length is even or odd.

(iii) A strategy is a prefix-closed set σ of posterior plays that is deterministic: if

sm, sm′ ∈ σ then m = m′. We write S(R) for the set of strategies on R.

(iv) We write SHO(R) for
∏

b∈rt RS(Rb). This is (isomorphic to) the set of strategies

where (as in [7]) Opponent begins, and may not point to ∗ after the initial move.

Definition 2.4 Let R and S be arenas.

(i) We define the Hyland-Ong exponential R →HO S
def
= ptb∈rt S(R ⊎ Sb)

(ii) We define the homset

G(R, S)
def
= SHO(R →HO S) ∼=

∏
b∈rt SS(R ⊎ Sb)
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(iii) For an arena renaming morphism S
f

// R , we define the copycat R
Kf

// S
in G. At b ∈ rt S, it is the set of posterior plays on R ⊎ Sb in which Proponent

begins with (∗, f(b)) and responds to (j, r) by pointing to j − 1 and playing

fb(r) or f−1
b (r) according as r ∈ Sb or r ∈ Rf(b).

Definition 2.5 Let R, S, T be arenas.

(i) An interaction sequence on R, S, T is a justified sequence s on (R →HO S)⊎ T

such that
• the right inner thread s ↾ S ⊎ T is a play
• for each move m playing b ∈ rt S, the left inner thread s ↾ m consisting of

moves strictly descended from m is a play on R ⊎ Sb

• the outer thread s ↾ R⊎ T (with the pointer from each R root move changed

to ∗) is a play.

It is outer-posterior when the outer thread is posterior.

(ii) Let σ ∈ G(R, S) and let τ ∈ S(S ⊎ T ). We define σ > τ ∈ S(R ⊎ T ) to be the

outer thread of each outer-posterior interaction sequence s on R, S, T whose

inner threads (s ↾ m) ∈ σr(m) and (s ↾ S ⊎ T ) ∈ τ .

The composite of R
f

// S
g

// T is defined at c ∈ rt T by >, while the com-

posite of R
f

// S
g

// is given by >R,S,∅. The identity on R is given by K idR.

This gives all the required structure, and we recover f > g as (f × T ); g. Moreover,

pre- and post-composition with Kf is given by renaming of elements. Applying the

families construction to (G,S) gives a JWA model (C,N ) on base B as required.

2.5 Computational Adequacy

To model divergence in JWA, we require the following structure.

Definition 2.6 A JWA model (C,N ) on base B is pointed when it is equipped with

a distinguished element ⊥A ∈ N (A) for each object A, such that f ;⊥B = ⊥A for

each A
f

// B in C.

Clearly our game model is pointed: the ⊥ morphism from an arena family

{Ri}i∈I is given at i ∈ I by the empty strategy.

We shall say that a pointed JWA model (equipped with a B-isomorphism to

interpret each recursive type) is adequate when M  ω implies [[M ]] = ⊥. Our aim

is to show that our game model is adequate. We proceed as follows.

Definition 2.7 Let f be an endofunction on a set A.

(i) A sequence (an)n∈N in A is a fixed sequence of f when f(an+1) = an for all

n ∈ N.

(ii) A fixpoint a of f is sequentially unique when every fixed sequence of f is the

constant sequence at a. (Clearly this implies uniqueness.)

Definition 2.8 (i) A JWA model (C,N ) on base B is ticking when it is equipped

with an endofunction XA on N (A) for each object A, such that
• XA has a sequentially unique fixpoint Xω

A, for each object A

7
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• X(f ; g) = f ;X(g) for each A
f

// B
g

// in C and N .

(Clearly this implies f ;Xω = Xω for each A
f

// B in C.)

(ii) A tick-hiding from a ticking JWA model MX = (CX,NX) to a pointed JWA

model M = (C,N ) on the same base B is a morphism MX α // M in JWA(B)

such that
• α(X(f)) = αf for each A

f
// in NX

• α(Xω
A) = ⊥A for each object A.

Proposition 2.9 Let M = (C,N ) be a pointed JWA model on base B. If

there exists a ticking JWA model MX = (CX,NX) on base B and a tick-hiding

MX α // M , then M is adequate.

To apply Prop. 2.9 to our game semantics, we define

Definition 2.10 (i) A prior ticking play is a prior play where each Proponent-

move has a number attached (representing the number of ticks output by Pro-

ponent).

(ii) A posterior ticking play is either a posterior play where each Proponent-move

has a number attached, or a prior ticking play followed by ω (representing

infinitely many ticks).

(iii) A ticking strategy on an arena R is a prefix-closed set σ of posterior ticking

plays that is deterministic: i.e. if sm, sm′ ∈ σ then m = m′. We write SX(R)

for the set of ticking strategies on R.

(iv) The tick-hiding of a ticking strategy σ on an arena R is the strategy obtained

by discarding all the numbers of ticks in each play, and discarding all the plays

that end in ω (they become divergences).

We then define the rest of the ticking model just as in Sect. 2.4. For composition,

some plays ending in ω arise as the outer thread of an infinite interaction sequence,

as in [11]. We omit details.

3 Adding Storage

To add storage to JWA, we use contexts of the form ∆; Γ, where ∆ is a list of

distinct locations with associated type and Γ as before is a list of distinct identifiers

with associated type. The syntax is given by Fig. 1 with Γ replaced by ∆; Γ, and

also by Fig. 4.

Again a renaming Γ
θ // Γ′ maps identifiers to identifiers, and a substitution

Γ
k

∆
// Γ′ maps each (x : A) ∈ Γ to a value ∆; Γ′ ⊢v k(x) : A. An injection

∆
φ

// ∆′ maps each location in ∆ injectively to one of the same type in ∆′.

These induce operations θ†, k∗ and φ† on terms.

We write ∆; Γ ⊢sn E to mean that E is a configuration that can arise during

the execution of a command ∆; Γ ⊢n M . It will consist of a list of local cells, a
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∆; Γ ⊢v V : A ∆; Γ ⊢n M
(n : A) ∈ ∆

∆; Γ ⊢n n := V. M

∆; Γ, x : A ⊢n M
(n : A) ∈ ∆

∆; Γ ⊢n read n as x. M

∆,
−−→
n : A; Γ ⊢v −−−→

V : A ∆,
−−→
n : A; Γ ⊢n M

∆; Γ ⊢n new
−−−−→
n := V . M

Fig. 4. Syntax For State

−→
A ; s; n := V. M  

−→
A ; s[n 7→ V ]; M

−→
A ; s; read n as x. M  

−→
A ; s; M [s(n)/x]

−→
A ; s; new

−−−−→
n := V . M  

−→
A,

−→
A′;

−→ns,
−−−−→
n 7→ V ; M

Fig. 5. Transitions For Storage

global state, a local state and a command, as follows.

−−→
n : A,

−−−→
n′ : A′; Γ ⊢v −−−→

V : A,
−−−−→
V ′ : A′ −−→

n : A,
−−−→
n′ : A′; Γ ⊢n M

−−→
n : A; Γ ⊢sn

−−−→
n′ : A′;

−−−−→
n 7→ V ,

−−−−−→
n′ 7→ V ′; M

We define operational semantics for commands in a fixed context ∆; Γ. The

transitions are those in Fig. 2.1 (leaving the store unchanged) and those in Fig. 5.

The terminal configurations are as in Fig. 2.1, with any store. To execute a com-

mand ∆; Γ ⊢n M in a given global state, mapping each (n : A) ∈ ∆ to a value

∆; Γ ⊢v V : A, we begin with ε; s; M and follow the transitions.

For understanding the operational semantics, it is convenient to assume

that, given a storage context ∆, each new cell is named in a canonical way.

But in fact, the choice does not matter, because within the configuration
−−−→
n′ : A′;

−−−−→
n 7→ V ,

−−−−−→
n′ 7→ V ′; M the identifiers

−→
n′ are bound.

The equational theory of JWA with store is given by Fig. 3 together with Fig. 6.

We extend it to configurations by taking Fig. 5 and the “exchange” equation

−→
n , p, p′,

−→
n′ ; s,

−−−−→
n 7→ V , p 7→ W, p′ 7→ W ′,

−−−−−→
n′ 7→ V ′; M =

−→
n , p′, p,

−→
n′ ; s,

−−−−→
n 7→ V , p′ 7→ W ′, p 7→ W,

−−−−−→
n′ 7→ V ′; M

It is important to note the limitations on structural rules for terms and config-

urations in context ∆; Γ.

• We do not have semantically meaningful contraction in ∆. For example, the

equation

n : bool, n′ : bool; k : ¬1⊢n n := true. n′ := false. k〈〉

= n′ := false. n := true. k〈〉

is provable, but renaming both n and n′ as n′′ : bool makes the theory inconsistent.
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read n as x. n := x. xM = M

read n as x. read n as y. M = read n as z. M [z/x, z, y]

n := V. n := W. M = n := W. M

n := V. read n as x. M = n := V. M [V/x]

read n as x. read n′ as y. M = read n′ as y. read n as x. M (n 6= n′)

n := V. n′ := W. M = n′ := W. n := V. M (n 6= n′)

n := V. read n′ as x.M = read n′ as x. n := xV. M (n 6= n′)

new
−−−−→
n := V , p := W, p′ = W ′,

−−−−→
n′ := V . M = new

−−−−→
n := V , p′ := W ′, p = W,

−−−−→
n′ := V . M

new
−−−−→
n := V , m := V ′. m := W. M = new

−−−−→
n := V , m := W. M

new
−−−−→
n := V , m := V ′. read m as x. M = new

−−−−→
n := V , m := V ′. M [V ′/x]

new
−−−−→
n := V . m :=

−→nW. M = m := W. new
−−−−→
n := V .M

new
−−−−→
n := V . read m as x. M = read m as x. new

−−−−−→
n := xV . M

new
−−−−→
n := V .

−→nM = M

new
−−−−→
n := V . new

−−−−→
m := W. M = new

−−−−−→
n :=

−→mV ,
−−−−→
m := W. M

Fig. 6. Equations for storage (cf. [18])

• For configurations, we also lack weakening in ∆. For example, there is a config-

uration

; k : ¬1 ⊢sn ε; ε; k〈〉

but no configuration in context n : 0; k : ¬1.

3.1 Modelling Injections

We want to model each syntactic category: types, contexts, storage contexts, val-

ues, commands, configurations, renamings, substitutions and injections. Storage

contexts are interpreted using the finite products in the base B, just like ordinary

contexts. Renamings are interpreted in B
op

, but what about injections? An elegant

solution was provided by Oles and Reynolds [15].

Definition 3.1 Let A be a cartesian category.

(i) An expansion A
(r,∗)

// B consists of a “read” morphism B
r // A and an

“update” morphism B × A ∗ // B satisfying 5

∀b ∈ B, a ∈ A. r(b ∗ a) = a

∀b ∈ B. b ∗ r(b) = b

∀b ∈ B, a, a′ ∈ A. (b ∗ a) ∗ a′ = b ∗ a′

(ii) The composite of expansions A
(r,∗)

// B
(r′,∗′)

// C is A
(r′′,∗′′)

// C where

r′′(c)
def
= r(r′(c))

c ∗′′ a
def
= c ∗′ (r′(c) ∗ a)

and the identity expansion on A is (idA, π′
A,A).

5 These equations represent commutative diagrams in the standard way. We write the binary operation ∗
in infix style.
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(iii) We write expan(A) for the category of objects of A and expansions. It is a

coaffine category i.e. a symmetric monoidal category (under ×) whose unit is

an initial object. Hence, by coaffine coherence [16], we can interpret injections

in it.

Any isomorphism B
α // A × Q gives an expansion A

e // B

read B
α // A × Q π // A

update B × A
α×A

// (A × Q) × A
〈π′,(π;π′)〉

// A × Q α−1
// B

We say that (Q, α) is a quotient of e. A morphism between quotients is Q
f

// R
such that α; (A × f) = β. (This guarantees that (Q, α) and (R, β) give the same

expansion.) So any expansion has a category of quotients.

Definition 3.2 Let A be a cartesian category A with a strict initial object. We

say A has nonsingular quotients when every expansion from a non-initial object has

a quotient that is unique up to unique morphism (and hence, in the usual manner,

unique up to isomorphism).

Proposition 3.3 Both CSet (the category of countable sets) [15] and

fam(TokCh
op

) have nonsingular quotients.

A storage context denote an object of CSet in the case of ground store, and

fam(TokCh
op

) in the case of general store, and we shall see that Prop. 3.3 enables

us to define the requisite structure in terms of products, rather than in terms of

expansions.

In general, for an object D and object sequence
−→
A = A0, . . . , An−1, we write

e
D:

−→
A

for the expansion from D to the left-associated product D × A0 · · · × An−1

given by induction on n in the evident way. This is useful, because a storage context

∆,
−−→
n : A denotes the left-associated product [[∆]] × [[A0]] × · · · × [[An−1]].

3.2 Configurations and their categorical structure

By way of motivation for our categorical semantics, we note some pertinent facts.

Proposition 3.4 Let ∆ =
−−→
n : A. The map from commands ∆; Γ ⊢n M to con-

figurations ∆; Γ,
−−→
x : A ⊢sn E that maps M to ε; −−−→

n 7→ x;
−→xM is a bijection up to

provable equality.

This suggests that configurations can be regarded as the primitive entity, and

commands as a derived one. That is quite reasonable: whereas the behaviour of a

command is dependent on an initial state, a configuration has just one behaviour.

We next consider some operations on configurations.

• Any configuration ∆; Γ ⊢sn E can be converted into a configuration

∆,
−−→
n : A; Γ,

−−→
x : A ⊢sn E′ by injective renaming. The additional cells are initialized

by −−−→
n 7→ x.

11
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• Any configuration ∆,
−−→
n : A; Γ ⊢sn E can be converted into a configuration

∆; Γ ⊢sn E′ by hiding the global cells −→
n i.e. making them local.

• More generally, for any injection ∆
φ

// ∆′ , a configuration ∆′; Γ ⊢sn E can be

converted into a configuration ∆; Γ ⊢sn E′. The order of hiding is immaterial,

up to provable equality.

In the following definition, C homsets should be thought of as values (or substitu-

tions), and E homsets should be thought of as configurations.

Definition 3.5 Let B be a base category with nonsingular quotients.

A JWA model with global state on B consists of

• a first-order JWA model (CD, ED) functorial in D ∈ Isos B—more precisely: a

functor

Isos B
(C−,E−)

// FOJWA(B)

• an isomorphism

ED(D × (A × B)) ∼= CD(A,¬B) natural in D, B ∈ Isos B, A ∈ (CD)
op

• functions

CD(A, B)

bD,P
v (A,B)

// CD×P (A, B) natural in D, P ∈ Isos B, A ∈ B
op

, B ∈ B

ED(A)
bD,P (A)

// ED×P (A × P ) natural in D, P ∈ Isos B, A ∈ B
op

such that

• CD

bD,P
v // CD×P is a functor

•
b

preserves composition in the sense that

CD(A, B) × ED(B)
b

v ×
b

��

;
// ED(A)

b

��

CD×P (A, B) × ED×P (B × P )

(−×P )×id

��

CD×P (A × P, B × P ) × ED×P (B × P )
;

// ED×P (A × P )

•
b

acts monoidally in the sense that

ED(A)
bD,1(A)

��

∼=
��

ED×1(A × 1)

ED(A)
bD,P (A)

//

bD,P×Q(A)
��

ED×P (A × P )
bD×P,Q(A×P )
��

ED×(P×Q)(A × (P × Q)) ∼=
// E(D×P )×Q((A × P ) × Q)

and likewise for
b

v

12
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•
b

respects singularity in the sense that E0(A)

b0,P (A)
//

Eπ−1
(π)

// E0×P (A × P ) and like-

wise for
b

v.

A JWA model with global ground state on B is defined similarly except that

D, P, Q range over Isos CSet instead of Isos B.

Given a JWA model with global state M = (C, E ,
b

v,
b

) on B, we can now

recover the “commands” from “configurations”. We define ND(A)
def
= ED(D × A),

and define MD to be the JWA model (CD,ND). Just as for values, we can define

weakening maps ND(A)

bD,P (A)
n // ND×P (A) to be the composite

ED(D × A)
b

// ED×P ((D × A) × P )
∼= // ED×P ((D × P ) × A)

For an expansion D
e // D′ , we define a JWA(B) morphism MD e† // MD′ by

the composites

CD(A, B)

bD,Q
v (A,B)

// CD×Q(A, B)
Cα−1

(A,B)
// CD′

(A, B)

ND(A)

bD,Q
n (A)

// ND×Q(A)
Cα−1

(A)
// ND′

(A, B)

where (Q, α) is any quotient of e. Note that this is independent of the particu-

lar choice of quotient, by naturality and (in the case A is initial) the singularity

respecting property. And so MD is functorial in D ∈ expan(B).

Now we can proceed to interpret terms. For a given storage context ∆ =
−−→
n : A,

we interpret JWA with global state in ∆ within the JWA model M[[∆]].

• For ∆; Γ, x : Ai ⊢
n M , the command read ni as x. M denotes the composite in

E [[∆]]

[[∆]] × [[Γ]]
〈π,〈π′,(π;πi)〉〉

// [[∆]] × ([[Γ]] × [[Ai]])
[[M ]]

//

• For ∆; Γ ⊢v V : Ai and ∆; Γ ⊢n M , the command ni := V. M denotes the

composite in E [[∆]]

[[∆]] × [[Γ]]
〈q,π′〉

// [[∆]] × [[Γ]]
[[M ]]

//

where [[∆]] × [[Γ]]
q

// [[∆]] has ith component of p is π′; [[V ]] and jth component

π; πj for each j 6= i

We then interpret configurations ∆; Γ ⊢sn E—without local cells—in E [[∆]]([[Γ]]).

Definition 3.6 Let B be a base category with nonsingular quotients.

A JWA model with state on B consists of

• a JWA model with global state (C, E ,
b

v,
b

)

• functions

13
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ED×P (A)
cD,P (A)

// ED(A) natural in D, P ∈ Isos B, A ∈ B
op

such that

•
c

agrees with composition in the sense that

CD(A, B) × ED×P (B)
id×

c
//

b
v ×id

��

CD(A, B) × ED(B)

;

��

CD×P (A, B) × ED×P (B)

;

��

ED×P (A) c // ED(A)

•
c

acts monoidally and respects singularity in the same sense as
b

• initializing some cells, then hiding them, has no effect:

ED(A)
bD,P (A)

//

ED(π)
))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ED×P (A × P )
cD,P (A×P )
��

ED(A × P )

• initialization and hiding commute on distinct cells:

ED×P (A)
bD×P,Q(A)

//

cD,P (A)
��

E(D×P )×Q(A × Q)
∼= // E(D×Q)×P (A × Q)

cD×Q,P (A×Q)
��

ED(A) bD,Q(A)
// ED×Q(A × Q)

A JWA model with ground state is defined similarly except that D, P, Q range

over Isos CSet instead of Isos B.

Just as with global state, there is additional structure that can be derived from

a JWA model with state M = (C, E ,
b

v,
b

,
c

) on B. For any expansion D
e // D′

object A, we define ED′
(A)

e‡(A)
// ED(A) to be the composite

ED′
(A)

Eα(A)
// ED×Q(A)

cD,Q(A)
// ED(A)

where (Q, α) is any quotient of e—again, the choice of quotient does not affect the

definition. And so ED(A) is functorial in D ∈ expan(B)
op

and A ∈ B
op

.

We can now complete our semantics of terms. Given terms ∆,
−−→
n : A; Γ ⊢v −−−→

V : A

and ∆,
−−→
n : A; Γ ⊢n M , the denotation [[new

−−−−→
n := V . M ]] is obtained by forming the

composite

[[∆]] × [[Γ]]
〈〈π:

−−−−→
π′;[[V ]]〉,π′〉

// [[∆,
−−→
n : A]] × [[Γ]]

[[M ]]
//

14
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over [[∆,
−−→
n : A]], then applying e

[[∆]]:
−→
[[A]]

‡ to obtain a morphism over [[∆]].

That completes our semantics of terms. A substitution Γ
k

∆
// Γ′ denotes a

C-morphism [[Γ′]]
[[k]]

[[∆]]
// [[Γ]] in the usual way.

Proposition 3.7 Let P be a term (command or value) in context ∆; Γ.

(i) (Substitution) For any substitution Γ
k

∆
// Γ′ , we have [[k∗P ]] = [[k]]; [[P ]] in

M[[∆]].

(ii) (Injective renaming) For any injection ∆
φ

// ∆′ we have [[φ†P ]] = [[φ]]†[[P ]].

We proceed to semantics of configurations. If ∆ =
−−→
n : A and we have values

∆,
−−−→
n′ : A′; Γ ⊢v −−−→

V : A,
−−−−→
V ′ : A′ and a command ∆,

−−−→
n′ : A′; Γ ⊢n M then the denota-

tion [[
−−−→
n′ : A′;

−−−−→
n 7→ V ,

−−−−−→
n′ 7→ V ′; M ]] is obtained by first forming the composite

[[Γ]]
〈〈
−−→
[[V ]],

−−→
[[V ′]]〉,id〉

// [[∆,
−→
A′]] × [[Γ]]

[[M ]]
//

over [[∆,
−−→
n : A]], then applying e

[[∆]]:
−→
[[A]]

‡ to obtain a morphism over [[∆]].

Proposition 3.8 In any JWA model with state, the interpretation of values, com-

mands and configurations validates the equational theory.

3.3 Game Semantics Of State

In this section, we define a JWA model with state on base fam(TokCh
op

). First we

fix an arena family D = {Ul}l∈L in order to define (CD, ED). We modify Def. 2.3:

Definition 3.9 Let R be an arena.

(i) A (finite) justified sequence on an arena R in store context D is a sequence

m0, . . . , mn−1 where each mi = (pi, li, ri) consists of a pointer ∗ 6 pi < i, a

state element li ∈ L and an element ri ∈ (
⊎

l∈L Ul) ⊎ R such that either

• rpi
⊢ ri, where r∗

def
= ∗, or

• pi 6= ∗ and ri ∈ rt Ulpi
.

(ii) Plays and strategies are unchanged, and SD(R) is the set of strategies on R in

store context D. We write SD
HO(R) for

∏
l∈L,b∈rt RS(Ul ⊎ Rb).

For arenas R and S, we define the homset

GD(R, S)
def
= SD

HO(R →HO S) ∼=
∏

l∈L,b∈rt SS
D(Ul ⊎ R ⊎ Sb)

Copycat is defined as above, except that Proponent must also copy the state element,

and must copy any moves that explore D. Composition is as before, except that each

thread includes root moves in D pointing to its moves, and all their descendants.

We now define

CD def
= fam(GD)

ED def
= fam(SD)
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Our next task is to define the weakening operation.

Definition 3.10 Let D = {Tk}k∈K and P = {Ul}l∈L be arena families.

(i) Let R be an arena, let l̂ ∈ L be given, and let s be a play on R ⊎U
l̂
in storage

context D × P . We say s is weakened (wrt D, P, l̂) when for each Proponent

move m with state element 〈k, l〉
• l = l̂ if m = 0, otherwise l is the L component of the state element of m − 1
• if either m = 0 or move m− 1 plays an element of R∪D (i.e. not an element

of P ), then so does move m
• any Opponent-move n pointing to m and playing b ∈ rtUl and state element

〈k′, l′〉 is followed by a Proponent-move n+1 pointing to m−1 (or ∗ if m = 0)

and playing b with state element 〈k′, l′〉; and any Opponent-move p pointing

to a descendant q + 1 of n or n + 1 and playing c (necessarily in D or P )

with state element 〈k′′, l′′〉 is followed by a Proponent-move p+1 pointing to

q and playing c with state element 〈k′′, l′′〉.
If s is weakened, its outer thread is the play on R in storage context D given

by all the moves of s that are in R and D, with only the K-component of each

state element. (This is a posterior play if s is.)

(ii) Let R be an arena and let l̂ ∈ L be given. We define

SDR

bD,P

// SD×P (R ⊎ U
l̂
) to map σ to the strategy consisting of every

weakened (wrt D, P, l̂) posterior play whose outer thread is in σ.

(iii) From
b

we derive maps

SD
HOR // SD×P

HO R

GD(R, S) // GD×P (R, S)

CD(A, B)

bD,P
v (A,B)

// CD×P (A, B) where CD = fam(GD)

ED(A)
bD,P (A)

// ED×P (A × P ) where ED = fam(SD)

in the evident way.

Finally we have to define hiding.

Definition 3.11 Let D = {Tk}k∈K and P = {Ul}l∈L be arena families.

(i) Let s be a play on an arena R in storage context D × P . We say that s is

hideable when for every Opponent move m + 1 with state element 〈k, l〉
• l is the L-component of the state element of move m
• if m plays an element of R ∪ D, then so does m + 1
• any Proponent move n pointing to m + 1 and playing b ∈ rt Ul with state

element 〈k′, l′〉 is followed by an Opponent move n + 1 pointing to m and

playing b with state element 〈k′, l′〉; and any Proponent move pointing to a
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descendant q+1 of n or n+1 and playing c (necessarily in D or P ) with state

element 〈k′′, l′′〉 is followed by an Opponent move pointing to q and playing

c with state element 〈k′′, l′′〉.
If s is hideable, its outer thread is the play on R in storage context D given by

all moves of s that are in R and D, with only the K-component of each state

element. (This is a posterior play iff s is.)

(ii) For any arena R we define a map SD×P (R)
cD,P (R)

// SD(R) mapping σ to

the set consisting of the outer thread of every hideable posterior play in σ.

(iii) We define ED×P (A)
cD,P (A)

// ED(A) from
c

using the families construction.

Proposition 3.12 The game model (C, E ,
b

v,
b

,
c

) is a JWA model with state, on

base fam(TokCh
op

).

3.4 Computational Adequacy

Let B be a base category with nonsingular quotients.

Definition 3.13 A JWA model with state (C, E ,
b

v,
b

,
c

) on base B is pointed

when it is equipped with a distinguished element ⊥A ∈ N (A) for each object A,

Clearly our game model is pointed: the ⊥ morphism from an arena family

{Ri}i∈I is given at i ∈ I by the empty strategy.

We shall say that a pointed JWA model (equipped with a B-isomorphism to

interpret each recursive type) is adequate when E  ω implies [[E]] = ⊥. Our aim is

to show that our game model is adequate. We proceed as follows.

Definition 3.14 (i) We write JWAS(B) for the category of JWA models with

state on base B. Morphisms are identity-on-objects and preserve all structure

on the nose.

(ii) A JWA model with state (C, E ,
b

v,
b

,
c

) on base B is ticking when it is

equipped with an endofunction XA on N (A) for each object A, such that
• XA has a sequentially unique fixpoint Xω

A, for each object A
• XA is preserved by precomposition with a C-morphism, by

b
and by

c
.

(iii) A tick-hiding from a ticking JWA model with state MX =

(CX, EX,
b

X

v ,
b

X,
c

X) to a pointed JWA model with state M =

(C, E ,
b

v,
b

,
c

) on the same base B is a morphism MX α // M in

JWAS(B) such that

• α(X(f)) = αf for each A
f

// in NX

• α(tickω
A) = ⊥A for each object A.

Proposition 3.15 Let M = (C, E ,
b

v,
b

,
c

) be a pointed JWA model on base B.

If there exists a ticking JWA model MX = (CX, EX,
b

X

v ,
b

X,
c

X on base B and a

tick-hiding MX α // M , then M is adequate.

We apply Prop. 3.15 to prove the adequacy of the game model just as in Sect. 2.5.
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4 Further Work

We have now constructed a model of state and proved adequacy. Some remaining

tasks are as follows.

(i) To construct a model for a direct style calculus; this simply follows the con-

struction in [10]. The treatment of storage is just as in this paper.

(ii) To show that for every storage context ∆ and context Γ using finite sums,

every computable element of N [[∆]]([[Γ]]) is definable by a command ∆; Γ ⊢n M .

Even in [], where ∆ was empty, this was an open problem.

(iii) To show that the observational preorder corresponds to inclusion of complete

traces.

(iv) To extend the model to include ref types, so as to reorganize the model of [9].
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