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Abstract

Howe’s method is a well-known technique for proving that various kinds of ap-
plicative bisimilarity (or similarity) on a functional language are congruences (or
precongruences). It proceeds by constructing an extension of the given relation that
has certain special properties.

The method can be used for deterministic and for erratically nondeterministic
languages, but in the latter case it has a strange limitation: it requires the language’s
syntax to be finitary. That excludes, for example, languages with countable sum
types, and has repeatedly caused problems in the literature.

In this paper, we give a variation on Howe’s method, called “infinitary Howe’s
method”, that avoids this problem. The method involves defining two extensions
of the original relation by mutual coinduction. Both extensions possess the key
properties of Howe’s extension, but it is their intersection that is compatible.

In the first part of the paper, we see how this works for a call-by-value language
with countable sum types. In the second part, we see that the method continues
to work when we make the syntax non-well-founded. More precisely, we show,
using a mixed inductive/coinductive argument, that the various forms of applicative
similarity and bisimilarity are preserved by any substituting context.

Key words: Howe’s method, applicative bisimulation,
nondeterminism, coinductive, infinitary syntax, call-by-value

1 Introduction

1.1 Applicative Simulation On Deterministic Languages

The notions of applicative simulation and bisimulation on a deterministic λ-
calculus were introduced in [1]. These mimic the notions of simulation and
bisimulation from concurrency theory. A closed term is seen rather like a pro-
cess that evaluates to a λ-abstraction, and then waits to be supplied with an
operand. As with other forms of simulation/bisimulation, it is necessary, for
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these to be useful, to prove that the greatest such (called applicative similar-
ity and bisimilarity) are precongruences, when extended to non-closed terms.
This was proved in [1] by denotational means.

Howe [6] introduced a purely operational technique for proving that ap-
plicative similarity is a precongruence, known as “Howe’s method”. The tech-
nique consists of extending similarity to a relation that is obviously compati-
ble 2 , and possesses some special properties that cause it to be a simulation.
Hence it coincides with similarity.

That paper did not provide a proof that applicative bisimilarity is a con-
gruence. But in the deterministic setting, it is not necessary to prove this
directly. What one can do instead is to first show that observational preorder
and equivalence are, respectively, simulations and bisimulations. It follows
that

• applicative similarity and observational preorder coincide

• applicative bisimilarity, mutual applicative similarity and observational equiv-
alence all coincide.

This line of reasoning is presented in [5,14].

In a nondeterministic 3 setting, however, all these coincidences fail: ap-
plicative bisimilarity is strictly finer than mutual applicative similarity, which
in turn is strictly finer than observational equivalence [8,13]. (This is to sim-
plify matters somewhat, as there are various kinds of applicative similarity and
bisimilarity, and of observational equivalence.) Moreover, it is at least arguable
that applicative bisimilarity is a more natural equivalence on a nondetermin-
istic functional language than observational equivalence. So the question of
proving applicative bisimilarity to be a congruence becomes important.

In a second paper [7], Howe solved this problem by proving that the tran-
sitive closure of the Howe extension is symmetric. A generalization of this
method was given in [13] to prove that refinement similarity—a variant of
bisimilarity that is not symmetric—is a precongruence. The argument uses
the following “cuboid lemma”. (R∗ is the reflexive transitive closure of R.)

Proposition 1.1 Let Ri be a reflexive binary relation on Ai for i ∈ I. If I is
finite, then ∏

i∈I

(R∗i ) = (
∏

i∈I

Ri)
∗

as relations on
∏

i∈I Ai.

The ⊆ direction (which is the one that requires I to be finite) says that,
given a cuboid in a finite number of dimensions, there is a finite path from
one vertex to the opposite vertex

2 A compatible relation is one that is preserved by every term constructor in the language.
3 More precisely, in an erratically nondeterministic setting. Howe’s method (and the variant
in this paper) cannot be applied a language with McCarthy’s amb [9], nor to many calculi
of concurrency.
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Now suppose S is the compatible closure of a preorder. Clearly it is re-
flexive. It might not be transitive, but its transitive closure S∗ is preserved by
any term constructor θ by Prop. 1.1, setting I to be the arity of θ. Thus S∗

is compatible. This is the essence of the argument, both Howe’s version and
Pitcher’s.

But this has a curious limitation: it can only work when every term con-
structor is finitary. That is a strange restriction, because it is entirely syn-
tactic. From a semantic viewpoint, one often wants to study languages with,
e.g., countable sum types. It is, therefore, unsurprising that this limitation
has repeatedly caused problems in the literature.

• In [13], a nondeterministic language with countable sum types and countable
product types is studied. As explained on page 142, Howe’s method cannot
prove that bisimilarity is a congruence in general—only for a restricted class
of fragments.

• Later in [13], refinement similarity is studied. As explained on page 150,
Howe’s method cannot prove that it is a precongruence in general—only for
an even more restricted class of fragments.

• Independently, in [12], a nondeterministic language HOPLA with countable
sum types is studied; but it cannot be shown that applicative bisimilarity
is a congruence (page 8, property (vi)).

The contribution of this paper is to give a variant of Howe’s method called
“infinitary Howe’s method”, which can be used to prove congruence of bisimi-
larity (and precongruence of refinement bisimilarity) for nondeterministic lan-
guages with infinitary syntax. It consists of defining two extensions of the
original relation—the “forward and backward extensions”—by mutual coin-
duction. (For a finitary language, these are, respectively, the Howe extension
and its dual.) Each of these possesses the same special properties enjoyed by
Howe’s extension that are used to show simulation. The forward and backward
extensions are not compatible—but their intersection is, and this is sufficient.

1.2 Non-Well-Founded Syntax

Having shown that infinitary Howe’s method is applicable to a language with
infinitely wide syntax, we then apply it to a harder situation: a language
with non-well-founded syntax. The difficulty here is the need to show that
bisimilarity is preserved by non-well-founded contexts, but we see that the
method accomplishes this.

Our account relies on a relational calculus that was developed in [5,8].
Because of the complex mixing of induction and coinduction, it would be
difficult to spell out the argument without using the calculus.

1.3 Structure Of Paper

In this paper, an increasing sequence of three languages are studied:
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• L0, whose term syntax is finitary

• L1, whose term syntax is infinitely wide

• L2, whose term syntax is non-well-founded.

These are call-by-value languages with countable nondeterminism.

Having defined L0 and L1, and the various forms of applicative similarity
and bisimilarity, we review Howe’s method, and recall how it proves that

(i) various forms of applicative similarity are precongruences on L0 and L1

(ii) various forms of applicative bisimilarity and refinement similarity are
precongruences on L0.

We divide this review into two parts. One part, which we designate the “core”,
is common to Howe’s method and infinitary Howe’s method. It describes the
properties of Howe’s extension, and shows how they imply that the extension
is a simulation. In the second part, we give the specific construction of Howe’s
extension and shows how it has the required properties, proving (i). We also
see how to use Prop. 1.1 to prove (ii).

We then describe infinitary Howe’s method, constructing the forward and
backwards extensions and showing they have the desired properties to show
that the various forms of applicative bisimilarity and refinement similarity are
precongruences on L1.

Finally, we proceed to L2, which we define in Sect. 7.1. After considering
what it means for a relation to be closed under all contexts (Sect. 7.2), we show
in Sect. 7.3 that the intersection of the forwards and backwards extensions
satisfies this property. Hence the various forms of applicative similarity and
bisimilarity all have this property.

2 A Call-By-Value Calculus

We define languages L0 and L1. The types of L0 are given as follows:

coinductive definition A ::=
∑

i∈IAi | A → A

where I ranges over finite sets. (Product types could be included without
difficulty.) We write 0 for the empty sum type, and nat for the unique type
A such that A = (0 → 0) + A.

The types of L1 are the same, except that I ranges over countable sets.

A context is a sequence x0 : A0, . . . , xn−1 : An−1 of distinct identifiers with

associated types. A renaming Γ
q

// ∆ is a function taking each identifier
(x : A) ∈ Γ to an identifier (q(y)) ∈ ∆.

The calculus, as in [8], distinguishes values from ordinary terms (it is not
clear how to make Howe’s method work without this distinction). So there
are two judgements: Γ ⊢ M : B means that M is a term of type B, and
Γ ⊢v V : B means that V is a value of type B. This style of call-by-value
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λ-calculus is called fine-grain. The syntax is defined inductively in Fig. 1.

Γ ⊢ ? : nat

Γ, x : A, Γ′ ⊢v x : A

Γ ⊢v V : A Γ, x : A ⊢ M : B

Γ ⊢ let V be x. M : B

Γ ⊢v V : A

Γ ⊢ return V : A

Γ ⊢ M : A Γ, x : A ⊢ N : B

Γ ⊢ M to x. N : B

Γ ⊢v V : Aı̂
ı̂ ∈ I

Γ ⊢v 〈̂ı, V 〉 :
∑

i∈IAi

Γ ⊢v V :
∑

i∈IAi Γ, x : Ai ⊢ Mi : B (∀i ∈ I)

Γ ⊢ pm V as {〈i, x〉.Mi}i∈I : B

Γ, x : A ⊢ M : B

Γ ⊢v λx.M : A → B

Γ ⊢v V : A → B Γ ⊢v W : A

Γ ⊢ V W : B

Fig. 1. Syntax Of Fine-Grain CBV With Countable Nondeterminism

We write M to x. N for the sequenced computation that first executes M ,
and when, this returns a value V proceeds to execute N with x bound to V .
This was written in Moggi’s syntax using let, but we reserve let for mere
binding. The keyword pm stands for “pattern-match”. For each n ∈ N, the
closed value n of type nat is defined in the obvious way.

Any term or value is uniquely of the form θ{Mi}i∈I , where

• θ is a term constructor of arity I (a finite set for L0, a countable set for L1)

• {Mi}i∈I are the immediate subterms of M , which may be terms or values.

In particular, each identifier is a term constructor of arity 0.

Let Γ and ∆ be contexts.

• A renaming Γ
q

// ∆ can be applied to any term Γ ⊢ M : B to obtain a
term ∆ ⊢ q†M : B, and likewise to a value.

• A substitution Γ
−−→
V/x

// ∆ is a function taking each identifier (x : A) ∈ Γ to
a value ∆ ⊢ Vx : A. We can apply this to a term Γ ⊢ M : B to obtain a

term ∆ ⊢ M [
−−→
V/x] : B, and likewise to a value.

These operations are defined inductively [3,4].

The operational behaviour of a closed term M of type A is given in three
parts [11,8]:

• a relation M ⇓ V , where V a closed value of type A, meaning that M may
return V
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• a predicate M ⇑, meaning that M may diverge

• a relation M ⇓2 V , where V is a set of closed values of type A, meaning
that M must return something, and V is the set of possibilities.

These relations are defined in Fig. 2. They are related by the following result.

Proposition 2.1 Let M be a closed term of type A, and V a set of closed
values of type A. Then M ⇓2 V iff M 6⇑ and V = {V |M ⇓ V }.

3 Relations

3.1 Basic Constructions

Because this paper uses a lot of reasoning about relations, we gather together
the basic properties here.

Definition 3.1 (i) A closed relation R associates to each type A a binary
relation on the closed terms inhabiting it, and a binary relation on the
closed values inhabiting it.

(ii) An open relation R associates to each sequent Γ ⊢ A a binary relation
on the terms inhabiting it, and to each value sequent Γ ⊢v A a binary
relation on the values inhabiting it, all preserved by q† for any renaming

Γ
q

// ∆ .

(iii) We write id for the identity relation on terms and values, and idf for the
identity relation restricted to identifiers. (These are both open relations.)

(iv) We write ; for relational composition, in diagrammatic order.

(v) If R is an open relation, we write R0 for the restriction of R to closed
terms and closed values.

(vi) Let R be a closed relation. We define R◦ (the open extension of R)
to be the open relation that relates two terms Γ ⊢ M,N : B when

M [
−−→
V/x] R N [

−−→
V/x] for any substitution

−−→
V/x from Γ to the empty context.

Notice that the poset of closed relations and the poset of open relations
each forms a complete lattice under inclusion. Therefore, when we define an
open relation using monotone functions, least prefixed points and greatest
postfixed points, we do not need to prove the renaming condition for the
resulting relation—it is automatic.

Definition 3.2 Let R and S be open relations. We define R[S] (the substi-
tution of S into R) to be the open relation consisting of the pairs of terms

∆ ⊢ M [
−−→
V/x], N [

−−→
W/x] : B for every pair of terms Γ ⊢ M ′, N ′ : B and pair of

substitutions Γ
−−→
V/x

// ∆ and Γ
−−→
W/x

// ∆ such that M ′RN ′ and Vx S V ′x for each
(x : A) ∈ Γ.
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May Convergence (inductive definition)

n ∈ N
? ⇓ n

M [W/x] ⇓ V

let W be x. M ⇓ V

return V ⇓ V

M ⇓ W N [W/x] ⇓ V

M to x. N ⇓ V

M [W/x] ⇓ V

(λx.M)W ⇓ V

Mı̂[W/x] ⇓ V
ı̂ ∈ I

pm 〈̂ı,W 〉 as {〈i, x〉.Mi}i∈I ⇓ V

Divergence (coinductive definition)

M [W/x] ⇑

let W be x. M ⇑

M ⇑

M to x. N ⇑

M ⇓ V N [V/x] ⇑

M to x. N ⇑

M [W/x] ⇑

(λx.M)W ⇑

Mı̂[W/x] ⇑
ı̂ ∈ I

pm 〈̂ı,W 〉 as {〈i, x〉.Mi}i∈I ⇑

Must convergence (inductive definition)

? ⇓2 {n |n ∈ N}

M [W/x] ⇓2 V

let W be x. M ⇓2 V

return V ⇓2 {V }

M ⇓2 W N [W/x] ⇓2 VW (∀W ∈ W)

M to x. N ⇓2

⋃

W∈W

VW

M [W/x] ⇓2 V

(λx.M)W ⇓2 V

Mı̂[W/x] ⇓2 V
ı̂ ∈ I

pm 〈̂ı,W 〉 as {〈i, x〉.Mi}i∈I ⇓2 V

Fig. 2. Operational Semantics

Definition 3.3 Let R be an open relation.

(i) We define R̂ (the compatible refinement of R) to be the open relation that
relates two terms θ{Mi}i∈I and φ{Nj}j∈J when θ = φ (hence I = J), and
Mi RNi for each i ∈ I.

7



Levy

(ii) We define Rfin the same way, except that I must be finite. (For L0, this
coincides with R̂.

(iii) We define R̃ the same way, except that θ must not be an identifier.

Proposition 3.4 (i) All the operations given above are monotone.

(ii) The complete lattice of open relations forms an ordered monoid under the
binary operation −[−], with unit given by idf.

(iii)

id[id] = id (1)

R
op

[S
op

] = (R[S])
op

(2)

(R;R′)[S;S ′] = (R[S]); (R′[S ′]) (3)

(
⋃

i∈I

Ri)[S] =
⋃

i∈I

(Ri[S]) (4)

(R[S])∗ ⊆ R∗[S∗] (5)

R◦[id] = R◦ (6)

R◦0 = R (7)

S ⊆ (S[id])
0

◦ (8)

R̂ = R̃ ∪ idf and R̃ ∩ idf = ∅ (9)

idf ⊆Rfin ⊆ R̂ (10)

R̃[S] ⊆ flR[S] (11)
“id = id (12)

(iv) If R and S are reflexive open relations then

R∗[S∗] = (R[S])∗ (13)

R∗fin =Rfin∗ (14)

Proof. (11) follows from the renaming assumption on R. (iv) follows from
Prop. 1.1. The rest is trivial. 2

Definition 3.5 Let S be an open relation.

(i) S is substitutive when idf ⊆ S and S[S] ⊆ S.

(ii) S is compatible when “S ⊆ S.

(iii) S is finitely compatible when Sfin ⊆ S. (For L0, this coincides with
compatibility.)

Proposition 3.6 (not valid in Sect. 7) Let R be an open relation.

(i) If R is compatible, then it is reflexive.

(ii) There is a unique open relation S such that S = R∪ “S, and it is the least
compatible open relation containing R.

We write RC, the compatible closure of R, for the open relation described
in Prop. 3.6(ii).
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Proposition 3.7 [5] Let f be a monotone endofunction on a lattice A, and
let x ∈ A.

(i) (strong induction) Suppose f has least prefixed point a. Then f(x ∧ a) ∧
a 6 x implies a 6 x.

(ii) (strong coinduction) Suppose f has greatest postfixed point b. Then x 6

f(x ∨ b) ∨ b implies x 6 b.

4 Applicative Similarity

Definition 4.1 A closed relation R respects values when

• V R V ′ : A → B implies V W R V ′W : B for every closed value W : A

• 〈̂ı, V 〉R 〈̂ı′, V ′〉 :
∑

i∈IAi implies ı̂ = ı̂′ and V R V ′ : Aı̂

In [8,13], three variants of applicative simulation are studied, corresponding
to lower, upper and convex powerdomains. Here, we introduce a fourth variant
called “smash”, intermediate between upper and convex.

Definition 4.2 Let R be a closed relation.

(i) We say that R is a lower simulation when it respects values, and M R M ′

and M ⇓ V implies M ′ ⇓ V ′ for some V ′ such that V R V ′.

(ii) We say that R is an upper simulation when it respects values, and M R M ′

and M ⇓2 V implies M ′ ⇓2 V ′ where ∀V ′ ∈ V ′. ∃V ∈ V. V R V ′.

(iii) We say that R is a smash simulation when it respects values, and M R M ′

and M ⇓2 V implies M ′ ⇓2 V ′ where ∀V ′ ∈ V ′. ∃V ∈ V. V R V ′ and
∀V ∈ V. ∃V ′ ∈ V ′. V R V ′.

(iv) We say that R is a convex simulation (aka partial bisimulation [2]) when
it is both a lower simulation and an upper simulation (hence also a smash
simulation).

(v) We say that R is a lower/upper/smash/convex opsimulation when R
op

is
a lower/upper/smash/convex simulation.

We define lower/upper/smash/convex similarity to be the largest closed rela-
tion that is a lower/upper/smash/convex simulation.

We can define a host of closed relations by combining simulations and
opsimulations. The following two examples suffice for our purposes.

Definition 4.3 (i) Lower bisimilarity is the largest closed relation that is
both a lower simulation and a lower opsimulation.

(ii) Refinement similarity is the largest closed relation that is both a lower
simulation and an upper opsimulation.

All of these relations are clearly preorders. Our aim is to show that their
open extensions (which are also preorders) are precongruences.

9



Levy

5 Howe’s Method

5.1 The Core of the Method

Let R be a closed relation that is a preorder. In this section we review Howe’s
method for proving that the R◦ is a precongruence. It centres on finding an
open relation satisfying the following.

Definition 5.1 Let R be a closed preorder and let S be an open relation. S
is Howe-suitable over R when

• S is reflexive, substitutive and finitely compatible

• S; R◦ ⊆ S

• If θ{Mi}i∈I S N then there exists {M ′
i}i∈I such that Mi S M ′

i for each i ∈ I
and θ{M ′

i}i∈I R◦N . In short, S ⊆ “S; R◦.

Dually, S is op-Howe-suitable over R when it is reflexive, substitutive and
finitely compatible, and R◦;S ⊆ S ⊆ R◦; “S

Def. 5.1 is significant because of the following theorems.

Proposition 5.2 Let S be an open relation that is Howe-suitable or op-Howe-
suitable over the closed preorder R.

(i) R◦ ⊆ S

(ii) If S0 ⊆ R (e.g. if (S∗)
0
⊆ R), then R◦ = S = S∗.

(iii) If R respects values, then so does S0, and hence so does S∗
0
.

Proof.

(i) R◦ = id; R◦ ⊆ S; R◦ ⊆ S

(ii) By (8).

(iii) Suppose 〈̂ı, V 〉 S0 〈̂ı
′, V ′〉. Then there exists V ′′ such that V S0 V ′′ and

〈̂ı, V ′′〉R 〈̂ı′, V ′〉. Because R respects values, ı̂ = ı̂′ and V ′′R V ′ so V SV ′.
The other requirement holds because S is reflexive and finitely compatible.

2

Proposition 5.3 (Howe simulation theorem) (i) Let S be an open rela-
tion that is Howe-suitable over the closed preorder R. If R is a lower/upper/
smash/convex simulation, then so is S0, and hence so is S∗

0
.

(ii) Dually, let S be an open relation that is Howe-suitable over R. If R is a
lower/upper/smash/convex opsimulation, then so is S0, and hence so is
S∗

0
.

Proof.

(i) Suppose that R is a lower simulation. We have to show that M S0 N and
M ⇓ V implies M ′ ⇓ V ′ for some V ′ such that V S0 V ′. We proceed by
induction on M ⇓ V .
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Suppose that M = (λx.M ′)W . Then we have M ′[W/x] ⇓ V , and there
exists P and W ′ such that λx.M ′ S P and W S W ′ and PW ′R N . From
λx.M ′ S P , there exists M ′′ such that M ′ S M ′′ and λx.M ′′R P . Since
M ′ S M ′′ and W S W ′, we obtain M ′[W/x]S M ′′[W ′/x], so, by inductive
hypothesis, there exists V ′′ such that V S V ′′ and M ′′[W ′/x] ⇓ V ′′, so
(λx.M ′′)W ′ ⇓ V ′′. We have (λx.M ′′)W ′R PW ′R N (because R respects
values), and R is a lower simulation, so there exists V ′ such that N ⇓ V ′

and V ′′R V ′. Hence V SV ′.
The other cases are similar but easier.
The result for upper simulations and for smash simulations is proved

similarly, and the result for convex simulations is then immediate.

2

5.2 Howe’s Extension

Howe’s extension is defined as follows.

Proposition 5.4 Let R be a closed relation. Then there is a unique relation
S such that S = “S; R◦, which we call R•. Dually, there exists a unique relation
S such that S = R◦; “S, which we call R§.

Proof. If S and S ′ are two such, we prove that M S N implies M S ′N by
induction on N . 2

As a unique fixpoint, R• can be defined either inductively or coinductively.
Here is the inductive definition, written out explicitly: R• is the least relation
S such that, if Mi S M ′

i for all i ∈ I, and θ{M ′
i}i∈I R◦N , then θ{Mi}i∈I S N .

Proposition 5.5 Let R be a closed preorder.

(i) R• is Howe-suitable over R, and R§ is op-Howe-suitable over R.

(ii) R• and R§ are compatible.

Proof. This can be proved from either the inductive definition or the coin-
ductive definition of R•. Here is the inductive version.

(ii) is trivial, and all the requirements of Howe-suitability of R• other
than substitutivity follow immediately. For substitutivity, we have to prove
that if Γ ⊢ M R•N : B and V (x) R• V ′(x) for each (x : A) ∈ Γ then

M [
−−→
V/x] R•N [

−−→
V ′/x]. We proceed by induction on M R•N (using the inductive

definition), treating separately the case that M is an identifier and the case
that it is not. 2

Now, if we write R for lower similarity, then, by Prop. 5.3(i), R•0 is a
lower simulation, hence contained in R, so by Prop. 5.2(ii), R◦ is equal to R•,
which is compatible. So R◦ is compatible. By the same argument, the open
extensions of upper, smash and convex similarity are all compatible. Dually,
we can use the op-Howe extension to show (directly) that the open extensions
of lower, upper, smash and convex opsimilarity are compatible.
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Next, we treat lower bisimilarity and refinement similarity, following [7,13].

Proposition 5.6 (i) If R is an open preorder on L0, then RC∗ is compatible.

(ii) If R is a closed preorder on L0, then

R•∗ = R◦C
∗

= R§
∗

Moreover, R• is the only relation Howe-suitable over R, and R§ is the
only relation op-Howe-suitable over R.

(iii) If R is a closed equivalence relation on L0, then R•∗ is symmetric.

Proof.

(i) This follows from Prop. 1.1.

(ii) R• ⊇ R◦C because R• is compatible and contains R◦. R• ⊆ R◦C by the
inductive definition of R•, using (i). The second equation is dual to the
first. If S is Howe-suitable over R, then S = “S;R, so S = R• by Prop. 5.4.

(iii) In general, R§ = R
op•op

, so this follows from (ii).

2

So if R is refinement similarity on L0, then R•∗ is both a lower simulation
and, being R§

∗
, an upper opsimulation. So it is contained in R and we obtain

R = R•, so R is compatible. Similarly for lower bisimilarity.

However, this method does not work for L1, so we turn to infinitary Howe’s
method, which does.

6 Infinitary Howe’s Method

We come now to the key construction: the forwards extension of R, written
R→, and the backwards extension of R, written R←.

Definition 6.1 Let R be a closed preorder. We define (R→, R←) to be the
greatest pair of open relations (S, T ) such that

• if M = θ{Mi}i∈I S N , then there exists {M ′
i}i∈I such that Mi S M ′

i for all
i ∈ I and θ{M ′

i}i∈I R◦N , and M T ∗N

• if N T M = θ{Mi}i∈I , then there exists {M ′
i}i∈I such that N R◦ θ{M ′

i}i∈I

and M ′
i T Mi for all i ∈ I, and N S∗M .

In short, (R→, R←) is

ν(S, T ).((“S; R◦) ∩ T ∗, (R◦; “T ) ∩ S∗)

In two special cases, we can simplify this definition.

Proposition 6.2 (i) If R is a closed preorder on L0, then R→ = R• and
R← = R§.

12
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(ii) If R is a closed equivalence relation, then R← = R→
op

, and R→ is the
greatest open relation S such that if M = θ{Mi}i∈I S N , then there exists
{M ′

i}i∈I such that Mi S M ′
i for all i ∈ I and θ{M ′

i}i∈I R◦N , and N S∗M .
In short, R→ is νS.((“S; R◦) ∩ S

op∗).

Proof. Plain coinduction in both cases, using Prop. 5.6(iii) in (i). 2

In general, to prove S ⊆ R→ and T ⊆ R← using Prop. 3.7(ii), it suffices
to prove

S ⊆ (Ÿ�S ∪ R→; R◦) ∪ R→ (15)

S ⊆ (T ∪ R←)∗ ∪ R→ (16)

T ⊆ (R◦; Ÿ�T ∪ R←) ∪ R← (17)

T ⊆ (S ∪ R→)∗ ∪ R→ (18)

When (15)–(18) are satisfied, we say that the pair (S, T ) is good. In all our
examples, the proof of (17)–(18) is dual to that of (15)–(16), so we omit it.

Proposition 6.3 Let R be a preorder on closed terms.

(i) R→∗ = R←∗

(ii) R→ is Howe-suitable for R, and R← is op-Howe-suitable for R.

(iii) R→ ∩ R← is compatible.

Proof.

(i) R→ ⊆ R←∗, so R→∗ ⊆ R←∗. By the same argument, R←∗ ⊆ R→∗.

(ii) We firstly show (R◦, R◦) to be good, which implies that R→ and R← are

reflexive. To prove (15) R◦ = id; R◦ = “id; R◦ ⊆ RHS. (16) is trivial.
Next we show that (R→; R◦, R◦; R←) is good. To prove (15), R→; R◦ ⊆

(‘R→; R◦); R◦ = ◊�R→; id; R◦ ⊆ ÿ�R→; R◦; R◦ ⊆ RHS. To prove (16), R→; R◦ ⊆
R←∗; R◦ = (id; R←)∗; (R◦; id) ⊆ (R◦; R←)∗; (R◦; R←) ⊆ RHS.

Next we show that (R→fin, R←fin) is good. To prove (15) for this pair,

R→fin ⊆ ‘R→ ⊆ (
¤�

R→fin ∪ R→; R◦) ∪ R→

To prove (16) for this pair,

R→fin ⊆ R←∗fin ⊆ R←fin∗ ⊆ (R←fin ∪ R←)∗ ∪ R→

To prove R→ and R← substitutive, we show that (R→[R→], R←[R←])
is good. To prove (15) for this pair,

13
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R→[R→] (‘R→; R◦)[R→; id]

⊆ (‘R→[R→]); (R◦[id])

⊆ ((fiR→ ∪ idf)[R→]); R◦

⊆fiR→[R→]; R◦ ∪ idf[R→]; R◦

⊆ „�R→[R→]; R◦ ∪ R→; R◦

⊆ „�R→[R→]; R◦ ∪ R→

which ⊆ the RHS. To prove (16) for this pair,

R→[R→] ⊆ R←∗[R←∗] ⊆ (R←[R←])∗

(iii) It is easily shown that (¤�R→ ∩ R←, ¤�R→ ∩ R←) is good. A stronger result
is proved in detail below (Prop. 7.6).

2

To illustrate how we can use this, let R be refinement similarity. Then by
Prop. 5.3, R→∗

0
is a lower simulation and R←∗

0
is an upper opsimulation, but

they are the same, hence contained in R. By Prop. 5.2(ii)

R◦ = R→ = R← = R→ ∩ R←

so R◦ is compatible.

7 Non-Well-Founded Syntax

7.1 Adapting The Well-Founded Account

We now come to L2, in which the term syntax is non-well-founded. The
syntax of types is the same as that of L1 (so there are countable sum types).
To define the term syntax, we might be tempted to make all the rules of Fig. 1
coinductive, but that would give us “infinite values” such as 〈i0, 〈i1, 〈i2, . . .〉〉〉,
which ought not to exist 4 . We therefore need to ensure that values are given
inductively and terms are given coinductively.

Write valseq for the set of value sequents Γ ⊢v B and termseq for the
set of term sequents Γ ⊢ B. For any termseq-indexed set X, we define the
valseq-indexed set val(X) inductively by the rules in Fig. 3. Then we define a
termseq-indexed set P coinductively in Fig. 4. Finally, we write

• Γ ⊢ M : A for M ∈ P (Γ ⊢ A)

• Γ ⊢v V : A for V ∈ val(P ) (Γ ⊢v A).

Renaming and substitution are defined coinductively, as in [10]

4 In λ-calculus with sum types and non-well-founded syntax, this is indeed a term, but
under the call-by-value evaluation strategy, it diverges.
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(x : A) ∈ Γ
x ∈ val(X) (Γ ⊢v A)

M ∈ X (Γ, x : A ⊢ B)

λx.M ∈ val(X) (Γ ⊢v A → B)

V ∈ val(X) (Γ ⊢v Aı̂)
ı̂ ∈ I

〈̂ı, V 〉 ∈ val(X) (Γ ⊢v ∑
i∈IAi)

Fig. 3. Values—inductive definition of val(X), a set indexed by value sequents

? ∈ P (Γ ⊢ nat)

V ∈ val(P )(Γ ⊢v A) M ∈ P (Γ, x : A ⊢ B)

let V be x. M ∈ P (Γ ⊢ B)

V ∈ val(P )(Γ ⊢v A)

return V ∈ P (Γ ⊢v A)

M ∈ P (Γ ⊢ A) N ∈ P (Γ, x : A ⊢ B)

M to x. N ∈ P (Γ ⊢ B)

V ∈ P (Γ ⊢v A → B) W ∈ P (Γ ⊢v A)

V W ∈ P (Γ ⊢ B)

V ∈ val(P ) (Γ ⊢v ∑
i∈IAi) Mi ∈ P (Γ, x : Ai ⊢ B) (∀i ∈ I)

pm V as {(i, x).Mi}i∈I ∈ P (Γ ⊢ B)

Fig. 4. Terms—coinductive definition of P , a set indexed by term sequents

The operational semantics is defined by Fig. 2 just as before, and the
various notions of applicative similarity are defined exactly as in Sect. 4. We
use infinitary Howe’s method to prove that the open extension of each one is
compatible just as in Sect. 5.1 and Sect. 6.

As for Prop. 5.5, listing the properties of the Howe extension, to make this
valid, we define R• to be the greatest fixpoint νS.(“S; R◦). The least fixpoint
would not even be reflexive.

7.2 Closure Under Contexts

Definition 7.1 A closure operator on a poset set A is a monotone endofunc-
tion f on A such that x 6 fx = f(fx) for all x ∈ A. Those elements x such
that fx 6 x (i.e. fx = x) are said to be f -closed.

By standard order theory, the compatible relations are the closed elements
of the endofunction mapping an open relation R to the least compatible rela-
tion containing it, viz. µS.(R ∪ “S). This latter relation can be thought of as
the closure of R under all well-founded contexts (which may have countably
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many holes, each occurring countably many times). But we would like to
know that relations are closed under all contexts. So we proceed as follows.

Definition 7.2 Let R be a relation. Its closure under binding contexts RC is
the relation νS.(R∪ “S).

Proposition 7.3 (i) −C is a closure operator.

(ii) RC is reflexive and compatible.

Proof.

(i) R ⊆ R∪ R̂, so R ⊆ RC. And

RCC
= RC ∪

’
RCC = R∪ R̂C ∪

’
RCC ⊆ R ∪

’
RCC

so RCC
⊆ RC by plain coinduction.

(ii) id = “id ⊆ R ∪ “id, so id ⊆ RC. Compatibility follows Lambek’s Lemma.

2

Binding contexts are so named, because they bind the identifiers in the
plugged terms. A more general kind of context is called a substituting context,
which may subsitute given values for identifiers in the plugged terms. A first
suggestion for closing R under subsituting contexts is the relation

Q = νS. (R[S] ∪ “S) (19)

A pair of terms is in this relation iff it is at the root of a proof tree in which
certain nodes are compatibility nodes

Mi QM ′
i (∀i ∈ I)

θ{Mi}i∈I Q θ{M ′
i}i∈I

where α is a term constructor of arity I, and the other nodes are substitution
nodes

V0 QV ′
0

· · · Vn−1 QV ′n−1

M [V0/x0, . . . , Vn−1/x1]QM ′[V ′
0
/x0, . . . , V

′
n−1

/x1]

where M,M ′ are in context x0 : A0, . . . , xn−1 : An−1 (either terms of the same
type, or values of the same type.)

The problem with (19) is that it is the universal relation. Instead we need
to constrain the proof trees so that, moving along a branch away from the
root, there are only finitely many consecutive substitution nodes, so that one
eventually hits a compatibility node. We make this precise in the following
way.

Definition 7.4 Let R be a relation. Its closure under substituting contexts
RSC is the relation νS. µT . (R[T ] ∪ “S).

Proposition 7.5 (i) RC ⊆ RSC.
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(ii) −SC is a closure operator.

(iii) RSC[RSC] ⊆ RSC

Proof.

(i) We reason

RC =R∪ R̂C

=R[idf] ∪ R̂C

⊆R[R̂C] ∪ R̂C

⊆R[R[µT . (R[T ] ∪ R̂C)] ∪ R̂C] ∪ R̂C

=R[µT . (R[T ] ∪ R̂C)] ∪ R̂C

= µT . (R[T ] ∪ R̂C)

Hence RC ⊆ νS.µT . (R[T ] ∪ “S).

(ii) Clearly R ⊆ RC ⊆ RSC. We note that

RSC = µT .(R[T ] ∪ ‘RSC) (20)

To show RSCSC
⊆ RSC, it suffices by plain coinduction to show

RSCSC
⊆ µT .(R[T ] ∪

◊�
RSCSC)

and we abbreviate the RHS by T ′. Since the LHS is µT .(RSC[T ]∪
◊�
RSCSC),

it suffices, by Prop. 3.7(i), to show

RSC[T ′ ∩RSCSC
] ∪

◊�
RSCSC ∩RSCSC

⊆ T ′ (21)

It is clear that
◊�
RSCSC is contained in the RHS of (21), so it suffices to

prove

RSC[T ′ ∩RSCSC
] ⊆ T ′

This is equivalent to saying that RSC is contained in the relation Q defined
as follows. Two computations ∆ ⊢c M,M ′ : B are related by Q when for

any context morphisms Γ
k,k′

// ∆ related by T ′∩RSCSC
, the computations

Γ ⊢c k∗M,k′∗M ′ : B are related by T ′, and likewise for values.

Since RSC is µT .(R[T ] ∪ ‘RSC), it suffices, by plain induction, to show

R[Q] ∪ ‘RSC ⊆ Q

R[Q] ⊆ Q is given by

R[Q][T ′ ∩RSCSC
] ⊆ R[Q[T ′ ∩RSCSC

]] ⊆ R[T ′] ⊆ R[T ′] ∪
◊�
RSCSC = T ′

For ‘RSC ⊆ Q, we have to show ‘RSC[T ′ ∩RSCSC
] ⊆ T ′. This is given by

17
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‘RSC[T ′ ∩RSCSC
] = (fiRSC ∪ idf)[T ′ ∩RSCSC

]

= fiRSC[T ′ ∩RSCSC
] ∪ idf[T ′ ∩RSCSC

]

⊆ fiRSC[RSCSC
] ∪ idf[T ′]

⊆
Â�
RSC[RSCSC] ∪ T ′

⊆
¤�

RSC[RSCSC
] ∪

◊�
RSCSC

∪ (T ′ ∪ T ′)

=
◊�
RSCSC ∪ T ′ ∪ (R[T ′] ∪

◊�
RSCSC)

= T ′ ∪ (R[T ′] ∪
◊�
RSCSC) = T ′ ∪ T ′ = T ′

(iii) RSC[RSC] ⊆ RSC[RSCSC
] ∪

◊�
RSCSC = RSCSC

= RSC

2

A relation R is closed under substituting contexts when RSC ⊆ R. By
Prop. 7.5, every such relation is closed under contexts, compatible, reflexive
and substitutive.

7.3 Applicative Similarity Is Closed Under Substituting Contexts

To adapt our proofs of compatibility to proofs of closure under substituting
contexts, we strengthen Prop. 5.5(ii) and Prop. 6.3(iii) as follows.

Proposition 7.6 Let R be a closed relation. Then R• and R§ and R→ ∩R←

are closed under substituting contexts.

Proof. We just give the proof for R→ ∩ R←, which we abbreviate as Rg. To
show RgSC ⊆ Rg, it suffices to show that the pair (R→[RgSC], R←[RgSC]) is
good, because that implies

RgSC = idf[RgSC] ⊆ R→[RgSC] ∩ R←[RgSC] ⊆ R→ ∩ R←

First we prove (15) for this pair. If we can show

RgSC ⊆
¤�
R→[RgSC]; R◦ (22)

then we can deduce (15), by
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R→[RgSC]⊆ (‘R→; R◦)[RgSC; id]

⊆ (‘R→[RgSC]); (R◦[id])

⊆ (fiR→ ∪ idf)[RgSC]; R◦

= (fiR→[RgSC]; R◦) ∪ (idf[RgSC]; R◦)

⊆ (
Â�

R→[(RgSC)]; R◦) ∪ (RgSC; R◦)

⊆ (
¤�
R→[RgSC]; R◦) ∪ (

¤�
R→[RgSC]; R◦; R◦)

=
¤�
R→[RgSC]; R◦

⊆
¤�
R→[RgSC]; R◦ ∪ R→

To prove (22), since RgSC can be expressed as µT .(Rg[T ]∪
’
RgSC), by Prop. 3.7(i)

it suffices to show

(Rg[(
¤�
R→[RgSC]; R◦) ∩ RgSC] ∪

’
RgSC) ∩ RgSC ⊆

¤�
R→[RgSC]; R◦

which is equivalent to

Rg[(
¤�
R→[RgSC]; R◦) ∩ RgSC] ∩ RgSC ⊆

¤�
R→[RgSC]; R◦ (23)

’
RgSC ∩ RgSC ⊆

¤�
R→[RgSC]; R◦ (24)

For (23), the LHS is contained in

R→[(
¤�
R→[RgSC]; R◦) ∩ RgSC]

⊆ (‘R→; R◦)[((
¤�
R→[RgSC]; R◦) ∩ RgSC); id]

⊆ (‘R→[(
¤�
R→[RgSC]; R◦) ∩ RgSC]); (R◦[id])

⊆ ((fiR→ ∪ idf)[(
¤�
R→[RgSC]; R◦) ∩ RgSC]); R◦

⊆ ((fiR→[RgSC]) ∪ (idf[
¤�
R→[RgSC]; R◦])); R◦

⊆ (
Â�
R→[RgSC]; R◦) ∪ ((

¤�
R→[RgSC]; R◦); R◦)

which is contained in the RHS of (23). For (24), we reason

’
RgSC ∩ RgSC ⊆

⁄�
idf[RgSC]; idf ⊆

¤�
R→[RgSC]; R◦

That completes the proof of (15). To prove (16) for this pair, we reason

R→[RgSC]⊆ (R←∗; id)[id; RgSC]

⊆R←∗[id]; id[RgSC]

⊆ (R←[id])∗; (R←[RgSC])

⊆ (R←[RgSC])∗; (R←[RgSC])

⊆ (R←[RgSC])∗ ∪ R→

2
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8 Adapting The Method

To apply infinitary Howe’s method to any calculus with binding, all that is
needed is an analogue of Prop. 5.3. The rest of the theory is purely syntactic.

Acknowledgements I thank Soren Lassen for his comments on this paper.
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