
Jumbo λ-Calculus

Paul Blain Levy

University of Birmingham

Abstract. We make an argument that, for any study involving com-
putational effects such as divergence or continuations, the traditional
syntax of simply typed lambda-calculus cannot be regarded as canon-
ical, because standard arguments for canonicity rely on isomorphisms
that may not exist in an effectful setting. To remedy this, we define a
”jumbo lambda-calculus” that fuses the traditional connectives together
into more general ones, so-called ”jumbo connectives”. We provide two
pieces of evidence for our thesis that the jumbo formulation is advanta-
geous.
Firstly, we show that the jumbo lambda-calculus provides a ”complete”
range of connectives, in the sense of including every possible connective
that, within the beta-eta theory, possesses a reversible rule.
Secondly, in the presence of effects, we show that there is no decompo-
sition of jumbo connectives into non-jumbo ones that is valid in both
call-by-value and call-by-name.

1 Canonicity and Connectives

According to many authors [GLT88,LS86,Pit00], the “canonical” simply typed
λ-calculus possesses the following types:

A ::= 0 | A+A | 1 | A×A | A→ A (1)

There are two variants of this calculus. In some texts [GLT88,LS86] the × con-
nective (type constructor) is a projection product, with elimination rules

Γ `M : A×B

Γ ` πM : A

Γ `M : A×B

Γ ` π′M : B

In other texts [Pit00], × is a pattern-match product, with elimination rule

Γ `M : A×B Γ, x : A, y : B ` N : C

Γ ` pm M as 〈x, y〉. N : C

This choice of five connectives 0,+, 1,×,→ raises some questions.

1. Why not include a ternary sum type +(A,B,C)?
2. Why not include a type (A,B)→ C of functions that take two arguments?
3. Why not include both a pattern-match product A × B and a projection
product A ΠB?

In the purely functional setting, these can be answered using Ockham’s razor:

1. unnecessary—it would be isomorphic to (A+B) + C
2. unnecessary—it would be isomorphic to (A×B)→ C, and to A→ (B → C)
3. unnecessary—they would be isomorphic, so either one suffices.

But these answers are not valid in the presence of effectful constructs, such as
recursion or control operators. For example, in a call-by-name language with
recursion, +(A,B,C) 6∼= (A+B)+C (a point made in [McC96b]), and A×B 6∼=
A Π B. To see this, consider standard semantics that interprets each type by
a pointed cpo. Then + denotes lifted disjoint union, A Π B denotes cartesian
product, and A×B denotes lifted product.
This suggests that, to obtain a canonical formulation of simply typed λ-

calculus (suitable for subsequent extension with effects), we should—at least a
priori—replace Ockham’s minimalist philosophy with a maximalist one, treating
many combinations of the above connectives as primitive. These combinations
are called jumbo connectives. But how many connectives must we include to
obtain a “complete” range?
A first suggestion might be to include every possible combination of the

original five as primitive, e.g. a ternary connective γ mapping A,B,C to (A→
B) → C. But this seems unwieldy. We need some criterion of reasonableness
that excludes γ but includes all the connectives mentioned above.
We obtain this by noting that each of the above connectives possesses, within

the βη equational theory, a reversible rule. For example:

Γ, A ` B
=========
Γ ` A→ B

Γ, A ` C Γ, B ` C
===============
Γ, A+B ` C

The rule for A → B means that we can turn each inhabitant of Γ, A ` B into
an inhabitant of Γ ` A → B, and vice versa, and these two operations are
inverse (up to βη-equality). The rule for A + B is understood similarly. Note
also that, in these rules, every part of the conclusion other than the type being
introduced appears in each premise. Informally, we shall say that a connective is
“{0,+, 1,×,→}-like”, when, in the presence of βη, it possesses such a reversible
rule. In this paper, we introduce a calculus called “jumbo λ-calculus”, and show
that it contains every {0,+, 1,×,→}-like connective.
As stated above, our main argument for the necessity of jumbo connectives

in the effectful setting is that suggested decompositions are not a priori valid,
but in Sect. 4 we take this further by showing that, a posteriori, they do not
have a decomposition that is valid in both CBV and CBN.

Related work Both our arguments for jumbo connectives (invalidity of de-
compositions, possession of a reversible rule) have arisen in ludics [Gir01].

1.1 Infinitary Variant

Frequently, in semantics, one wishes to study infinitary calculi with countable
sum types and countable product types. (The latter are necessarily projection

products.) We therefore say that a connective is “{0,+,
∑

i∈N
, 1,×,

∏
i∈N

,→}-
like” when it possesses a reversible rule with countably many premises. By con-
trast, a {0,+, 1,×,→}-like connective is required to have a reversible rule with
finitely many premises.

We shall define an infinitary jumbo λ-calculus, as well as the finitary one, and
show that the former contains every {0,+,

∑
i∈N

, 1,×,
∏

i∈N
,→}-like connective.

2 Jumbo λ-calculus

Jumbo λ-calculus is a calculus of tuples and functions.

2.1 Tuples

A tuple in jumbo λ-calculus has several components; the first component is a tag
and the rest are terms. (We often write tags with a # symbol to avoid confusion
with identifiers.) An example of a tuple type is

∑
{

#a. int, bool
#b. bool, int, bool
#c. int
}

(2)

This contains tuples such as 〈#a, 17, false〉 and 〈#b, true, 5, true〉. The type
(3) can roughly be thought of as an indexed sum of finite products:

∑
{
#a. (int× bool)
#b. (bool× int× bool)
#c. int
}

(3)

But whether (2) and (3) are actually isomorphic is a matter for investigation
below—not something we may assume a priori.

If M is a term of the above type, we can pattern-match it:

pm M as {
〈#a, x, y〉. N
〈#b, x, y, z〉. P
〈#c, w〉. Q
}

where N ,P and Q all have the same type.

2.2 Functions

A function in jumbo λ-calculus is applied to several arguments; the first argument
is a tag, and the rest are terms. An example of a function type is

∏
{
#a. int, int, int ` bool

#b. int, bool ` int

#c. bool, int ` int

}

(4)

An example function of this type is

λ{
(#a, x, y, z). x > (y+ z)
(#b, x, y). if y then x+ 5 else x+ 7
(#c, x, y). y+ 1
}

(5)

Applying this to arguments (#a,M,N, P) gives a boolean, whereas applying
it to arguments (#b, N,N ′) gives an integer. (Note the use of () for multiple
arguments, and 〈〉 for tuple formation.) The type (4) can roughly be thought of
as an indexed product of function types:

∏
{
#a. (int→ (int→ (int→ bool)))
#b. (int→ (bool→ int))
#c. (bool→ (int→ int))
}

(6)

But again, we cannot assume a priori that (4) and (6) are isomorphic.

2.3 Summary

The types and terms of jumbo λ-calculus are shown in Fig. 1. Here, I ranges over
all finite sets (for the finitary variant) or over all countable sets (for the infinitary

variant),
−→
A indicates a finite sequence of types, |

−→
A | is its length, and $n (for

n ∈ N) is the set {0, . . . , n− 1}. As in, e.g., [Win93], we include a construct let
to make a binding, although this can be desugared in various ways.

Types A ::=
P

{
−→
A i}i∈I |

Q

{
−→
A i ` Ai}i∈I

Terms

Γ, x : A,Γ′ ` x : A

Γ ` N : A Γ, x : A `M : B

Γ ` let N be x. M : B

ı̂ ∈ I Γ ` Nj : Aı̂j (∀j ∈ $|
−→
A ı̂|)

Γ ` 〈̂ı,
−→
N 〉 :

P

{
−→
A i}i∈I

Γ ` N :
P

{
−→
A i}i∈I Γ,−→x :

−→
A i `Mi : B (∀i ∈ I)

Γ ` pm N as {〈i,−→x 〉.Mi}i∈I : B

Γ,−→x :
−→
A i `Mi : Bi (∀i ∈ I)

Γ ` λ{(i,−→x).Mi}i∈I :
Q

{
−→
A i ` Bi}i∈I

Γ `M :
Q

{
−→
A i ` Bi}i∈I ı̂ ∈ I Γ ` Nj : Aı̂j (∀j ∈ $|

−→
A ı̂|)

Γ `M (̂ı,
−→
N) : Bı̂

Fig. 1. Syntax Of Jumbo λ-calculus

2.4 Jumbo-arities

Many traditional connectives are special cases of the jumbo connectives:

type comments expressed as

A+B
∑
{#left.A,#right.B}∑

i∈IAi

∑
{Ai}i∈I

A×B pattern-match product
∑
{#sole.A,B}

×(
−→
A) n-ary pattern-match product

∑
{#sole.

−→
A}

A ΠB projection product
∏
{#left. ` A,#right. ` B}∏

i∈IAi I-ary projection product
∏
{` Ai}i∈I

A→ B type of functions with one argument
∏
{#sole.A ` B}

(
−→
A)→ B type of functions with n arguments

∏
{#sole.

−→
A ` B}

bool
∑
{#true.ε,#false.ε}

groundI ground type with I elements
∑
{ε}i∈I

TA studied in call-by-value setting [Mog89]
∏
{#sole. ` A}

LA studied in call-by-name setting [McC96a]
∑
{#sole.A}

To make this more systematic, define a jumbo-arity to be a countable family of
natural numbers {ni}i∈I . Then both

∑
and

∏
provide a family of connectives,

indexed by jumbo-arities, as follows.

– Each jumbo-arity {ni}i∈I , determines a connective
∑
{ni}i∈I

of arity
∑

i∈Ini.

Given types {Aij}i∈I,j∈$ni
, it constructs the type

∑
{Ai0, . . . , Ai(ni−1)}i∈I .

– Each jumbo-arity {ni}i∈I , determines a connective
∏
{ni}i∈I

of arity
∑

i∈I(ni+

1). Given types {Aij}i∈I,j∈$ni
and types {Bi}i∈I , it constructs the type∏

{Ai0, . . . , Ai(ni−1) ` Bi}i∈I .

Corresponding to the above instances, we have

connective arity expressed as

+ 2
∑
{#left.1,#right.1}∑

i∈I I
∑
{1}i∈I

× 2
∑
{#sole.2}

× n
∑
{#sole.n}

Π 2
∏
{#left.0,#right.0}∏

i∈I I
∏
{0}i∈I

→ 2
∏
{#sole.1}

→ n+ 1
∏
{#sole.n}

bool 0
∑
{#true.0,#false.0}

groundI 0
∑
{0}i∈I

T 1
∏
{#sole.0}

L 1
∑
{#sole.1}

3 The βη-theory of Jumbo λ-calculus

3.1 Laws and Isomorphisms

In the absence of computational effects, the most natural equational theory for
the jumbo λ-calculus is the βη-theory, displayed in Fig. 2.

A βη-isomorphism A
∼=

// B is a pair of terms y : A ` α : B and z : B `

α−1 : A such that α−1[α/z] = y and α[α−1/y] = z is provable up to βη-equality.
We identify α and α′ when α = α′ is provable.
The βη-theory gives non-jumbo decompositions and other isomorphisms, e.g.

∑
{Ai0, . . . , Ai(ni−1)}i∈I

∼=
∑

i∈I(Ai0 × · · · ×Ai(ni−1))∏
{Ai0, . . . , Ai(ni−1) ` Bi}i∈I ∼=

∏
i∈I(Ai0 → · · ·Ai(ni−1) → Bi)

×(
−→
A) ∼= Π(

−→
A)

TA ∼= A ∼= LA

So the βη-theory makes the jumbo λ-calculus equivalent to that of Sect. 1.

3.2 Reversible Rules

Our next task is to make precise the notion of reversible rule from Sect. 1.

Definition 1 1. For a sequent s = Γ ` A (i.e. a pair of a context Γ and a type
A), we write inhab s for the set of terms (modulo βη-equality) inhabiting s.

2. For a countable family of sequents S = {si}i∈I , we write inhabS for
∏

i∈I si.

β-laws

Γ ` N : A Γ, x : A `M : B

Γ ` let N be x. M =M [N/x] : B

ı̂ ∈ I Γ ` Nj : Aı̂j (∀j ∈ $|
−→
A ı̂|) Γ,−→x :

−→
A i `Mi : B (∀i ∈ I)

Γ ` pm 〈̂ı,
−→
N 〉 as {〈i,−→x 〉.Mi}i∈I =Mı̂[

−−→
N/x] : Bı̂

Γ,−→x :
−→
A i `M : Bi (∀i ∈ I) ı̂ ∈ I Γ ` Nj : Aı̂j (∀j ∈ $|

−→
A ı̂|)

Γ ` λ{(i,−→x).Mi}i∈I (̂ı,
−→
N) =Mı̂[

−−→
N/x] : Bı̂

η-laws

Γ ` N :
P

{
−→
A i}i∈I Γ, z :

P

{
−→
A i}i∈I `M : B

Γ `M [N/z] = pm N as {〈i,−→x 〉.M [〈i,−→x 〉/z]}i∈I : B

−→
x fresh for Γ

Γ `M :
Q

{
−→
A i ` Bi}i∈I

Γ `M = λ{(i,−→x).M(i,−→x)}i∈I :
Q

{
−→
A i ` Bi}i∈I

−→
x fresh for Γ

Fig. 2. The βη Equational Theory For Jumbo λ-calculus

3. A rule from sequent family S to sequent family S ′ is a function from inhabS
to inhabS′.

¤

The reversible rules for → and + shown in Sect. 1 are given for all Γ, and, in
the case of +, for all C. Furthermore, they are “natural”, as we now explain.

Definition 2 1. [Lawvere] A substitution from a context Γ = A0, . . . , Am−1 to
a context Γ′ is a sequence of terms M0, . . . ,Mm−1 where Γ

′ ` Mi : Ai for
each i ∈ $m. As usual, such a morphism induces a substitution function q∗

from terms Γ,∆ ` B to terms Γ′,∆ ` B.
2. Any term Γ, y : C ` P : C ′ gives rise to a function P † from terms inhabiting
Γ,∆ ` C to terms inhabiting Γ,∆ ` C ′, where P †N = P [N/y].

¤

The → and + reversible rules are natural in Γ in the sense that they commute

with q∗, up to βη-equality, for any context morphism Γ′
q

// Γ . (Actually,
they commute up to syntactic equality, but that is not significant here.) The +
reversible rule is also natural in C in the sense that it commutes with P †, up to
βη-equality, for any term Γ, y : C ` P : C ′.

Definition 3 A reversible rule for a type B, in an equational theory, is a rule
r with a single conclusion, such that

– r is a bijection

– the conclusion contains a single occurrence of B (adjacent to `, let us say)
– the rest of the conclusion is arbitrary, appears in every premise, and the rule
is natural in it.

In detail, either

reversible left rule the conclusion is Γ, B ` C, every premise contains Γ `
C—i.e. is of the form Γ,∆ ` C—and r is natural in Γ and C, or

reversible right rule the conclusion is Γ ` B, every premise contains Γ `—i.e.
is of the form Γ,∆ ` B′—and r is natural in Γ.

¤

Definition 4 We associate to the type
∑
{
−→
A i}i∈I the reversible left rule

Γ,−→x :
−→
A i ` C (∀i ∈ I)

==================
Γ, y :

∑
{
−→
A i}i∈I ` C

{Mi}i∈I 7→ pm y as {〈i,−→x 〉.Mi}i∈I
N 7→ {N [〈i,−→x 〉/y]}i∈I

We associate to the type
∏
{
−→
A i ` Bi}i∈I the reversible right rule

Γ,−→x :
−→
A i ` Bi (∀i ∈ I)

===================
Γ `

∏
{
−→
A i ` Bi}i∈I

{Mi}i∈I 7→ λ{(i,−→x).Mi}i∈I
N 7→ N(i,−→x)

¤

Definition 5 Given a reversible rule r forA, and an βη-isomorphism A
∼=

// B
comprised of y : A ` α : B and z : B ` α−1 : A, we define a reversible rule rα
for B.

– If r is left, with conclusion Γ, y : A ` C, then rα has conclusion Γ, z : B ` C.
It maps a to r(a)[α−1/y], and its inverse maps N to r−1(N [α/z]).

– If r is right, with conclusion Γ ` A, then rα has conclusion Γ ` B. It maps
a to α[r(a)/y] and its inverse maps N to r−1(α−1[N/z]).

¤

We can now state the main technical property of jumbo λ-calculus:

Proposition 1 Let s be a reversible rule in the βη-theory of jumbo λ-calculus.
Then s is rα, where r is one of the rules in Def. 4 and α a βη-isomorphism; and
r and α are unique. ¤

Proof Suppose s is left, with conclusion Γ, z : B ` C. Call the set indexing its

premises I. For each i ∈ I, the ith premise must be of the form Γ,−→x :
−→
A i ` C.

Set A to be the type
∑
{
−→
A i}i∈I , and r to be the reversible rule that Def. 4

associates to this type. That is clearly is the only possibility for r.
The rest is a syntactic version of the (indexed) Yoneda lemma. Define

– y : A ` α : B to be rs−1(z : B ` z : B)
– z : B ` α−1 : A to be sr−1(y : A ` y : A).

We claim that

sr−1(Γ, y : A `M : C) =M [α−1/y] (7)

rs−1(Γ, z : B ` N : C) = N [α/z] (8)

For (7), we note that M = M †k∗Γ(y : A ` y : A). (Here kΓ means the unique
substitution from the empty context to Γ.) Hence the LHS is sr−1(M †k∗Γ(y)). By
naturality of s and r, this isM †k∗Γ(sr

−1(y)), which isM †k∗Γ(α
−1), the RHS. (8) is

similar. SettingM to be α in (7) gives z = α[α−1/y], and similarly y = α−1[α/z].
Setting M to be r(a) in (7) gives s = rα. For uniqueness, s = rβ implies

α = rr−1β (z : B ` z : B) = rr−1(z[β/z]) = β

The argument in the case that s is right is similar but easier.
¤

Thus
∑

and
∏

are the most general {0,+,
∑

i∈I , 1,×,
∏

i∈I ,→}-like con-
nectives, and the infinitary jumbo λ-calculus is greatest among calculi consisting
of such connectives. Similarly,

∑
and

∏
with finite tag set are the most gen-

eral {0,+, 1,×,→}-like connectives, and the finitary jumbo λ-calculus is greatest
among calculi consisting of such connectives.

4 λ-Calculus Plus Computational Effects

4.1 Operational Semantics

In Sect. 4.1–4.2, we adapt standard material from e.g. [Win93] to the setting
of jumbo λ-calculus. As a very simple example of a computational effect, let us
consider divergence. So we add to the jumbo λ-calculus the typing rule

Γ ` diverge : B

where B may be any type. The βη-theory is inconsistent in the presence of a
closed term of type 0, so we discard it. Our statement that each connective
is {0,+,

∑
i∈N

, 1,×,
∏

i∈N
,→}-like means that in the presence of βη it has a

reversible rule. Since we have now discarded βη, these rules are lost.
We consider two languages with this syntax: call-by-name and call-by-value.

As usual, each is defined by an operational semantics that maps closed terms
to a special class of closed terms called terminal terms. We define this by an
interpreter in Fig. 3. The metalanguage for the interpreter (written in italics) is
first-order and recursive, containing the following constructs:

rec f lambda for a recursive definition of a function f
P to D. Q to mean: first evaluate P , then, if that gives D, evaluate Q
−−−−→
P to D. Q to abbreviate P0 to D0. . . . Pn−1 to Dn−1. Q.

Terminal Terms

(

CBN Closed terms of the form 〈̂ı,
−→
M〉 or λ{(i,−→x).Mi}i∈I

CBV Inductively defined by T ::= 〈̂ı,
−→
T 〉 | λ{(i,−→x).Mi}i∈I

CBN interpreter rec cbn lambda{
let N be x. M . cbn M [N/x]

〈̂ı,
−→
N 〉 . return 〈̂ı,

−→
N 〉

pm N as {〈i,−→x 〉.Mi}i∈I . (cbn N) to 〈̂ı,
−→
N 〉. cbn Mı̂[

−−→
N/x]

λ{(i,−→x).Mi}i∈I . return λ{(i,−→x).Mi}i∈I

M (̂ı,
−→
N) . (cbn M) to λ{(i,−→x).Mi}i∈I . cbn Mı̂[

−−→
N/x]

diverge . diverge

}

CBV (left-to-right) interpeter rec cbv lambda{
let N be x. M . (cbv N) to T. cbv M [T/x]

〈̂ı,
−→
N 〉 .

−−−−−−−−−→
(cbv N) to T . return 〈̂ı,

−→
T 〉

pm N as {〈i,−→x 〉.Mi}i∈I . (cbv N) to 〈̂ı,
−→
T 〉. cbv Mı̂[

−−→
T/x]

λ{(i,−→x).Mi}i∈I . return λ{(i,−→x).Mi}i∈I

M (̂ı,
−→
N) . (cbv M) to λ{(i,−→x).Mi}i∈I .

−−−−−−−−−→
(cbv N) to T . cbv Mı̂[

−−→
T/x]

diverge . diverge

}

Fig. 3. CBN and (left-to-right) CBV interpreters

Remark 1. Notice the consequences of the call-by-value semantics for the two
binary products. A terminal term in A × B (the pattern-match product) is
〈T, T ′〉, where T and T ′ are terminal. But, because we do not evaluate under λ,
a terminal term in AΠB (the projection product) is λ{0.M, 1.N}, where M and
N need not be terminal. This differs from the formulation in [Win93]. ¤

We write M ⇓CBN T to mean that M evaluates to T in CBN, which can
be defined inductively in the usual way. Otherwise M diverges and we write
M ⇑CBN. Similarly for CBV.

For call-by-value, we inductively define values: V ::= x | 〈i,
−→
V 〉 | λ{(i,−→x).Mi}i∈I

4.2 Denotational Semantics

We extend the cpo semantics for CBN and CBV in [Win93] as follows.
In the call-by-name language, a type denotes a cpo with least element:

[[
∑
{Ai 0, . . . , Ai (ni−1)}i∈I]] = (

∑

i∈I

([[Ai 0]]× · · · × [[Ai (ni−1)]]))⊥

[[
∏
{Ai 0, . . . , Ai ni−1 ` Bi}i∈I]] =

∏

i∈I

([[Ai 0]]→ · · · → [[Ai (ni−1)]]→ [[Bi]])

A context Γ = A0, . . . , An−1 denotes the cpo [[A0]] × · · · × [[An−1]], and a term

Γ `M : B denotes a continuous function [[Γ]]
[[M]]

// [[B]] .

In the call-by-value language, a type denotes a cpo:

[[
∑
{Ai 0, . . . , Ai (ni−1)}i∈I]] =

∑

i∈I

([[Ai 0]]× · · · × [[Ai (ni−1)]])

[[
∏
{Ai 0, . . . , Ai (ni−1) ` Bi}i∈I]] =

∏

i∈I

([[Ai 0]]→ · · · → [[Ai (ni−1)]]→ ([[Bi]]⊥))

A context Γ = A0, . . . , An−1 denotes [[A0]]×· · ·× [[An−1]], and a term Γ `M : B

denotes a continuous function [[Γ]]
[[M]]

// [[B]]⊥ . Each value Γ ` V : B has

another denotation [[Γ]]
[[V]]val

// [[B]] such that [[V]]ρ = up ([[V]]valρ) for all ρ ∈ [[Γ]].

The detailed semantics of CBN terms and of CBV terms and values are
obvious and omitted. For both languages, we prove a substitution lemma, then
show that M ⇓ T implies [[M]] = [[T]], and M ⇑ implies [[M]] = ⊥, as in [Win93].

4.3 Invalidity Of Decompositions

We say that types A and B are

– cpo-isomorphic in CBN when [[A]]CBN and [[B]]CBN are isomorphic cpos
– cpo-isomorphic in CBV when [[A]]CBV and [[B]]CBV are isomorphic cpos.

This is very liberal: e.g., 1Π and 0 are cpo-isomorphic in CBN, though not
isomorphic in other CBN models. But the purpose of this section is to establish
non-isomorphisms, so that is good enough.
We begin by investigating the most obvious decompositions.

Proposition 2 The following decompositions are cpo-isomorphisms in CBN
but not CBV:

Π(A0, . . . , An−1) ∼= A0 ΠA1 · · · ΠAn−1
∑
{
−→
A i}i∈I ∼=

∑
i∈I Π (

−→
A i)

(A0, . . . , An−1)→ B ∼= A0 → A1 → · · · → An−1 → B

(A0, . . . , An−1)→ B ∼= (A0 Π · · · ΠAn−1)→ B
∏
{
−→
A i ` Bi}i∈I ∼=

∏
i∈I((

−→
A i)→ Bi)

The following decompositions are cpo-isomorphisms in CBV but not CBN:

+(A0, . . . , An−1) ∼= A0 +A1 · · ·+An−1

×(A0, . . . , An−1) ∼= A0 ×A1 · · · ×An−1
∑
{
−→
A i}i∈I ∼=

∑
i∈I × (

−→
A i)

(A0, . . . , An−1)→ B ∼= (A0 × · · · ×An−1)→ B
∏
{
−→
A i ` Bi}i∈$n ∼= ×i∈$n((

−→
A i)→ Bi)

∏
{
−→
A i ` Bi}i∈I ∼=

∏
{×(

−→
A i) ` Bi}i∈I

Some special cases:

CBV CBN

1× ∼= 1Π yes no

×
−→
A ∼= Π

−→
A no no

groundI
∼=

∑
i∈I1× yes no

groundI
∼=

∑
i∈I1Π yes yes

TA ∼= A no yes
LA ∼= A yes no

¤

Proof For non-isomorphisms: make all the types bool, and count elements. ¤

A stronger statement of non-decomposability is the following. (We omit its
proof, which analyzes finite elements.)

Proposition 3 Call the following types of jumbo λ-calculus non-jumbo.

A ::= groundI |
∑

i∈IAi | × (
−→
A) |

∏
i∈I Ai | (

−→
A)→ B

1. There is no non-jumbo type A such that
∑
{#a.bool, bool;#b.bool} is

cpo-isomorphic to A in both CBV and CBN.
2. There is no non-jumbo type A such that

∏
{#a.bool ` bool;#b. ` bool}

is cpo-isomorphic to A in both CBV and CBN.
3. There is no non-jumbo type A such that

∏
{Tbool ` ground$n}n∈N is cpo-

isomorphic to A in CBV.

¤

Thus, neither
∑

nor
∏
has a universally valid decomposition. And in the

infinitary CBV setting,
∏
cannot be decomposed at all.

References

[Gir01] J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(3):301–506, 2001.

[GLT88] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science 7. Cambridge University Press, 1988.

[LS86] J. Lambek and P. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, Cambridge, 1986.

[McC96a] G. McCusker. Full abstraction by translation. Proc., 3rd Workshop in
Theory and Formal Methods, Imperial College, London., 1996.

[McC96b] G. McCusker. Games and Full Abstraction for a Functional Metalanguage

with Recursive Types. PhD thesis, University of London, 1996.
[Mog89] E. Moggi. Computational lambda-calculus and monads. In LICS’89, Proc.

4th Ann. Symp. on Logic in Comp. Sci., pages 14–23. IEEE, 1989.
[Pit00] A. M. Pitts. Categorical logic. In Handbook of Logic in Computer Science,

Vol. 5. Oxford University Press, 2000.
[Win93] G. Winskel. Formal Semantics of Programming Languages. MIT Press, 1993.

