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Abstract. We give a jumping machine for a higher-order language, em-
bodying the intuition that calling a procedure is a jump, and returning
from a procedure is also a jump. The machine makes it very easy to
execute a program on paper, so it is a kind of pedagogical tool. It rep-
resents a closure in a graphical way, so that a jump does not need to
be accompanied by a separate change of environment (as it does in the
Krivine machine).
The language used is call-by-push-value, making it easy to obtain similar
jumping machines for call-by-value and call-by-name calculi (as these are
fragments of call-by-push-value).

1 Introduction

1.1 Jumping Semantics

Beginning programmers learn a simple intuition for procedures and functions.

– A procedure or function call causes a jump from the calling code to the
procedure or function

– The return of a value by a function, or the termination of a procedure, causes
a jump to the frame on top of the stack, which is popped.

The goal of this paper is to present, informally, a jumping machine that embodies
these two intuitions, for a higher-order language. The machine is based on a
graphical view of closures.

It must be stressed from the outset what this kind of operational semantics
does not achieve:

– it is not suitable as a practical implementation of programming languages,
principally because there is no garbage collection

– it is not a convenient way of reasoning about programs, because—like many
graphical notations—its formalization (which we omit in this paper) is rather
complex.

So what is its contribution? Simply that it is a very easy way of executing a
program on paper. It can, therefore, be seen as a kind of pedagogical tool.

A somewhat similar formalization of jumping in a higher-order setting ap-
pears in [DR99]. In that paper, after a very careful analysis of the “geometry of
interaction” machine for MELL, a jumping machine is given as an optimization.
This induces a jumping machine for simply typed CBN λ-calculus with a single
free type identifier ι. Because pattern-matching (in particular, conditionals) is
absent from this language, there are no frames on the stack.



1.2 Languages

Many analyses of abstract machines, such as [ABDM03], consider both call-
by-value (CBV) and call-by-name (CBN) variants. In this paper, instead, we
present our machine for call-by-push-value (CBPV) [Lev99]. This is a calculus
that contains both CBV and CBN calculi as fragments, and consequently jump-
ing machines for these calculi can easily be obtained from the CBPV one.

In [Lev04], a similar jumping machine is given for a CPS language, of course
without a stack. From this, one can obtain a jumping machine for CBPV, by
applying the appropriate CPS transform (described in [Lev04]). But that is
different from the machine we give in this paper, which is not continuation-
passing: when calling a procedure, we do not pass the stack as an additional
argument. This is surely closer to the programmer’s intuition that we are trying
to capture.

1.3 Structure Of Paper

In Sect. 2, we review call-by-push-value, omitting the denotational aspects. We
present operational semantics in two traditional styles (first-order interpreter
and CK-machine) in Sect. 3. In Sect. 4, we give an informal account of the
jumping semantics, executing an example program in detail; another example is
given in Sect. 5. We discuss correctness in Sect. 6.

Finally, in Sect. 7, we compare and contrast our jumping machine to other
machines in the literature.

2 Review Of Call-By-Push-Value

CBPV has two disjoint classes of terms: values and computations. It likewise has
two disjoint classes of types: a value has a value type, while a computation has
a computation type. For clarity, we underline computation types. The types are
given by

value types A ::= UB |
∑

i∈I
Ai | 1 | A×A

computation types B ::= FA |
∏

i∈I
B

i
| A → B

where I can be any countable set (finite, in finitary CBPV). The meaning of F
and U is as follows. A computation of type FA returns a value of type A. A
value of type UB is a thunk of a computation of type B. When later required,
it can be forced i.e. executed.

Unlike in call-by-value, a function in CBPV is a computation, and hence a
function type is a computation type. We will discuss this further in Sect. 3.

Like in call-by-value, an identifier in CBPV can be bound only to a value, so
it must have value type. We accordingly define a context Γ to be a sequence

x0 : A0, . . . , xn−1 : An−1



of identifiers with associated value types. We often omit the identifiers and write
just A0, . . . , An−1. We write Γ `v V : A to mean that V is a value of type A,
and we write Γ `c M : B to mean that M is a computation of type B.

The terms of CBPV are given in Fig. 1. We assume formally that all terms
are explicitly typed, but in this paper, to reduce clutter, we omit explicit typing
information. We omit the rules for 1, which follow those for ×.

We explain some of the less familiar constructs as follows. M to x. N is the
sequenced computation that first executes M , and when, this returns a value
V proceeds to execute N with x bound to V . This was written in Moggi’s syn-
tax using let, but we reserve let for mere binding. The keyword pm stands
for “pattern-match”, and the symbol ‘ represents application in reverse order.
Because we think of

∏
i∈I

as the type of functions taking each i ∈ I to a com-
putation of type B

i
, we have made its syntax similar to that of →.

Γ, x : A,Γ ′ `v

x : A

Γ `v V : A Γ, x : A `c M : B

Γ `c

let V be x. M : B

Γ `v V : A

Γ `c

return V : FA

Γ `c M : FA Γ, x : A `c N : B

Γ `c M to x. N : B

Γ `c M : B

Γ `v

thunk M : UB

Γ `v V : UB

Γ `c

force V : B

Γ `v V : Aı̂

ı̂ ∈ I
Γ `v (̂ı, V ) :

P

i∈I
Ai

Γ `v V :
P

i∈I
Ai · · · Γ, x : Ai `

c Mi : B · · · i∈I

Γ `c

pm V as {. . . , (i, x).Mi, . . .} : B

Γ `v V : A Γ `v V ′ : A′

Γ `v (V, V ′) : A×A′

Γ `v V : A×A′ Γ, x : A, y : A′ `c M : B

Γ `c

pm V as (x, y).M : B

· · · Γ `c Mi : Bi
· · · i∈I

Γ `c λ{. . . , i.Mi, . . .} :
Q

i∈I
B
i

Γ `c M :
Q

i∈I
B
i

ı̂ ∈ I
Γ `c ı̂‘M : B

ı̂

Γ, x : A `c M : B

Γ `c λx.M : A→ B

Γ `v V : A Γ `c M : A→ B

Γ `c V ‘M : B

Fig. 1. Terms of Call-By-Push-Value

To avoid confusion between tags and identifiers, we adopt the convention
that tags begin with #, and identifiers do not.



Computational Effects

CBPV can be extended with many different computational effects. We consider
the example of printing, given by the typing rule

Γ `c M : B

Γ `c print c. M : B

where c ranges over an alphabet A.

3 Traditional Operational Semantics

We give operational semantics in two traditional styles, before moving on to the
jumping semantics. The first is a first-order definitional interpreter [Rey72], that
evaluates every closed computation to a terminal computation of the same type.
The terminal computations are defined by

T ::= return V | λ{. . . , i.Mi, . . .} | λx.M

and the interpreter is shown in Fig. 2.

To evaluate

– λx.M , return λx.M
– return V , return return V
– λ{. . . , i.Mi, . . .}, return λ{. . . , i.Mi, . . .}
– force thunk M , evaluate M
– M to x. N , evaluate M , and if this returns return V , then evaluate N [V/x]
– V ‘M , evaluate M , and if this returns λx.N , then evaluate N [V/x]
– ı̂‘M , evaluate M , and if this returns λ{. . . , i.Mi, . . .}, then evaluate Mı̂

– print c. M , print c and then evaluate M .

Fig. 2. First-Order Definitional Interpreter For CBPV

The other traditional style is the CK-machine [FF86], also based on [Rey72].
At any point in time, the machine has configurationM,K whenM is the compu-
tation we are evaluating andK is a stack of contexts. In this stack, we abbreviate
the context V ‘[·] as V , and the context ı̂‘[·] as ı̂. The CK-machine is shown in
Fig. 3.

The classification of λx.M as a computation (and of function types as com-
putation types) often surprises people familiar with call-by-value. But it makes
sense when we look at the CK-machine. We see that

– V ‘ can be regarded as an instruction “push V ”
– λx can be regarded as an instruction “pop x”.



Initial Configuration

M nil

Transitions

let V be x. M K
Ã M [V/x] K

M to x. N K
Ã M [·] to x. N :: K

return V [·] to x. N :: K
Ã N [V/x] K

force thunk M K
Ã M K

pm (̂ı, V ) as {. . . , (i, x).Mi, . . .} K
Ã Mı̂[V/x] K

pm (V, V ′) as (x, y).M K
Ã M [V/x, V ′/y] K

ı̂‘M K
Ã M ı̂ :: K

λ{. . . , i.Mi, . . .} ı̂ :: K
Ã Mı̂ K

V ‘M K
Ã M V :: K

λx.M V :: K
Ã M [V/x] K

print c. M K

Ã
c
M K

Terminal Configurations

return V nil

λ{. . . , i.Mi, . . .} nil

λx.M nil

Fig. 3. CK-Machine For CBPV



This reading is made, in the call-by-name setting, in [Kri85]—see Sect. 7.
The contexts on the stack that are of the form [·] to x. M are called frames.

In general, the stack will consist of frames, values and tags. For a call-by-value
language, the stack would consist only of frames.

4 Jumping Semantics: An Informal Account

4.1 Requirements

Putting the ideas of Sect. 1.1 into a CBPV form, we require a jumping machine
that embodies the following intuitions.

– A thunk is a point. When we force the thunk, we jump to it.
– A frame is a point. When we return a value to a frame, we pop the frame
from the stack and jump to it.

4.2 Graphical Syntax

We write a program using a graphical syntax, depicted in Fig. 4, in which

– we write thunk as •, because it is a point
– each instruction, other than sequencing, is enclosed in a pentagon
– each sequencing to is enclosed in a hexagon

– binding occurrences of identifiers are placed on edges, enclosed in

The link-point of a polygon is its leftmost vertex, which usually leads to
the next instruction. In certain cases (e.g. conditional branching), there is more
than one possibility, and we tag the edges accordingly. In other cases (e.g. jump),
there are none. The frame-point of a hexagon is its rightmost vertex. We give the
name jumpabout to this kind of tree of pentagons, hexagons, edges and points
(again, this is informal at this stage).

4.3 Principles of Execution

During execution, there are two jumpabouts:

– the code, which does not change
– the trace, which grows throughout execution.

The cycle of execution can be described (in the von Neumann idiom) as
“fetch, decode, execute”.

fetch We copy a polygon, including its inscription, from the code to the trace.
decode We decode the inscription in the newly created trace polygon by

– replacing each • by pt i, where i is the position of the •
– replacing each identifier by the value it is bound to, determined by look-
ing up the branch of the trace.

This gives us an instruction.



Term syntax Graphical syntax

print "hello".

print "goodbye".

force x print "goodbye"

force x

print "hello"

pm x as {
(#jan,y). (

pm y as (u,v)

λ {
#mon. return u

#tue. return (u,u)

}
)

(#feb,y). force y

}

force y

λ

return u return (u,u)

pm y as

pm x as

y y

(u,v)

#mon

#feb
#jan

#tue

print "hello".

let thunk (

λ x.

return x.

) be u.

(

(#jan,()) ‘

force u

) to y.

return y

return y

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

be

u

y x

Fig. 4. Examples of Graphical Syntax



execute We execute the instruction. At the same time, we draw an edge from
the link-point, unless the instruction is a jump i.e. force or return, in which
case we draw an edge from the destination of the jump.

Every point in the trace has a teacher, which is the point in the code it was
copied from; similarly for pentagons, hexagons and edges. The function mapping
each point, polygon and edge to its teacher is a jumpabout homomorphism, and
it grows as the trace jumpabout grows.

4.4 Example

To illustrate how this works, we take the last example from Fig. 4. For ease
of reference, we have numbered all the polygons, and numbered all the points
(though there is only one).

return y

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2 3

4 5 6

7

0
be

u

y x

Initially, the code polygon is the root (numbered 0 in our example). As in
the CK-machine, the stack is nil.

Cycle 0: fetch We copy code polygon 0 to the trace, so the trace looks like
this:

print "hello"

0

J

Thus the teacher of trace polygon 0 is code polygon 0. We use the symbol
J for “where we are now”.

Cycle 0: decode We obtain the instruction print "hello".
Cycle 0: execute We print hello, and draw an edge from the link-point.

print "hello"

0

J

Cycle 1: fetch We copy code polygon 1 to the trace, which now looks like this:

let

print "hello"

0

1

0
be J



Thus teacher of trace polygon 1 is code polygon 1, and the teacher of trace
point 0 is code point 0.

Cycle 1: decode To decode the inscription let • be, we replace • by pt0, and
obtain the instruction letpt0be.

Cycle 1: execute We make a binding to pt0, on an edge drawn from the link-
point.

let

print "hello"

0

1

0
be

J

u 7→ pt0

Cycle 2: fetch We copy code polygon 2 to the trace, so the trace looks like
this:

to

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

where the teacher of trace polygon 2 is code polygon 2.
Cycle 2: decode We obtain the instruction to.
Cycle 2: execute We place trace hexagon 2 on the stack, which becomes hgon2 ::

nil, and draw an edge from the link-point.

to

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

Cycle 3: fetch We copy code polygon 4 to the trace, so the trace looks like
this:

to

(#jan,()) ‘

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

where the teacher of trace polygon 2 is code polygon 2



Cycle 3: decode We obtain the instruction (#jan,()) ‘.
Cycle 3: execute We push (#jan,()), making the stack (#jan,()) ::hgon2

::nil, and draw an edge from the link-point.

to

(#jan,()) ‘

let

print "hello"

0

1

2

0
be

J

u 7→ pt0

Cycle 4: fetch We copy code polygon 7 to the trace, which now looks like this:

to

force u

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

be

J

u 7→ pt0

where the teacher of trace polygon 4 is trace polygon 7.
Cycle 4: decode To decode the inscription force u, we must replace u by its

binding. Looking up the branch of the trace, we see that u is bound to pt0.
So we obtain the instruction force pt0.

Cycle 4: execute We jump to trace point 0, and draw an edge from it:

to

force u

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

be

J

u 7→ pt0



Cycle 5: fetch We copy code polygon 3 to the trace:

to

force u

λ

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

5

be

J

u 7→ pt0

where the teacher of trace polygon 5 is code polygon 3.
Cycle 5: decode We obtain the instruction λ.
Cycle 5: execute We pop the value (#jan,()) from the stack, which becomes

hgon2 ::nil. We make a binding to this value on the edge drawn from the
link-point:

to

force u

λ

(#jan,()) ‘

let

print "hello"

0

1

2

0

4

5

be

J

u 7→ pt0

x 7→ (#jan,())

Cycle 6: fetch We copy code polygon 6 to the trace:

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2

6

0

4

5

be

J

u 7→ pt0

x 7→ (#jan,())

where the teacher of trace polygon 6 is code polygon 6.



Cycle 6: decode Replacing x by its binding, which is (#jan,()), we obtain
the instruction return (#jan,()).

Cycle 6: execute We remove hgon2 from the stack, which becomes nil, jump
to the frame-point of hexagon 2, and draw an edge from it. We make a
binding to return (#jan,()) on this edge.

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2

6

0

4

5

be

J

u 7→ pt0

y 7→ (#jan,()) x 7→ (#jan,())

Cycle 7: fetch We copy code polygon 5 to the trace:

return y

to

force u

λ

return x(#jan,()) ‘

let

print "hello"

0

1

2

6

0

4

5

7

be

J

u 7→ pt0

y 7→ (#jan,()) x 7→ (#jan,())

where the teacher of trace polygon 7 is code polygon 5.

Cycle 7: decode Replacing y by its binding, which is (#jan,()), we obtain
the instruction return (#jan,()).

Cycle 7: execute Since the stack is empty, we terminate.

The final instruction is thus return (#jan,()).

5 Exercise

The reader is invited to try executing the following example (21 cycles), which
could be used to illustrate to students the concept of static binding.



to λ

return ()

force f

(#jan,(#aug,())) ‘ print "yes"

λ

pm x as

return

return y

return y

#jan

let

force z(#jan,(#sep,()) ‘

force f

to

#feb

0

1 2

3 54 6

7 8 9 10

11 13

14

12

15 16

17

0

1

be

#tue ‘

#tue ‘

f

x

y

#mon

z

w

y

#tue

This example makes it clear how easy it is to execute a program on paper
using the jumping machine.

6 Correctness

There is a lock-step correspondence between the jumping machine and the CK-
machine. More precisely, suppose we take a computationM , and create the trace
using the jumping machine. Then to each trace polygon r we can associate a
closed computation θ(r) of type B. Similarly to each stack k that appears in
the jumping execution, we can associate a stack θ(k) of the CK-machine. If the
sequence of trace points and stacks is

(polygon r0, stack k0), (polygon r1, stack k1), . . .

and the sequence of the CK-machine is

M,K =M0,K0 ÃM1,K1 Ã · · ·

then the two sequences have the same length and θ(ri) =Mi and θ(ki) = Ki.

The computation θ(r) is obtained from the (decoded) instruction of r by
substituting for points (including link-points and frame-points), and likewise
the stack θ(k). For the example in Sect. 4.4, we therefore know not only that
the CK-machine execution has 7 transitions, but also that it terminates in the
configuration

return(#jan, ()) nil



7 Comparison With CEK And Krivine Machine

Both the Krivine machine [Kri85] and the CEK-machine [FF86] can be seen as
lying on a spectrum between the CK-machine and the jumping machine. Alhough
the Krivine machine was presented for CBN, and the CEK-machine for CBV,
both styles of machine can be adapted for CBPV.

The intuition underlying the Krivine machine is described in [Kri85] as fol-
lows, slightly paraphrased:

– λx.M means: pop x, then do M
– MN [translated into CBPV as (thunk N)‘M ] means: push the address of
N , then do M

– x [translated into CBPV as force x] means: go to the address that x is
bound to.

The Krivine machine contains a “T” component, which points into the code. In
our terminology, it is the teacher of the current polygon. So the jumping about
the code is made clear. But the jumping about the trace is not apparent. Instead,
the machine contains an “environment” component, which is changed with every
jump.

The CEK machine is closer still to the CK-machine. Instead of the “T” com-
ponent pointing into the code, it contains a “C” component which is the subterm
itself. So there is no jumping at all, not even about the code. We can therefore
think of these machines as lying on a spectrum:

CEK-machine Krivine machine
CK-machine jumping machine
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