
MFPS XX1 Preliminary Version

Infinite Trace Equivalence

Paul Blain Levy 1

University of Birmingham, U.K.

Abstract
We solve a longstanding problem by providing a denotational model for nondeterministic
programs that identifies two programs iff they have the same range of possible behaviours.
We discuss the difficulties with traditional approaches, where divergence is bottom or where
a term denotes a function from a set of environments. We see that making forcing explicit,
in the manner of game semantics, allows us to avoid these problems.

We begin by modelling a first-order language with sequential I/O and unbounded nonde-
terminism (no harder to model, using this method, than finite nondeterminism). Then we
extend the semantics to higher-order and recursive types by adapting earlier game models.
Traditional adequacy proofs using logical relations are not applicable, so we use instead a
novel hiding argument.

Key words: nondeterminism, infinite traces, game semantics

1 Introduction

1.1 The Problem

Consider the following call-by-name 2 language of countably nondeterministic com-
mands:

M ::= x | print c. M | µx.M | choose n∈N. Mn

where c ranges over some alphabetA. We define binary nondeterminism M orM ′

from countable in the evident way.
A closed term can behave in two ways: to print finitely many characters and

then diverge, or to print infinitely many characters. Two closed terms are said to be
infinite trace equivalent when they have the same range of possible behaviours.

As stated in [15], “we [. . .] desire a semantics such that C[[c]](σ) is the set of
tapes that might be output”, i.e. a model whose kernel on closed terms is infinite

1 Email: pbl@cs.bham.ac.uk
2 Meaning that an identifier gets bound to an unevaluated term.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Levy

trace equivalence. Some models of nondeterminism, such as the various power-
domains [15] and divergence semantics [18], identify programs that are not infi-
nite trace equivalent, so they are too coarse. Others count the internal manipula-
tions [2,4] or include branching-time information, so they are too fine (at best) for
this problem.

In this paper, we provide a solution, and see that it can be used to model not
only the above language, but also unbounded nondeterminism, input (following a
request), and higher-order, sum and recursive types. Our model is a form of pointer
game semantics [8], although the technology of pointer games is needed only for
the higher-order types. This gives a good illustration of the power and flexibility of
game semantics.

Proving the computational adequacy of the model incorporating higher-order,
sum and recursive types presents a difficulty, because the traditional method, using
a logical relation, is not applicable to it. So we give, instead, a proof that uses the
method of hiding. As a byproduct, we obtain a very simple proof of the adequacy
of the game model of FPC [13].

1.2 Why Explicit Forcing?

Before turning to our solution, we consider two kinds of semantics that have been
studied. In both cases, suppose the alphabet is singleton {X}.

(i) A divergence-least semantics is one where a term denotes an element of a
poset, every construct is monotone, and [[µx.x]] denotes a least element ⊥.
Examples are the Hoare, Smyth and Plotkin powerdomain semantics [15], all
the CSP semantics in [17], and the game semantics of [6]. Divergence-least
semantics cannot model infinite trace equivalence, by the following argument
taken from [15]. (We abbreviate printX asX.)

Put M = ⊥ orX.X.⊥

M ′ = ⊥ orX.⊥ orX.X.⊥

Then M = ⊥ or ⊥ orX.X.⊥ 6 M ′

M = ⊥ orX.X.⊥ orX.X.⊥ > M ′

Hence M = M ′, contradicting infinite trace equivalence. This argument uses
only binary nondeterminism.

(ii) A well-pointed semantics is one where (roughly speaking) a term (or at least
a closed term) denotes a function from the set of environments. Examples are
the 3 powerdomain semantics [15], all the CSP semantics in [17], the seman-
tics using infinite traces in [2], and divergence semantics [18]. In general,
well-pointed semantics are appropriate for equivalences satisfying the context
lemma property: terms equivalent in every environment are equivalent in ev-
ery context. However, infinite trace equivalence does not satisfy this property,
as the following two terms 3 involving x demonstrate:

3 discovered by A. W. Roscoe in 1989 [personal communication], and independently in [10].

2

Levy

N =(choose n. Xn. µz.z) or x

N ′=(choose n. Xn. µz.z) orX.x

Clearly µx.N ′ can print Xω whereas µx.N cannot, so any model of infinite
trace equivalence must distinguish N from N ′. But N [M/x] and N ′[M/x]
are infinite trace equivalent for every closed term M , because X is the only
character.

(Lest the reader think unbounded nondeterminism is to blame, suppose we
allow only binary nondeterminism, but put N-indexed commands into the lan-
guage. Then define choose⊥ n∈N.Mn to be (µfλn.(Mn or f(n+1)))0, which
either executes some Mn or diverges [15]. Using this instead of choose n∈N,
the same problem arises.)

Naively, N and N ′ can be distinguished by saying that N ′ is able to print a tick and
then force (i.e. execute) x, whereas N is not. And that gives our solution.

This idea, that a model should make explicit when a call-by-name program
forces its (thunked) argument, is present (often implicitly) in game semantics,
where (as argued in [11]) “asking a question” indicates forcing a thunk. That is
why our solution fits into the game framework. However, the game models in the
literature are divergence-least, and this property is exploited by adequacy proofs us-
ing logical relations. This is even true of the nondeterministic model of [6], where
strategy sets are quotiented by the Egli-Milner preorder and so they become cpos.
The novelty of this paper is that it avoids such quotienting.

1.3 Structure Of Paper

We extend the language of Sect. 1.1 in three stages.
Firstly, in Sect. 2.1, we bring in erratic (aka internal) choice operators of arbi-

trary arity, which compels us to consider finite traces as well as infinite traces.
Secondly, in Sect. 2.2, we add requested input, for example printing a request

such as Please enter your name, then waiting for the user to enter a string.
This kind of I/O is familiar to beginning programmers. At this stage we can still
give a non-technical denotational semantics—we do that in Sect. 2.4.

The third extension, in Sect. 3, is higher-order and recursive types. Before
modelling this, we introduce the basic structures of pointer games in Sect. 4, which
we use in the model.

1.4 Related Work: Dataflow Networks

An infinite trace model for dataflow networks—including feedback, but not recursion—
was presented in [9], and shown fully abstract. In the terminology of [7], it forms
a cartesian-centre traced SMC. It is shown in [7] that such a category can interpret
recursion in a certain sense—provided it is “centrally closed”, which Jonsson’s
model (like its finite trace variant) is not.

3

Levy

Acknowledgements

I thank Martı́n Escardó and Guy McCusker—both of whom showed me adequacy
proofs that count execution steps—and Russ Harmer and Bill Roscoe.

2 First-Order Language

2.1 Erratic Choice and Omni-Errors

We wish to allow choice operators of arbitrary arity, including empty. But a lan-
guage containing a command “choose an element of the empty set” has no valid
implementation. We skirt this problem as follows.

Definition 2.1 An erratic signature Y is a family of sets {Ph}h∈H , together with a
set U . It is deadlock-free when either all Ph are nonempty or U is nonempty. 2

Any such Y —together with an alphabet A—determines a language L(Y,A) in
which
• each h ∈ H provides an erratic choice operator chooseh of arity Ph

• each u ∈ U is an omni-error, meaning that any program, at any time, is allowed
to abort, printing Omni-error message u.

The syntax is

M ::= x | print c. M | µx.M | chooseh
p∈Ph

Mp

For each context Γ = x0, . . . , xn−1, we define a terminable LTS L(Y,A,Γ) with
labels A ∪ {τ}. Its states are the terms Γ ` M , and its terminal states are the free
identifiers. The transitions are

µx.M Ã
τ

M [µx.M/x]

choosehp∈Ph
Mp Ã

τ
Mp̂ (p̂ ∈ Ph)

print c. M Ã
c

M

and we also write M Ã
u for every closed term M and u ∈ U .

Usually, U would be empty, so omni-errors cannot happen. But if Ph is empty,
for some h ∈ H , then the program chooseh has no way of behaving other than to
raise an omni-error. And if U is empty too, then there is no way at all for the pro-
gram to behave (deadlock). In this paper, we study only deadlock-free signatures.

A program in this language can behave in 3 ways:

(i) print finitely many characters then diverge

(ii) print infinitely many characters

(iii) print finitely many characters then raise an omni-error.

For a closed term M , let us write [M]U ⊂ A
∗+Aω+A∗×U for the set of possible

behaviours. We define infinite trace equivalence to be the kernel of [−]U . Clearly

[M]U = [M]inf + [M]fin × U

4

Levy

where [M]inf ⊂ A
∗+Aω is the range of behaviours of type (i)–(ii), and [M]fin ⊂ A

∗

is the set of finite traces of M . Let us write [M] for the pair ([M]fin, [M]inf).

Proposition 2.2 (i) For some deadlock-free signatures and alphabets, infinite
trace equivalence is strictly finer than the kernel of [−]inf .

(ii) For all deadlock-free signatures and alphabets, infinite trace equivalence is the
kernel of [−].

2

Proof. (i) Consider X.chooseh and chooseh , where Ph is empty.
(ii) By deadlock-freeness, every finite path extends to a path that is either infinite
or ends in an omni-error. 2

Prop. 2.2(ii) legitimates leaving omni-errors out of a semantics of infinite trace
equivalence (for deadlock-free signatures), provided we include the finite traces.

2.2 Requested Input

For the second extension (see Sect. 1.3), we define an I/O signature to be a family
of sets Z = {Io}o∈O. Each o ∈ O provides a requested input operator inputo of
arity Io, that prints o and then waits for the user to supply some i ∈ Io. We say Z
is countable when O and each Io is countable.

Given a signature Z, we write RZ for the endofunctor on Set mapping X to
∑

o∈OX
Io . We then obtain a strong monad TZ on Set (the free monad on RZ)

mapping A to µY.(A + RZY). This monad can be used, in the manner of [14,16],
to model requested input. Note that this includes as special cases the monads des-
ignated in [14] as “interactive input”, “interactive output”, and “exceptions”. We
accordingly regard each output c ∈ A as an element of O such that Io = 1, and we
regard print c. M as syntactic sugar 4 for inputci∈1 M .

2.3 Bi-Labelled Transition Systems

To describe the behaviour of a system using requested input with signature Z, an
LTS (i.e. a coalgebra for the endofunctor P(A × −), for some fixed set A of ac-
tions) is not really suitable. If we allow both outputs and inputs to be actions, we
need additional alternation and receptivity-to-input conditions. And if we define
an action to be a pair (o, i), we do not deal with the case of an output whose input
never arrives (or, indeed, whose input set is empty).

Instead, we use the following concept (abstractly, coalgebra for the endofunctor
P +RZ on Set).

Definition 2.3 (BLTS)

(i) A bi-labelled transition system (BLTS) L, wrt an I/O signature Z = {Io}o∈O
and set of omni-errors U , consists of

4 The operational difference between these constructs appears to be denotationally immaterial, at
least in the sequential setting.

5

Levy

• a set S of states, each of which is classified as either a silent state or an
o-state for some request o ∈ O—we write Ssil and So for the set of silent
states and of o-states, respectively

• a relationÃ from Ssil to S, and, for each o ∈ O, a function So × Io
: // S .

It is deadlock-free if either every silent state has at least one successor, or U is
nonempty.

(ii) A terminable BLTS is the same, except that there is a third kind of state: ter-
minal.

(iii) A terminable BLTS, is deterministic when U is empty and each silent state
has precisely one successor.

2

As with LTS’s, we can obtain trace sets of states, in the following way.

Definition 2.4 (strategies) Let Z be an I/O signature, and let V be a set.

(i) An play wrt Z is a finite or infinite sequence o0i0o1i1 . . . where or ∈ O and
ir ∈ Ior

. It awaits Player if of even length, and awaits o-input if of odd length
ending in o. A play terminating in V wrt Z is a Player-awaiting play extended
with an element of V .

(ii) A nondeterministic infinite trace (NIT) strategy into V consists of
finite traces a set A of input-awaiting plays
divergences a set B of Player-awaiting plays
infinite traces a set C of infinite plays
terminating traces a set D of plays terminating in V
such that if s is in A, B, C or D, then every input-awaiting prefix of s is in
A. We write TNIT

Z V for the set of all NIT strategies into V . Clearly T NIT
Z is a

strong monad on Set.

(iii) A Player-awaiting or infinite play is consistent with a strategy σ when every
input-awaiting prefix is a finite trace of σ.

(iv) For d ∈ V , we define ηd (the monad’s unit at d) to be the strategy

({}, {}, {}, {d})

(v) Given a family of strategies {σi}i∈I , where σi = (Ai, Bi, Ci, Di), we write
⋃

i∈I σi for the strategy

(
⋃

i∈I

Ai,
⋃

i∈I

Bi,
⋃

i∈I

Ci,
⋃

i∈I

Di)

(vi) Given o ∈ O, and for each i ∈ Io a strategy σi = (Ai, Bi, Ci, Di), we write

6

Levy

inputoi∈Io
σi for the strategy

({o} ∪ {ois|i ∈ Io, s ∈ Ai},

{ois|i ∈ Io, s ∈ Bi},

{ois|i ∈ Io, s ∈ Ci},

{ois|i ∈ Io, s ∈ Di})

(vii) A strategy (A,B,C,D) is deterministic when
• any Player-awaiting play consistent with it has at most one immediate ex-

tension to a play in A or D, and is in B iff it has no such extension
• any infinite play consistent with it is in C.

(viii) Given a Player-awaiting (resp. infinite) play s wrt Z+Z ′, we write s¹Z for the
Player-awaiting (resp. Player-awaiting or infinite) play obtained by removing
moves in Z ′.

(ix) Given a strategy σ = (A,B,C,D) into V wrt Z +Z ′, the hiding of σ, written
σ ¹Z, is the strategy wrt Z given by

({(s¹Z)o|so ∈ A, o ∈ Z},

{s¹Z|s ∈ B} ∪ {s¹Z|s ∈ C, s¹Z awaiting Player},

{s¹Z|s ∈ C, s¹Z infinite},

{(s¹Z)v|sv ∈ D})

2

Proposition 2.5 (i) The strategy ηz is deterministic, and inputo preserves deter-
minism.

(ii) Given signatures Z and Z ′, the hiding of

ηv is ηv
⋃

i∈I

σi is
⋃

i∈I

(σi ¹Z)

inputoi∈Io
σi is

inputoi∈Io
(σi ¹Z) if o ∈ Z

⋃

i∈Io
(σi ¹Z) if o ∈ Z ′

where each σi is a strategy wrt Z + Z ′.
2

Definition 2.6 (BLTS to strategies) Let Z be an I/O signature, and let L be a
deadlock-free terminable BLTS wrt Z and U . Write V for its set of terminal states.

(i) For each state d ∈ S, we write [d]L, or just [d], for the NIT strategy (A,B,C,D)
into V where an input awaiting play so (respectively divergence s, infinite play

7

Levy

s, terminating trace sv) is in A (resp. B,C,D) iff there is a sequence of transi-
tions from d to some o-state (resp. infinite sequence from d, infinite sequence
from d, sequence of transitions from d to v) whose sequence of non-silent
actions is s.

(ii) Two states d and d′ are infinite trace equivalent when [d] = [d′].

2

Proposition 2.7 For any state d in a deadlock-free terminable BLTS, [d] is inputoi∈Io
[d :

i] or
⋃

dÃd′ [d
′] or ηd according as d is an o-state or silent or terminal. 2

2.4 Operational and Denotational Semantics

Now we are in a position to treat the second extension (see Sect. 1.3). An erratic
signature Y = ({Ph}h∈H , U) and I/O signature Z = {Io}o∈I define a language
L(Y, Z) whose syntax is given by

M ::= x | µx.M | chooseh
p∈Ph

Mp | input
o
i∈Io

Mi

Each context gives rise to a terminable BLTS wrt Z and U , called L(Y, Z,Γ). Its
states are the terms Γ ` M , and its terminal states are the free identifiers. µx.M
and choosehp∈Ph

Mp are silent, and inputo
i∈Io

Mi is an o-state. The transitions are

µx.MÃM [µx.M/x]

choosehp∈Ph
MpÃMp̂ for each p̂ ∈ Ph

(inputoi∈Io
Mi) : ı̂ = Mı̂ for each ı̂ ∈ Io

L(Y, Z,Γ) is deadlock-free iff Y is. These transition systems have the following
properties.

Lemma 2.8 Suppose Γ, x `M and Γ ` N . Suppose that M is not x.

(i) M is silent iff M [N/x] is. If, moreover, M ÃM ′ then M [N/x]ÃM ′[N/x].
Conversely, if M [N/x] Ã Q then M Ã M ′ for some M ′ such that Q =
M ′[N/x].

(ii) M is an o-state iff M [N/x] is, and then M [N/x] : i = (M : i)[N/x] for each
i ∈ Io.

(iii) For each y ∈ Γ, we have M = y iff M [N/x] = y.

2

The key result is that we can characterize [−] in a compositional way:

Proposition 2.9 In LFPC(Y, Z), where Y is deadlock-free, we have

(i) [x] = ηx

(ii) [chooseh
p∈Ph

Mp] =
⋃

p∈Ph
[Mp]

(iii) [inputoi∈Io
Mi] = inputoi∈Io

[Mo]

8

Levy

(iv) If Γ, x `M then [µx.M] = µ[M], where we define µ(A,B,C,D) to be

({l0 · · · ln−1lo|l0x, . . . , ln−1x ∈ D, lo ∈ A},

{l0 · · · ln−1l|l0x, . . . , ln−1x ∈ D, l ∈ B}

∪{l0 · · · ln−1|l0x, . . . , ln−1x ∈ D, x ∈ D},

{l0 · · · ln−1l|l0x, . . . , ln−1x ∈ D, l ∈ C}

∪{l0l1 · · · |l0x, l1x, . . . ∈ D},

{l0 · · · ln−1ly|l0x, . . . , ln−1x ∈ D, ly ∈ D})

(v) If Γ, x ` M and Γ ` N , then [M [N/x]] is [M] ∗ [N], where we define
(A,B,C,D) ∗ (A′, B′, C ′, D′) to be

(A ∪ {ll′o|lx ∈ D, l′o ∈ A′},

B ∪ {ll′|lx ∈ D, l′ ∈ B′},

C ∪ {ll′|lx ∈ D, l′ ∈ C ′},

{ly|ly ∈ D} ∪ {ll′y|lx ∈ D, l′y ∈ D′})

(vi) Let Z be countable. If Y contains ∅ and a set > 2ℵ0 , then every strategy into
Γ wrt Z is [M] for some term Γ `M in L(Y, Z).

2

(i)–(v) give us a computationally adequate denotational semantics. However,
we lack a characterization of those strategies definable using only countable choice.

3 Call-By-Name FPC

For an erratic signature Y = ({Ph}h∈H , U) and an I/O signature Z = {Io}o∈I , we
define the higher-order language LFPC(Y, Z) to have types given by

A ::= A+ A | 0 | A× A | 1 | A→ A | X | µX.A

0 is, in effect, the sole type of the language of Sect. 2.4. The terms are given
(omitting the constructs for 0 and 1) by

M ::= x | inl M | inr M | πM | π′M

| λx.M | MM | fold M | unfold M

| pm M as {inl x.N, inr x.N ′} | (M,M)

| choosehp∈Ph
Mp | input

o
i∈Io

Mi

where pm stands for “pattern-match”. We define Γ `M : B in the standard way.
We give CK-machine semantics [5] in Fig. 1. As we work on a term, we keep a

stack of contexts, similar to an evaluation context. We write Γ|B `k K : C to mean

9

Levy

that K is a stack that can accompany a term of type B in context Γ, in the course
of evaluating a term of type C in context Γ. This judgement is defined inductively
in Fig. 2.

We define a configuration inhabiting Γ ` C to consist of a type B, a term Γ `
M : B and a stack Γ|B `k K : C. We write LFPC(Y, Z,Γ ` C) for the terminable
BLTS wrt Z and Y whose states are the configurations inhabiting Γ ` C, and
which is defined in Fig. 1. It is deadlock-free iff Y is. Note Formally, all terms
are deemed to be explicitly typed, and these types are used in Fig. 1 (making the
machine deterministic, other than for choose terms), although we have not written
them in.

4 Pointer Games

4.1 Pointer Game On Arena

We obtain our model of CBN FPC by taking the standard game semantics of [13]—
omitting for simplicity, the constraints of innocence, visibility and bracketing, al-
though the latter two could easily be incorporated—and remove the nondetermin-
ism constraint in the manner of Def. 2.4(ii). To make the semantics of sum types
work smoothly (the formulation in [1] can only work with the bracketing condi-
tion), we make two superficial changes in the presentation:
• a type denotes a family of arenas, rather than a single arena
• a term denotes a family of Player-first strategies, rather than a single Opponent-

first strategy.

We have to give the denotation of stacks, as well as terms, and this may appear to
be pulled out of a hat: a categorical explanation can be found in [12].

We begin with the basic concept of pointer game semantics. Let R be a count-
able forest, or arena. R determines the following two-player game. Play alternates
between Player and Opponent, with Player moving first. In each move, an element
of R is played. Player moves by either stating a root r ∈ rt R, or pointing to a pre-
vious Opponent-move m and stating a child of the element played in m. Opponent
moves by pointing to a previous Player-move m and stating a child of the element
played in m.

This game, called the pointer game on R, may seem mysterious. In what sense
does a higher-order program play such a game? A concrete explanation is given
in [11], using a language and a style of operational semantics that are more ex-
plicit about interaction between parts of programs (see also [3]). Since all this is
orthogonal to the nondeterminism which is the subject of this paper, we omit it.

An I/O signature Z determines a variation on this game: Player can opt to play
some o ∈ O instead of an R-element, and Opponent must then play some i ∈ Io.
We call this the pointer game on R wrt Z. Our first step is to formalize a play of
this game, including all the pointers between moves.

Definition 4.1 (i) A justified sequence s in an arena R wrt I/O signature Z con-

10

Levy

Initial Configuration to execute Γ ` N : C

Γ N C nil C

Transitions

Γ pmM as {inl x.N, inr x.N ′} B K C Ã

Γ M A+A′ pm [·] as {inl x.N, inr x.N ′} :: K C

Γ inl P A+A′ pm [·] as {inl x.N, inr x.N ′} :: K C Ã

Γ N [P/x] B K C

Γ πM B K C Ã

Γ M B ×B′ π[·] :: K C

Γ (N,N ′) B ×B′ π[·] :: K C Ã

Γ N B K C

Γ MN B K C Ã

Γ M A→ B [·]N :: K C

Γ λx.P A→ B [·]N :: K C Ã

Γ P [N/x] B K C

Γ unfoldM B[µX.B/X] K C Ã

Γ M µX.B unfold [·] :: K C

Γ fold N µX.B unfold [·] :: K C Ã

Γ N B[µX.B/X] K C

Γ choosehp∈Ph
Mp B K C Ã

Γ Mp̂ B K C (p̂ ∈ Ph)

Γ inputoi∈Io
Mi B K C : ı̂ =

Γ Mı̂ B K C (̂ı ∈ I)

Terminal Configurations

Γ λx.P A→ B nil A→ B

Γ (N,N ′) B ×B′ nil B ×B′

Γ inlM A+A′ nil A+A′

Γ foldM µX.B nil µX.B

Γ x B K C

Fig. 1. CK-machine semantics for call-by-name FPC
11

Levy

Γ|C `k nil : C

Γ|B `k K : C

Γ|B ×B′ `k π[·] :: K : C

Γ, x : A `k N : B Γ, x : A ` N ′ : B Γ|B `k K : C

Γ|A+A′ `k pm [·] as {inl x.N, inr x.N ′} :: K : C

Γ ` N : B Γ|B `k K : C

Γ|A→ B `k [·]N :: K : C

Γ|B[µX.B/X] `k K : C

Γ|µX.B `k unfold [·] :: K : C

Fig. 2. Stack syntax for call-by-name FPC

sists of
• a finite or infinite sequence s0, s1, . . . in R + O +

∑

o∈OIo—we call each
m < |s| a move, and more specifically, depending on sm, an arena move, an
o-output move or an o-input move—such that a move is an o-input move iff
it is the successor of an o-output move

• a function justifier mapping each arena move m to an earlier arena move or
∗, called the justification pointer from m, such that sm is a child of sjustifier(m)

(or a root if justifier(m) = ∗).
We say that a move m is described as n x r where n = justifier(m) and
r = sm.

(ii) A play is a justified sequence s such that
• if m is an arena move, then justifier (m) is even if m is odd, and odd or ∗ if

m is even
• if m is an output move, then m is even.

(iii) In a play s, a move m is a Player-move or an Opponent-move according as m
is even or odd.

(iv) A finite play awaits Player or awaits Opponent according as its length is even
or odd. In the latter case, it awaits o-input or awaits arena-Opponent accord-
ing as its last move is an o-output move or an arena move.

(v) An nondeterministic infinite trace (NIT) strategy σ for an arena R consists of
• a set A of Opponent-awaiting plays (the finite traces)
• a set B of divergences (the divergences)
• a set C of infinite plays (the infinite traces)
such that if s is in A, B or C, then every Opponent-awaiting prefix is in A.
We write R

σ // to say that σ is a strategy on R. We write strat for the set
of strategies on R.

(vi) We define
⋃

i∈I σi and inputoi∈Io
σi and deterministic strategies and hiding as

in Def. 2.4.
2

12

Levy

The following cartesian category of arenas is often used “behind the scenes” in
game semantics, mainly for coherence isomorphisms. Here, we make it explicit.

Definition 4.2 (i) A token-change from arena R to arena S is a function S
f

// R ,
such that, if b ∈ rt S, then fb ∈ rt R and f restricts to an arena isomorphism
from S¹b (the arena of elements of S strictly below b) to R¹fb.

(ii) Given a token-change R
f

// S , and a strategy σ on S, we define a strategy
f..σ on R. Its finite traces, divergences and infinite traces are obtained by
applying f to each element played in those of σ.

(iii) We write TokCh for the category of arenas and token-changes. Finite prod-
ucts are given by disjoint union, which we write as].

2

4.2 Categorical Structure

In this section, we define a category G, whose objects are arenas. It (with determin-
ism and bracketing constraints) is called the “thread-independence” category in [1].
We also define a left G-module i.e. functor from G op to Set, that takes R to strat R.

Definition 4.3 (i) For arenas R and S, we define G(R,S) to be
∏

b∈rt S strat (R] S¹b).
We are writing rt S for the set of roots of S.

(ii) For arena R and b ∈ rt R, we define idR,b to be the deterministic strategy on
R] R¹b with no divergences, and whose finite/infinite traces are all plays in
which Player initially plays ∗ x inl b, and responds to

0 x inl b with ∗ x inr b

n+ 1 x inl b with n x inr b

n+ 1 x inr b with n x inl b

We then define idR ∈ G(R,R) to map b ∈ rt R to idR,b.
2

In order to define composition, we need to define, for any arenas R,S, T , a map

G(R,S)× strat (S] T)
\

// strat (R] T)

Intuitively, the strategy σ\τ should follow τ until that plays a root b of S, then
continue in σb, until that plays another move in S, then follow τ again, and so
forth. But the moves in S are hidden—“parallel composition with hiding”.

Definition 4.4 (i) An interaction pre-sequence on R,S, T consists of a justified
sequence on R]S]T—we write threads s for the set {∗}∪{m|sm ∈ rt S}—
together with a function mapping each rootmove in R to an earlier rootmove
in S, and each output move to an element of threads s. (f is a collection of
thread-pointers.)

13

Levy

(ii) Let s be an interaction pre-sequence on R,S, T . For each q ∈ threads s, we
define the arena of s to be

Given an interaction pre-sequence s on R,S, T ,
• its outer thread, a justified sequence on R] T , consists of all moves in R

and T , and all output and input moves
• its ∗-inner thread, a justified sequence on S] T , consists of all moves in

S and T , and all output moves thread-pointing to ∗ and subsequent input
moves

• its q-inner thread, where q plays b ∈ rt S, is a justified sequence on R] Sb:
it consists of all R moves descended from a rootmove threadpointing to q,
all S moves strictly descended from q, and all output move thread-pointing
to q and subsequent input moves.

s is an interaction sequence when all these justified sequences are plays.

(iii) Let s be an interaction sequence, and let q ∈ {outer}+ threads s (we say that
q is a thread-index). Then q is live in s when the q-thread awaits Opponent, if
q = outer, and awaits Player, if q ∈ threads s.

2

Proposition 4.5 Let s be a finite interaction sequence on R,S, T .
• s has precisely one live thread-index, call it q.
• If sm is an interaction sequence, then m is in the q-thread of sm, and so q is not

live in sm.
• If s has q-thread t, and tm is a play, then sm is an interaction sequence.

If s is an infinite interaction sequence, then no thread-index is live. Thus an inter-
action sequence may be

outer-Opponent-awaiting finite, with outer thread awaiting Opponent, and each
inner thread awaiting Opponent

l-inner-Player awaiting finite, with outer thread and l-inner thread awaiting Player,
and all other inner threads awaiting Opponent

outer-starved infinite, with outer thread awaiting Player, and each inner thread
awaiting Opponent or infinite

outer-infinite infinite, with outer thread infinite, and each inner thread awaiting
Opponent or infinite.

2

Definition 4.6 (i) Let R,S, T be arenas, let σ ∈ G(R,S) and let τ ∈ strat (S] T).
For an interaction sequence s, and q ∈ threads s, the “strategy for q” is τ or
σb according as q is ∗ or plays b ∈ rt S.
finite traces the outer thread of every outer-Opponent awaiting play s whose

inner theads are finite traces of their strategies
divergences (1) the outer thread of every l-inner-Player awaiting play s whose

l-inner thread is a divergence of its strategy, and whose other inner threads

14

Levy

are finite traces of their strategies
divergences (2) the outer thread of every outer-starved play whose inner threads

are finite traces or infinite traces of their strategies
infinite traces the outer thread of every outer-infinite play whose inner threads

are all finite traces or infinite traces of their strategies.

(ii) Given G-morphisms R
σ // S and S

τ // T , we define the composite R
σ;τ

// T
at b ∈ rt T to be σ\τb.

(iii) Given G-morphism R
σ // S and S

τ // , we define the composite R
σ;τ

//

to be σ\τ (taking T to be the empty arena).
2

Proposition 4.7 Def. 4.6(ii) satisfies associativity and identity laws, making G a
category. Def. 4.6(iii) satisfies associativity and left-identity laws, making strat a
left G-module. 2

We define an identity-on-objects functorF : TokCh −→ G, by token-changing
copycat strategies. Then all compositions of the form R

Ff
// S

σ // T or R
Ff

// S
σ //

or R
σ // S

Ff
// T are trivial, because they just token-change along f . It is im-

mediate that G has finite products given by], and F preserves finite products on
the nose.

The operation \ can be recovered from the categorical structure:

Proposition 4.8 If R
σ // S and R] T

τ // , then σ\τ = (σ × T); τ 2

By analogy with Prop. 2.5, we have

Proposition 4.9 • The operations \ and token-changing and inputo all preserve
determinism, and idR,b is deterministic.

• Given signatures Z and Z ′, the hiding of
idR,b is idR,b

f..σ is f..(σ ¹Z)

σ\τ is (σ ¹Z)\(τ ¹Z)
⋃

i∈I

σi is
⋃

i∈I

(σi ¹Z)

inputoi∈Io
σi is

inputoi∈Io
(σi ¹Z) if o ∈ Z

⋃

i∈Io
(σi ¹Z) if o ∈ Z ′

where σ and τ and all σi are strategies wrt Z + Z ′.
2

In order to give the semantics of inl and inr, we require the following, whose
direct description we omit.

Definition 4.10 If b ∈ rt S and R
σ // S¹b , write R] S

b nσ
// for σ\(f..idS,b),

writing S¹b]S
f

// S] S¹b for the obvious token-change. 2

15

Levy

4.3 Model of Call-By-Name FPC

Definition 4.11 (i) A Q/A-labelled arena is an arena R, with every element clas-
sified as question or answer, where no answer enables an answer. It is Q-
rooted when, moreover, every root is a question.

(ii) For a countable family of Q/A-labelled arenas {Ri}i∈I , we write ptQi∈IRi for
the labelled arena with I roots, each a question, and a copy of Ri placed below
the ith root root i. Similarly ptAi∈IRi, provided that each Ri is Q-rooted.

(iii) Let R and S be Q/A-labelled arenas. We say that R v S when for every
r ∈ R, both r and all its ancestors are elements of S, with the same labelling
and parent-child relationship.

(iv) We write E for the (non-small) cpo of countable families of Q/A-labelled are-
nas. {Ri}i∈I v {Sj}j∈J when for every i ∈ I , we have j ∈ J and Ri v Si.

2

A type with n free identifiers denotes a continuous function from En to E , with
type recursion interpreted as least fixpoint. If, in a given type environment ρ ∈ E n,
type A denotes {Ri}i∈I and type B denotes {Sj}j∈J , then, at ρ,
• A×B denotes the combined family indexed by I + J

• A→ B denotes {ptQi∈IRi] Sj}j∈J
• A+B denotes {ptA{ptQi∈IRi, pt

Q
j∈JSj}}.

Semantics of judgements:
• A context Γ = x0 : A0, . . . , xn−1 : An−1, where Ak denotes {Rki}i∈Ik

, denotes
the labelled arena ptQi∈I0R0i] · · ·] ptQi∈In−1

R(n−1)i.
• If the context Γ denotes R, and the type B denotes {Sj}j∈J , then a term or a

configuration inhabiting Γ ` B denotes an element of
∏

j∈J strat (R] Sj)

• If the context Γ denotes R and A denotes {Sj}j∈J and the type B denotes
{Tk}k∈K , then a stack Γ|B `k K : C denotes an element of

∏

k∈K

∑

j∈J G(R]
Tk, Sj).

Semantics of terms is as follows. Let Γ denote R, and write // for token
changing.
• chooseh and inputo are interpreted by

⋃

and inputo.
• The operations of projection, pairing, λ, fold, unfold and stacking application,

projection and unfold contexts are interpreted by token-changing.
• Suppose A denotes {Sj}j∈J , and write Ŝ for ptQj∈JSj . Then Γ, x : A ` x : A at j

denotes

1
id

Ŝ,j
// Ŝ] Ŝ¹root j

// (R] Ŝ)] Sj

Other identifiers and nil are interpreted similarly.
• Suppose A denotes {Sj}j∈J and A′ denotes {S ′

j}j∈J ′ . Write S for ptA{ptQi∈IRi, pt
Q
j∈JSj}.

16

Levy

If Γ `M : A, then inl M at () denotes

∏

j∈J strat (R] Sj) //G(R, S¹root inl ())

root inl () n−

²²

strat (R] S)

applied to [[M]]. And inr is interpreted similarly.
• Suppose A denotes {Sj}j∈J and B denotes {Tk}k∈K , and write Ŝ for ptQj∈JSj . If
Γ `M : A and Γ ` N : A→ B, then NM at k denotes

∏

j∈J strat (R] Sj)× strat (R] (Ŝ] Tk))

²²

G(R, Ŝ)× strat (Ŝ] (R] T))

\

²²

strat (R] (R] T))

²²

strat (R] T)

applied to [[M]], [[N]]k. The operations of pattern-match, stacking a pattern-match
context and forming a configuration are interpreted similarly.

Definition 4.12 Let Y be a deadlock-free erratic signature, and Z an I/O signature.
For a configuration d in LFPC(Y, Z,Γ ` C), where Γ denotes R and C denotes
{Sj}j∈J , we write [[[d]]] for the element of

∏

j∈J strat (R] Sj) that maps j to the
strategy on Sj containing
• all finite traces/divergences/infinite traces of [d]
• all finite traces/divergences/infinite traces of the form st, where [d] has a termi-

nating trace sT , and t is a finite trace/divergence/infinite trace of [[T]]j.

2

Using Prop. 4.9(4.9) and Prop. 4.8, we prove

Proposition 4.13 (i) If the erratic signature Y is empty, then the denotation of
every term, stack and configuration d is deterministic, and so is [[[d]]].

(ii) [soundness] For any configuration d, we have [[d]] =
• [[M]] if d = Γ,M,C, nil, C
•

⋃

dÃd′ [[d
′]], if d′ is silent

• inputoi∈Io
[[d : i]] if d is an o-state

2

17

Levy

4.4 Computational Adequacy

Our task is to prove

Proposition 4.14 (adequacy) [[d]] = [[[d]]], for every configuration d inLFPC(Y, Z,Γ `
C), where Y is deadlock-free. 2

The basic plan is this. We define an unhiding transform that does two things
• add a X to every step of execution
• turn each erratic choice into requested input

Thus, the transform of a configuration d, written d, is deterministic and cannot di-
verge. It is easy to prove adequacy for such a term. Now if we take the denotation
of d, and hide both theXs and the requested inputs corresponding to erratic choice,
we get back the denotation of d—that is because hiding commutes with compo-
sition. And the same goes for [[[−]]]. So we deduce adequacy for d from that of
d.

We begin by stating as much of Prop. 4.14 as we are able in light of Prop. 4.13(ii):

Lemma 4.15 Let d inhabit Γ ` C, where [[C]] = {Sj}j∈J . Suppose j ∈ J .

(i) For a terminating trace s(T, nil) of [d], and finite trace (divergence, infinite
trace) t of [[T]]j, the play st is a finite trace (divergence, infinite trace) of [[d]]j.

(ii) Every finite trace of [[[d]]]j is a finite trace of [[d]]j.

(iii) Every finite trace (divergence, infinite trace) of [[d]]j is either a finite trace
(divergence, infinite trace) of [[[d]]]j or an extension of a divergence of [d].

2

We next define the unhiding transform from LFPC(Y, Z) to LFPC({}, Z + (Y +
{X})). The translation on terms, stacks and configurations is defined in Fig. 3. The
placing ofXs is motivated by the decomposition in [11]—thunked subterms do not
acquire a X.

Lemma 4.16 (i) If Γ, x : A `M : B and Γ ` N : A then M [N/x] = M [N/x].

(ii) Let d = Γ,M,B,K,C. If M is not choose or input, then either d and d′ are
both terminal, or dÃ d′ for unique d′, and dÃ X.d′.

(iii) [d] has no divergences.

(iv) If [d] = (A,B,C,D) then [d]¹Z = (A,B,C, {sT |sT ∈ D})

2

Now [[d]] and [[[d]]] are deterministic (Prop. 4.13(i)) and have the same finite traces
(Lemma 4.15(ii)–(iii) and Lemma 4.16(iii)). So [[d]] = [[[d]]]. Prop. 4.9(4.9) tells us
the following.

Lemma 4.17 (i) If P is a term or stack, then [[P]]¹Z = [[P]].

18

Levy

Γ `M : B Γ `M : B

x x

λx.M λx.X.M

MN (X.M)N

(M,M ′) (X.M,X.M ′)

πM πX.M

inl M inl M

pm M as {inl x.N, inr x.N ′} pmX.M as {inl x.X.N, inr x.X.N ′}

fold M foldX.M

unfold M unfoldX.M

choosehp∈Ph
Mp inputhp∈Ph

Mp

inputoi∈Io
Mi inputoi∈Io

Mi

B `k K : C B `k K : C

nil nil

[·]N :: K [·]N :: K

π[·] :: K π[·] :: K

pm [·] as {inl x.N, inr x.N ′} :: K pm [·] as {inl x.X.N, inr x.X.N ′} :: K

unfold [·] :: K unfold [·] :: K

d inhabits Γ ` C d inhabits Γ ` C

Γ,M,B,K,C Γ,M,B,K,C

Fig. 3. The Unhiding Transform

(ii) If d is a configuration, [[d]]¹Z = [[d]], so (by Lemma 4.16(iv)) [[[d]]]¹Z = [[[d]]].
2

Hence [[d]] = [[d]]¹Z = [[[d]]]¹Z = [[[d]]], as required.

5 Further Work

The adequacy proof above should be adapted to general references [1], and defin-
ability and full abstraction results formulated. It remains to characterize

(i) strategies definable with only countable choice

19

Levy

(ii) strategies definable without storage.

References

[1] Abramsky, S., K. Honda and G. McCusker, A fully abstract game semantics for
general references, in: Proc., 13th Ann. IEEE Symp. on Logic in Comp. Sci., 1998.

[2] Brookes, S., The essence of Parallel Algol, Information and Computation 179 (2002).

[3] Danos, V., H. Herbelin and L. Regnier, Game semantics and abstract machines, in:
Proc., 11th Annual IEEE Symposium On Logic In Computer Science 1996, 1996.

[4] Escardó, M., A metric model of PCF (1998), unpublished research note.

[5] Felleisen, M. and D. Friedman, Control operators, the SECD-machine, and the
λ-calculus, in: M. Wirsing, editor, Formal Description of Prog. Concepts, North-
Holland, 1986 .

[6] Harmer, R. and G. McCusker, A fully abstract game semantics for finite
nondeterminism, in: Proc., 14th Ann. IEEE Symp. on Logic in Comp. Sci., 1999.

[7] Hasegawa, M., “Models of sharing graphs :–a categorical semantics of let and letrec,”
Ph.D. thesis, University of Edinburgh (1997).

[8] Hyland, M. and L. Ong, On full abstraction for PCF: I, II, and III, Inf. and Comp. 163
(2000).

[9] Jonsson, B., A fully abstract trace model for dataflow and asynchronous networks,
Distributed Computing 7 (1994), pp. 197–212.

[10] Levy, P. B., Infinite trace semantics, Proc., 2nd APPSEM II Workshop, Tallinn, April,
2004 www.cs.ioc.ee/appsem04/accepted.html.

[11] Levy, P. B., “Call-By-Push-Value. A Functional/Imperative Synthesis,” Semantic
Structures in Computation, Springer, 2004.

[12] Levy, P. B., Adjunction models for call-by-push-value with stacks, Theory and
Applications of Categories 14 (2005), pp. 75–110.

[13] McCusker, G., “Games and Full Abstraction for a Functional Metalanguage with
Recursive Types,” Ph.D. thesis, University of London (1996).

[14] Moggi, E., Notions of computation and monads, Inf. and Comp. 93 (1991).

[15] Plotkin, G., Domains (1983), prepared by Y. Kashiwagi, H. Kondoh and T. Hagino.

[16] Plotkin, G. and J. Power, Notions of computation determine monads, in: Proc.,
Foundations of Software Sci. and Comp. Struct., 2002, LNCS 2303 (2002).

[17] Roscoe, A. W., “Theory and Practice of Concurrency,” Prentice-Hall, 1998.

[18] Roscoe, A. W., Seeing beyond divergence (2004), presented at BCS FACS meeting
“25 Years of CSP”.

20

	Introduction
	The Problem
	Why Explicit Forcing?
	Structure Of Paper
	Related Work: Dataflow Networks

	First-Order Language
	Erratic Choice and Omni-Errors
	Requested Input
	Bi-Labelled Transition Systems
	Operational and Denotational Semantics

	Call-By-Name FPC
	Pointer Games
	Pointer Game On Arena
	Categorical Structure
	Model of Call-By-Name FPC
	Computational Adequacy

	Further Work
	References

