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Abstract. The computational reading of proofs in intutionistic predi-
cate logic (IPL) as λ-terms can be extended in two well-known ways.
On the one hand, Martin-Löf showed how the Axiom of Choice (AC) can
be interpreted as a term of dependent type theory. On the other hand,
Griffin showed how Peirce’s law (which generates classical logic from
intuitionistic) can be interpreted as a program using control operators,
and hence we obtain a program from any classical proof.
Together, these suggest the following naive computational interpretation
of classical logic with AC. Take a proof in IPL + Peirce + AC and obtain
a program using control effects following Griffin, using Martin-Löf’s term
to translate AC. Then choose an evaluation strategy (call-by-name or
call-by-value) and run the program.
This paper shows that the naive approach does not work. We present a
proof in IPL + Peirce + AC, which translates to a program that, when
executed, regardless of the evaluation strategy chosen, gets stuck—it
attempts to pattern-match a λ-abstraction.
For any inhabited type σ, we can restrict AC to σ and still construct
this example.

1 Introduction

1.1 Previous Work: Classical Logic With Countable Choice

Much work has been done investigating the computational content of classical
logic with Countable Axiom of Choice (ACnat). This has yielded many positive
results [1, 2, 7, 11], but these papers interpret ACnat in a quite different (success-
ful) way from the (unsuccessful) Martin-Löf-style interpretation we will consider.
So it is the negative results listed in [1] which are relevant to this paper, and
which we must review.

– Classical logic with ACnat contains second-order arithmetic, precluding any
predicative model. If proofs do indeed represent programs in some terminat-
ing programming language, we will need a strong logic to prove termination.

– There is no cut-free proof of ACnat in infinitary propositional logic [12]. This
precludes using the game semantics of [3].

– Most importantly, “the halting problem is solvable” in the following sense.

In a (total) type theory containing types bool and nat and primitive recur-
sion, we can define a term M of type (nat× nat) → bool denoting the function



that maps n, t to true iff program with code n terminates in t steps. Then, in
classical predicate logic over this type theory, extended with ACnat, we can prove

∃fnat→bool.∀nnat.if (fn)

{

then ∃tnat. assert M(n, t)
else ¬∃tnat. assert M(n, t)

(1)

where assert N abbreviates if N then T else F . (Here, T and F are propo-
sitions, not terms of type bool.) This precludes using realizability semantics
via negative translation, because, in a model where everything is computable, it
cannot be realized.

However, this argument does not imply that a computational interpretation
for classical logic with ACnat is impossible. Such interpretations are given in [1,
2, 7]. In this paper, we attempt a different interpretation.

1.2 Proofs To Programs

The propositions-as-types reading [6] can be seen as a translation from intuition-
istic predicate logic (IPL) into dependent type theory. Thus the connectives ∨,∧
and ⇒ (implication) are translated as +, × and → (function type) respectively,
and the quantifiers ∃ and ∀ are translated as

∑

and
∏

.
Now, as observed in [9] (developing an idea in [6]), the Axiom of Choice

∀xτ .∃yσ.A ⇒ ∃f
(
∏

xτ .σ).∀xτ .A[fx/y]

is translated as the type

∏

xτ .
∑

yσ.A →
∑

f
(
∏

xτ .σ).
∏

xτ .A[fx/y]

and there is an evident term of this type. Using this term, each proof in IPL+AC
is translated as a term of the appropriate dependent type.

In [5], Griffin proposed a translation of classical logic, seen as intuitionistic
logic extended with an additional axiom such as Peirce’s Law ((A ⇒ B) ⇒ A) ⇒
A. (Other possible axioms are double-negation elimination ((A ⇒ F) ⇒ F) ⇒ A
and excluded middle A ∨ (A ⇒ F)—Griffin treated each of these cases.) The
intuitionistic fragment is interpreted in the usual way—Griffin treated proposi-
tional rules, but moving to predicate logic presents no difficulty. Peirce’s Law
(or whichever additional axiom is being used) is interpreted by a program using
control operators, i.e. operators that bind and change the current stack, such as
are present in NJ-SML.

We note that, as an interpretation of classical logic, this is not canonical,
because a program with control operators can give different answers depending
on the evaluation strategy used. In this paper, we consider both call-by-name
and call-by-value evaluation strategies.

Griffin’s treatment of classical logic is in fact closely related to the approaches
using double-negation translation and game semantics [3]. But it has the appar-
ent advantage that it suggests the following naive way of interpreting classical
logic with AC.



Given a proof in IPL + AC + Peirce, we interpret all the rules of IPL following
Brouwer, and we interpret AC and Peirce using Martin-Löf’s term and Griffin’s
term respectively. Thus the translation of a proof is a program with control
operators. Admittedly there is no known type theory in which this program can
be typed, but we can still execute it (in either call-by-name or call-by-value) and
see what happens.

We accordingly make the following conjecture.

Conjecture 1 (good behaviour for call-by-name). Let π be a proof in IPL + AC
+ Peirce. Then the program obtained from π, when executed in call-by-name,
terminates in an appropriate terminal form (as specified by the operational se-
mantics).

Similarly, we can conjecture good behaviour for call-by-value.
The reader’s reaction may be that these conjectures are obviously false, be-

cause of the provability of (1). But, despite some effort, no refutation along
these lines has been found, so this reaction appears at present to be unjustified.
It is worth remembering that the presence of control operators often invalidates
plausible arguments about the behaviour of terms [13], and care is therefore
required.

In this paper, we directly refute these conjectures, exhibiting a proof π whose
program gets stuck, trying to pattern-match a λ-abstraction. The program is
such that its behaviour does not depend on the choice of evaluation strategy.

Surprisingly, we do not need to use the type nat to construct our example. It
suffices to use AC at bool (or indeed any inhabited type, such as 0 → 0). This
is surprising, because AC at bool is already provable in IPL.

1.3 Dependent Types and Computational Effects

A problem in programming language design closely related to the material con-
sidered here is how to combine computational effects (imperative features such
as storage or control) with dependent types. What can it mean for a type to
depend on an effectful term? Certainly, one can consider a two-level language,
where upper-level types are dependent on lower-level terms which are effect-free
(or, perhaps, can perform limited effects such as divergence). This is what hap-
pens in classical predicate logic: the upper-level types are propositions. However,
it does not really combine dependent types and effects, as they are kept separate.

By contrast, the Martin-Löf AC term mixes the two levels, and so, if our
conjecture had been true for some evaluation strategy, that would have given
a language where dependent types and effects are genuinely combined. This
hope was part of the motivation for this work (the other part being the search
for computational content in classical AC). The way in which we refute our
conjectures, on the other hand, illustrates where the difficulty lies in achieving
such a combination.

We can think of AC as claiming to turn a program performing control
effects—the proof of ∀xτ .∃yσ.A—-into an binding for f :

∏

xτ .σ, which should be



effect-free. The equations for reasoning about f are based on the false assump-
tion that it is effect-free, and we will use them to “show” that a term proves a
disjunction when in fact it evaluates to a λ-abstraction.

2 Intuitionistic Predicate Logic

2.1 The Type Theory

The identifiers of our predicate logic range over the types of a type theory. This
could be a dependent type theory, but a simple type theory, with finite sums and
function types, suffices for our purposes. We do not require product types, bool
or nat, although we could include them. We shall generally omit rules, equations
etc. for the 0 type, since they are just the nullary analogues of those for +. We
write Γ for a sequence of distinct identifiers with associated types. The term
judgement is Γ ⊢ M : τ , and the rules are given in Fig. 1. The keyword pm is an
abbreviation for “pattern-match”.

The equation judgement has the form Γ ⊢ M = N : τ , but to reduce clutter
we often omit Γ and τ . We omit all the assumptions required to make the
equational laws well-typed: e.g. in the η-law for function type, M must be of
type A → B, and in the η-law for sum type, z and N must be of type A + A′.
The rules for this judgement are given in Fig. 1.

We write xM to mean the weakening of M by adding x to its context Γ—it
is presumed that Γ does not already include x. This notation is more convenient
that the traditional “x 6∈ FV(M)”, because it makes clear where the weakening
takes place.

2.2 Logic

The propositions of the logic are given by a judgement Γ ⊢ A prop defined in
Fig. 2. We do not require finite conjunction, although we could include it. We
also do not need to make the equations of the type theory into propositions,
although we could do this. We generally omit rules etc. for F because they are
just the nullary analogues of those for ∨.

We have a proposition equality judgement Γ ⊢ A = A′, defined in Fig. 2. We
often omit Γ to reduce clutter, and omit the typing assumptions necessary to
make these equations well-typed.

The sequent of the logic is Γ|Φ ⊢ B, where Φ is a sequence of propositions A
such that Γ ⊢ A prop, and Γ ⊢ B prop. The rules of the logic are given in Fig. 3.

3 The Target Language

3.1 Syntax

We are going to translate proofs into an untyped language with control operators,
whose syntax is presented in Fig. 4. For the moment, ignore the control operators
letstk and changestk—we shall explain these in Sect. 3.4.



Types

τ ::= 0 | τ + τ | τ → τ

Terms

Γ, x : τ, Γ′ ⊢ x : τ

Γ ⊢ M : τ

Γ ⊢ inl M : τ + τ ′

Γ ⊢ M : τ ′

Γ ⊢ inr M : τ + τ ′

Γ ⊢ M : τ + τ ′ Γ, x : τ ⊢ N : σ Γ, x : τ ⊢ N ′ : σ

Γ ⊢ pm M as {inl x.N, inr x.N ′} : σ

Γ, x : τ ⊢ M : σ

Γ ⊢ λx.M : τ → σ

Γ ⊢ M : τ → σ Γ ⊢ N : τ

Γ ⊢ MN : σ
Equations congruence rules together with

(β+) pm (inl M) as {inl x.N, inr x.N ′} = N [M/x]
(β+) pm (inr M) as {inl x.N, inr x.N ′} = N ′[M/x]
(β →) (λx.M)N = N [M/x]

(η+) M [N/z] = pm N as {inl x. xM [inl x/z], inr x. xM [inr x/z]}
(η →) M = λx.( xMx)

Fig. 1. Type Theory

Propositions

Γ ⊢ F prop

Γ ⊢ A prop Γ ⊢ A′

prop

Γ ⊢ A ∨ A′

prop

Γ ⊢ A prop Γ ⊢ B prop

Γ ⊢ A → B prop

Γ, x : τ ⊢ A prop

Γ ⊢ ∃xτ .A prop

Γ, x : τ ⊢ A prop

Γ ⊢ ∀xτ .A prop

Γ ⊢ M : τ + τ ′ Γ, x : τ ⊢ A prop Γ, x : τ ′ ⊢ A′

prop

Γ ⊢ pm M as {inl x.A, inr x.A′} prop

Equations Between Propositions congruence rules together with

(β+) pm (inl M) as {inl x.A, inr x.A′} = A[M/x]
(β+) pm (inr M) as {inl x.A, inr x.A′} = A′[M/x]

(η+) A[N/z] = pm N as {inl x. xA[inl x/z], inr x. xA[inr x/z]}

Fig. 2. Propositions



Intuitionistic Predicate Logic

Γ|
−→
Ai ⊢ B Γ ⊢

−−−−−−→
Ai = A′

i Γ ⊢ B = B′

Γ|
−→
A′

i ⊢ B′ Γ|Φ, A, Φ′ ⊢ A

Γ|Φ ⊢ A

Γ|Φ ⊢ A ∨ A′

Γ|Φ ⊢ A′

Γ|Φ ⊢ A ∨ A′

Γ|Φ ⊢ A ∨ A′ Γ|Φ, A ⊢ B Γ|Φ, A′ ⊢ B

Γ|Φ ⊢ B

Γ|Φ, A ⊢ B

Γ|Φ ⊢ A ⇒ B

Γ|Φ ⊢ A ⇒ B Γ|Φ ⊢ A

Γ|Φ ⊢ B

Γ ⊢ M : τ Γ|Φ ⊢ A[M/x]

Γ|Φ ⊢ ∃xτ .A

Γ|Φ ⊢ ∃xτ .A Γ, x : τ | xΦ, A ⊢ xB

Γ|Φ ⊢ B

Γ, x : τ | xΦ ⊢ B

Γ|Φ ⊢ ∀xτ .B

Γ|Φ ⊢ ∀xτ .B Γ ⊢ N : τ

Γ|Φ ⊢ B[N/x]

Γ ⊢ M : τ + τ ′ Γ, x : τ |
−→
Ai ⊢ B Γ, x : τ ′|

−→
A′

i ⊢ N ′ : B′

Γ|
−−−−−−−−−−−−−−−−−−−−−−−→
pm M as {inl x.Ai, inr x.A′

i} ⊢ pm M as {inl x.B, inr x.B′}

Axiom of Choice at type σ

Γ|Φ ⊢ (∀yσ.∃vτ .B) ⇒ (∃gσ→τ .∀yσ.B[gy/v])

Peirce’s Law

Γ|Φ ⊢ ((A ⇒ B) ⇒ A) ⇒ A

Fig. 3. Logic

M ::= x | true | false | if M then N else N ′

inl M | inr M | pm M as {inl x.M, inr x.M}

| pm M as {} | (M, M ′) | pm M as (x, y).M | λx.M | MM

| letstk α. M | changestk α. M

Fig. 4. Target Language (Excluding Stack Terms)



3.2 Call-By-Name Semantics: CK-Machine

Initial Configurations

M nil

Transitions (we omit the transition for inr)

pm M as . . . K
 M pm [·] as . . . :: K

inl M pm [·] as {inl x.N, inr x.N ′} :: K
 N [M/x] K

(M, M ′) pm [·] as (x, y).N :: K
 N [M/x, M ′/y] K

MN K
 M [·]N :: K

λx.M [·]N :: K
 M [N/x] K

Terminal Configurations

λx.M nil

inl M nil

inr M nil

(M, M ′) nil

Fig. 5. CK-Machine For Call-By-Name, Excluding Control Operators

We will give operational semantics in the form of a CK-machine [4]. In this
machine a configuration is a pair M,K where M is the closed term we are
currently evaluating and K is a stack of contexts. The call-by-name machine is
shown in Fig. 5.

As an example of how this machine works, consider how we would evaluate
pm M as {inl x.N, inr x.N ′}. We firstly need to evaluate M , so the rest of
the term, viz. the context pm [·] as {inl x.N, inr x.N ′}, is placed on the stack.
Eventually, we will finish evaluating M , say into inl M ′. (In call-by-name, we
do not proceed to evaluate M ′.) Now we can remove the context from the stack
and continue to evaluate N [M ′/x].

The CK-machine is clearly deterministic, in the sense that if a configuration
is terminal, there are no transitions from it, and if not, then there is most
one transition from it. A non-terminal configuration from which there are no
transitions is called stuck.



3.3 Call-By-Value Semantics: CK/VK-Machine

In the “left-to-right” variant of call-by-value that we present, the operator in an
application is evaluated before the operand, and the left component of a tuple
before the right component. It is easy to see how to modify our presentation to
reverse either or both of these conventions.

Call-by-value semantics is described in terms of a special class of closed terms
called values:

V ::= inl V | inr V | (V, V ) | λx.M

Now if we try to formulate a CK-machine for call-by-value in the same way
that we did for call-by-name, we might propose a transition such as

V λx.M [·] :: K
 M [V/x] K

But this is not acceptable, because determining whether a term is a value might
take many steps. (This problem did not arise for the language of [4], because
it did not contain tuples.) To avoid this problem, we use instead the CK/VK-
machine, with two different kinds of configuration:

– M < K where M is any closed term
– V > K where V is a value.

The symbol between the term and the stack is an arrow indicating whether we
are currently working on the term or on the stack. The CK-machine is presented
in Fig. 6.

3.4 Control Operators

Control operators provide access to the stack. The syntax varies in different
languages, but essentially there is a command letstk α that binds the current
stack1 to a stack identifier α, and a command changestk α that changes the
current stack to α. We folllow [10] in using Greek letters for stack identifiers.

The syntax of programs with control operators is shown in Fig. 4. Note that
letstk α binds α while changestk α does not. The additional transitions are
shown in Fig. 7. If M < K is a configuration, M might not conform to Fig. 4,
because it might contain stacks. This could be rectified by extending the syntax,
but we will not trouble to do this.

4 Translating Proofs To Programs

We want to translate a proof π of Γ|Φ ⊢ B into a term M whose free identifiers
are those of Γ together with an identifier p for each A ∈ Φ. There should be no
free stack identifiers in M . We write

π

Γ|p0 : A0, . . . , pn−1 : An−1 ⊢ M : B

1 In the call-by-value setting, the current stack is called the current continuation, but
in call-by-name, a stack might not be a continuation, as explained in [8].



Initial Configurations

M < nil

Transitions (we omit the transitions for inr)

pm M as . . . < K
 M < pm [·] as . . . :: K

inl M < K
 M < inl [·] :: K

V > inl [·] :: K
 inl V > K

inl V > pm [·] as {inl x.N, inr x.N ′} :: K
 N [V/x] < K

(M, M ′) < K
 M < ([·], M ′) :: K

V > ([·], M ′) :: K
 M ′ < (V, [·]) :: K

V ′ > (V, [·]) :: K
 (V, V ′) > K

(V, V ′) > pm [·] as (x, y).N :: K
 N [V/x, V, y] < K

MN < K
 M < [·]N :: K

λx.M < K
 λx.M > K

λx.M > [·]N :: K
 N < λx.M [·] :: K

V > λx.M [·] :: K
 M [V/x] < K

Terminal Configurations

V > nil

Fig. 6. CK/VK-Machine For Call-By-Value (Left-to-Right Variant), Excluding Control
Operators



For call-by-name, ignore the <.

letstk α. M < K
 M [K/α] < K

changestk K. M < K′

 M < K

Fig. 7. Transitions For Control Operators

to indicate that the translation of the proof π is M . The translation is presented
in Fig. 8. It uses the fact that a term of the type theory is already, by erasure
of types, a term of the target language.

5 The Clash

We now want to prove the following.

Proposition 1. Let σ be a type (e.g. 0 → 0) inhabited by a closed term d.
There is a proof φ in IPL + ACσ + Peirce, whose proofterm we call t, and a
configuration V > K, such that, both in call-by-name and in all the variants of
call-by-value

– t < nil  ∗ V > K
– V > K is stuck.

For call-by-name, ignore the < and >.

In our proof, we write ν for (σ → (0 + 0)) + σ, and type identifiers as follows.

w : 0

x, y : σ

g, g′, g′′ : σ → (0 + 0)

v : 0 + 0

u : ν

f : σ → ν

The core of our example is the equation shown in Fig. 9. Consider the term
obtained from the LHS by replacing (F ⇒ F) ∨ F by inl λz.z and F ⇒ F
by λz.z. It is clearly a proofterm of the LHS, and hence, by our equation, of
(F ⇒ F) ∨ F. This is reasonable in the effect-free setting; the code arising from
evaluating fd first to inl and then to inr is dead code.

But suppose f is bound to

λx. letstk α. inl λy. changestk α.inr d



Intuitionistic Predicate Logic

Γ|
−→
Ai ⊢ M : B Γ ⊢

−−−−−−→
Ai = A′

i Γ ⊢ B = B′

Γ|
−→
A′

i ⊢ M : B′ Γ|Φ, p : A, Φ′ ⊢ p : A

Γ|Φ ⊢ M : A

Γ|Φ ⊢ inl M : A ∨ A′

Γ|Φ ⊢ M : A′

Γ|Φ ⊢ inr M : A ∨ A′

Γ|Φ ⊢ M : A ∨ A′ Γ|Φ, p : A ⊢ N : B Γ|Φ, p : A′ ⊢ N ′ : B

Γ|Φ ⊢ pm M as {inl p.N, inr p.N ′} : B

Γ|Φ, p : A ⊢ M : B

Γ|Φ ⊢ λp.M : A ⇒ B

Γ|Φ ⊢ M : A ⇒ B Γ|Φ ⊢ N : A

Γ|Φ ⊢ MN : B

Γ ⊢ M : τ Γ|Φ ⊢ N : A[M/x]

Γ|Φ ⊢ (M, N) : ∃xτ .A

Γ|Φ ⊢ M : ∃xτ .A Γ, x : τ | xΦ, p : A ⊢ N : xB

Γ|Φ ⊢ pm M as (x, p). N : B

Γ, x : τ | xΦ ⊢ M : B

Γ|Φ ⊢ λx.M : ∀xτ .B

Γ|Φ ⊢ M : ∀xτ .B Γ ⊢ N : τ

Γ|Φ ⊢ MN : B[N/x]

Γ ⊢ M : τ + τ ′ Γ, x : τ |
−−−−→
pi : Ai ⊢ B Γ, x : τ ′|

−−−−→
pi : A′

i ⊢ N ′ : B′

Γ|
−−−−−−−−−−−−−−−−−−−−−−−−−−→
pi : pm M as {inl x.Ai, inr x.A′

i} ⊢
pm M as {inl x.N, inr x.N ′} : pm M as {inl x.B, inr x.B′}

Axiom of Choice at type σ

Γ|Φ ⊢ λp.((λy.pm (py) as (z, q).z), (λy.pm (py) as (z, q).q)) : (∀yσ.∃vτ .B) ⇒ (∃gσ→τ .∀yσ.B[gy/v])

Peirce’s Law

Γ|Φ ⊢ λp.letstk α.(pλq.(changestk α. q)) : ((A ⇒ B) ⇒ A) ⇒ A

Fig. 8. Proofterm assignment



The first time that fd is evaluated, we move into the inl branch, and again the
second time. But then when g′d is evaluated, the stack from the second time is
restored, and we move into the inr branch and execute that “dead code”, giving
λz.z. The attempt to pattern-match this will lead to a stuck configuration.

This argument can be turned into a proof φ, as shown in Fig. 10–12. To
ensure that it behaves the same in CBN and CBV, we protect all arguments
with a λ, and use pattern-matching to ensure sequencing.

pm (fd) as

8

>

>

<

>

>

:

inl g. pm (fd) as

8

<

:

inl g′. pm (g′d) as



inl w. (F ⇒ F) ∨ F
inr w. (F ⇒ F) ∨ F

inr y. F ⇒ F
inr y. (F ⇒ F) ∨ F

= (η) pm (fd) as

8

<

:

inl g. pm (fd) as



inl g′. (F ⇒ F) ∨ F
inr y. F ⇒ F

inr y. (F ⇒ F) ∨ F

= pm u as

8

<

:

inl g. pm u as



inl g′. (F ⇒ F) ∨ F
inr y. F ⇒ F

inr y. (F ⇒ F) ∨ F
[fd/u]

= (η) pm fd as

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

inl g′′ pm inl g′′ as

8

<

:

inl g. pm inl g′′ as



inl g′. (F ⇒ F) ∨ F
inr y. F ⇒ F

inr y. (F ⇒ F) ∨ F

inr y. pm inr y as

8

<

:

inl g. pm inr y as



inl g′. (F ⇒ F) ∨ F
inr y. F ⇒ F

inr y. (F ⇒ F) ∨ F

= (2 × β) pm fd as



inl g′′ (F ⇒ F) ∨ F
inr y. (F ⇒ F) ∨ F

= (η) (F ⇒ F) ∨ F

Fig. 9. The Key Equation
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We write

C for ∀x.(F ⇒ F)

C0 for pm (g′d) as



inl w.C
inr w.C

B0 for pm (g′d) as



inl w. (F ⇒ F) ∨ F
inr w. (F ⇒ F) ∨ F

C1 for pm (fd) as



inl g′. C
inr y. C

B1 for pm (fd) as



inl g′. B0

inr y. F ⇒ F

C2 for pm (fd) as



inl g. C
inr y. C

B2 for pm (fd) as



inl g. B1

inr y. (F ⇒ F) ∨ F

Let π0 be the following proof:

f, g, g′ ⊢ g
′d : 0 + 0

f, g, g′, w|C, F ⊢ F

f, g, g′, w|C ⊢ F ⇒ F

f, g, g′, w|C ⊢ (F ⇒ F) ∨ F

f, g, g′, w|C, F ⊢ F

f, g, g′, w|C ⊢ F ⇒ F

f, g, g′, w|C ⊢ (F ⇒ F) ∨ F

f, g, g′|C0 ⊢ B0 f, g, g′ ⊢ C0 = C

f, g, g′|C ⊢ B0

Let π1 be the following proof:

f ⊢ fd : ν

π0

f, g, g′|C ⊢ B0

f, g, y|C, F ⊢ F

f, g, y|C ⊢ F ⇒ F

f, g|C1 ⊢ B1 f, g ⊢ C1 = C

f, g|C ⊢ B1

Let π be the following proof:

f ⊢ fd : ν

π1

f, g|C ⊢ B1

f, y|C, F ⊢ F

f, y|C ⊢ F ⇒ F

f, y|C ⊢ (F ⇒ F) ∨ F

f|C2 ⊢ B2 f ⊢ C2 = C f ⊢ B2 = (F ⇒ F) ∨ F

f|C ⊢ (F ⇒ F) ∨ F

where the bottom right premise is proved in Fig. 9.

Fig. 10. Construction of π



Write D for (∃u.(F ⇒ F)) ⇒ (∃v.(F ⇒ F)).
Let θ0 be the following proof:

x, y|D ⊢ (∃u.(F ⇒ F)) ⇒ (∃v.(F ⇒ F))

x, y ⊢ inr d : ν

x, y|D, F ⊢ F

x, y|D ⊢ F ⇒ F

x, y|D ⊢ ∃u.(F ⇒ F)

x, y|D ⊢ ∃v.(F ⇒ F)

x|D ⊢ ∀y.∃v.(F ⇒ F)

Let θ1 be the following proof:

x|D ⊢ (∀y.∃v.(F ⇒ F)) ⇒ (∃g.∀y.(F ⇒ F))

θ0

x|D ⊢ ∀y.∃v.(F ⇒ F)

x|D ⊢ ∃g.∀y.(F ⇒ F)

where the left premise is an instance of ACσ.
Let θ2 be the following proof:

θ1

x|D ⊢ ∃g.∀y.(F ⇒ F)

x, g ⊢ inl g : ν

x, g|D, ∀y.(F ⇒ F), F ⊢ F

x, g|D, ∀y.(F ⇒ F) ⊢ F ⇒ F

x, g|D, ∀y.(F ⇒ F) ⊢ ∃u.(F ⇒ F)

x|D ⊢ ∃u.(F ⇒ F)

Let θ3 be the following proof:

x| ⊢ (D ⇒ ∃u.(F ⇒ F)) ⇒ ∃u.(F ⇒ F)

θ2

x|D ⊢ ∃u.(F ⇒ F)

x| ⊢ D ⇒ ∃u.(F ⇒ F)

x| ⊢ ∃u.(F ⇒ F)

where the left premise is an instance of Peirce’s Law.
Let θ be the following proof:

| ⊢ (∀x.∃u.(F ⇒ F)) ⇒ (∃f.∀x.(F ⇒ F))

θ3

x| ⊢ ∃u.(F ⇒ F)

| ⊢ ∀x.∃u.(F ⇒ F)

| ⊢ ∃f.∀x.(F ⇒ F)

π

f|∀x.(F ⇒ F) ⊢ (F ⇒ F) ∨ F

| ⊢ (F ⇒ F) ∨ F

where the left premise is an instance of ACσ.

Fig. 11. Construction of θ, whose proofterm is s′



Let φ be the following proof:

θ

| ⊢ (F ⇒ F) ∨ F

|F ⇒ F, F ⊢ F

|F ⇒ F ⊢ F ⇒ F

|F, F ⊢ F

|F ⊢ F ⇒ F

| ⊢ F ⇒ F

where the sequent |F, F ⊢ F is proved from its second assumption.

Fig. 12. Construction of φ, whose proofterm gets stuck
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