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Summary

A language

Roscoe’s Seeing Beyond Divergence model

A model of lower bisimilarity

What’s really happening: modal logic
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A basic language

Syntax

Let A be a countable alphabet.

M ::= print c .M | x | rec x.M | choosen∈N Mn c ∈ A

Many other things can be added.

Small-step semantics

print c . M  c M

rec x. M  M[rec x. M/x]

choosen∈N Mn  Mn̂ n̂ ∈ N

A program either

prints a finite string, then diverges

or prints an infinite string.
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Medium step semantics

Convergence M ↘c N defined inductively

print c . M ↘c M

M[rec x. M/x] ↘c N

rec x. M ↘c N

Mn̂ ↘
c

N
n̂ ∈ N

choosen∈N Mn ↘
c

N

Divergence M ⇑ defined coinductively

M[rec x. M/x] ⇑

rec x. M ⇑

Mn̂ ⇑
n̂ ∈ N

choosen∈N Mn ⇑

We have

M ↘c N iff M  ∗  c N

M ⇑ iff M  ω
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Well-pointed semantics

We are interested in denotational models where a term denotes a function
from environments.

To interpret recursion, we need an appropriate way of finding a fixpoint of
an endofunction.

For example, least fixpoint or greatest fixpoint.

Roscoe’s Seeing Beyond Divergence model uses a reflected fixpoint.
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Finite traces, divergences, and infinite traces

A closed command M has

a set T (M) ⊆ A∗ of finite traces

M can print hello

a set D(M) ⊆ A∗ of divergences

M can print hello then diverge

a set I (M) ⊆ Aω of infinite traces

M can print helloworldworldworld . . .
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Seeing Beyond Divergence (1)

Definition of [M]N

the set of finite traces of M, together with extensions of divergences

the set of extensions of divergences of M

the set of infinite traces of M, together with extensions of divergences

This semantics is divergence strict.

To model recursion, we take the greatest fixpoint. (Reverse ordering is the
upper powerdomain.)
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Seeing Beyond Divergence (2)

Definition of [M]SBD

the set of finite traces of M

the set of divergences of M

the set of infinite traces, together with limits of divergences (called
“ω-divergences”)

To model recursion:

first compute the greatest fixpoint wrt [ ]N , giving a “diamond”: a
complete lattice of possible solutions that are [ ]N equivalent

then compute the least fixpoint wrt [ ]SBD within that complete
lattice.

This is called the reflected fixpoint.
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Seeing Beyond Divergence: further points

Continuity

For any recursion, the second phase of fixpoint calculation converges in ω
steps.

This is because every term denotes a function that is continuous on each
diamond.

Lexicographic Ordering

The reflected fixpoint is the least prefixed point wrt the lexicographic
ordering:

reverse inclusion for [ ]N

then inclusion for [ ]SBD

Terms are not monotone wrt this ordering.

Paul Blain Levy (University of Birmingham) Modal properties of recursive programs September 24, 2008 9 / 21



Seeing Beyond Divergence: further points

Continuity

For any recursion, the second phase of fixpoint calculation converges in ω
steps.

This is because every term denotes a function that is continuous on each
diamond.

Lexicographic Ordering

The reflected fixpoint is the least prefixed point wrt the lexicographic
ordering:

reverse inclusion for [ ]N

then inclusion for [ ]SBD

Terms are not monotone wrt this ordering.

Paul Blain Levy (University of Birmingham) Modal properties of recursive programs September 24, 2008 9 / 21



Seeing Beyond Divergence: further points

Continuity

For any recursion, the second phase of fixpoint calculation converges in ω
steps.

This is because every term denotes a function that is continuous on each
diamond.

Lexicographic Ordering

The reflected fixpoint is the least prefixed point wrt the lexicographic
ordering:

reverse inclusion for [ ]N

then inclusion for [ ]SBD

Terms are not monotone wrt this ordering.

Paul Blain Levy (University of Birmingham) Modal properties of recursive programs September 24, 2008 9 / 21



Seeing Beyond Divergence: further points

Continuity

For any recursion, the second phase of fixpoint calculation converges in ω
steps.

This is because every term denotes a function that is continuous on each
diamond.

Lexicographic Ordering

The reflected fixpoint is the least prefixed point wrt the lexicographic
ordering:

reverse inclusion for [ ]N

then inclusion for [ ]SBD

Terms are not monotone wrt this ordering.

Paul Blain Levy (University of Birmingham) Modal properties of recursive programs September 24, 2008 9 / 21



Lower And Convex Bisimulation

Let R be a binary relation on closed terms.

It is a lower simulation when M R M ′ and M ↘c N implies ∃N ′ such that
M ′ ↘c N ′ and N R N ′.

It is a lower bisimulation when R and Rop
are lower simulations.

It is a convex bisimulation when moreover M R M ′ implies M ⇑⇔ M ′ ⇑.

The greatest lower bisimulation is called lower bisimilarity.

Two closed terms M,M ′ are lower bisimilar

iff they have the same anamorphic image

iff there is a strategy for the bisimilarity game between them
(Opponent moves first, and in each move can play either left or right)

iff they satisfy the same formulas in Hennessy-Milner logic

P ::= 3a.P |
∨
j∈J

Pi | ¬P
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Model of bisimilarity: nested simulation

A 2-nested (lower) simulation is a simulation contained in mutual
similarity.

Two closed terms M,M ′ are related by 2-nested similarity

iff there is a strategy for the 2-nested simulation game (Opponent
starts on the left, and can switch once)

iff M � P implies M ′ � P whenever P has at most one level of
negation.

A 3-nested lower simulation is a simulation contained in mutual 2-nested
similarity. And so through all countable ordinals.

The intersection of n-nested similarity for n < ω1 is lower bisimilarity.

Theorem Up to lower bisimilarity, rec x. M is the lexicographically least
prefixed point for N 7→ N[rec x. M/x] wrt this sequence of
precongruences.
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Digression: other models of bisimilarity (1)

Synchronization Trees

Milner and Winskel have studied semantics in which

a closed term denotes a synchronization tree of possible behaviours.

an open term denotes a function (actually a functor) from
synchronization trees to synchronization trees.

Very intensional: the idempotency law M or M = M is not validated.

Lower bisimilarity is studied as a relation on the trees, but this is not part
of the denotational semantics.
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Digression: other models of bisimilarity (2)

Abramsky’s domain equation for bisimulation

Abramsky gave a semantics (for finite nondeterminism) using a domain
equation involving the convex powerdomain.

For nondivergent terms, denotational equivalence coincides with lower
bisimilarity.

But in general, terms may have the same denotation without being lower
bisimilar.

This is inevitable in least fixpoint semantics.
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Some general points

We want to understand various denotational models of nondeterministic
languages with recursion.

In each of these models, there is a set C of elements and an ordinal
sequence of preorders on C .

The intersection of these preorders is discrete.

Terms are continuous wrt some of these orderings, and ω1-continuous wrt
others.

A recursion is interpreted, in these models, as the least prefixed point wrt
the induced lexicographic partial order.

Warning Terms are not even monotone wrt this lexicographic partial order.
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Modal logic with may and must

Modal logic in the style of Hennessy-Milner:

A ::= ¬A |
∨
i∈I

Ai |
∧
i∈I

Ai | 3a.A | 2s∈A∗As

where I is bounded by some suitable cardinal.

Meaning of 3

3a.A means it is possible that a will be printed and then A will be
satisfied.

Meaning of 2

2s∈A∗As means a time will come when As will be satisfied, where s is the
string printed between now and then.
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Contextual preorders

We say M 4(A) M ′ when

for every context C, if C[M] � A then C[M ′] ` A.

This is a preorder, and we can speak of the 4(A) equivalence class of M.

More generally, we say M 4({Ai}i∈I ) M when

for every context C and i ∈ I , if C[M] � Ai then C[M ′] � Ai .
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When does a recursive program satisfy 3?

We want to know when C[rec x. M] satisfies B
def
= 3a.A.

Let U be the 4(A) equivalence class of rec x. M.

Clearly θM : N 7→ M[N/x] is an endofunction on U, monotone wrt 4(B).

Theorem

Suppose U has a 4(B) least element of U, call it N.

Then C[rec x. M] � 3a.A iff there exists n ∈ N such that C[θn
MN] � 3a.A.

The special case that A = True gives lower powerdomain semantics.
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When does a recursive program satisfy 2?

We want to know when C[rec x. M] satisfies B
def
= 2s∈A∗As .

Let Us be the 4(As) equivalence class of rec x.M.

θM : N 7→ M[N/x] is an endofunction on
⋂

s∈A∗ Us monotone wrt 4(B).

Conjecture

Define a sequence (Nα)α<ω1 contained in U, increasing wrt 4(B)

N0
def
= 4(B) least element of

⋂
s∈A∗ Us , assuming it exists

Nβ+1
def
= θMNβ

Nγ
def
= 4(B) supremum of (Nα)α<γ , assuming it exists

Then C[rec x. M] � B iff there exists α < ω1 such that C[Nα] � B.

The special case that A = True gives upper powerdomain semantics.
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Seeing Beyond Divergence Revisited

Let t be a finite trace, divergence or infinite trace, and let s be a finite
prefix.

We say that M semi-validates s v t when it is possible for M to prove s
and never refute t.

Two terms M,M ′ are SBD equivalent when they semi-validate the same
prefixes.

M validates hello v helloworldworldworld. . . when

M � 3hello. ¬2s.s 6v worldworldworld . . .

We can now see how the two-part calculation of a recursion arises.
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Directions

We are starting to understand iterated fixpoint denotations of recursive
programs by thinking about the modal properties that they satisfy.

Studying this syntactically is awkward, since

we do not know what the 4(A) preorders actually are

the required suprema might not exist.

Perhaps a deductively closed set of modal formulas could serve as a
generalized program?
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Another lexicographically least prefixed point

To define big-step semantics of a functional language (even one with
McCarthy’s amb):

first define convergence (⇓) as a least prefixed point

then define divergence (⇑) as a greatest postfixed point.

Big-step semantics can be seen as describing the denotational semantics of
an interpreter, which is a first-order recursive program.

The pair (⇓,⇑) is a lexicographically least prefixed point.
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