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Abstract

We introduce Broad Infinity, a new set-theoretic axiom scheme based on the slogan “Every time
we construct a new element, we gain a new arity.” It says that three-dimensional trees whose growth
is controlled by a specified class function form a set. Such trees are called “broad numbers”.

Assuming the axiom of choice, or at least the weak version known as WISC (Weakly Initial Set of
Covers), we show that Broad Infinity is equivalent to Mahlo’s principle, which says that the class of
all regular limit ordinals is stationary. Broad Infinity also yields a convenient principle for generating
a subset of a class using a “rubric” (family of rules). This directly gives the existence of Grothendieck
universes, without requiring a detour via ordinals.

In the absence of choice, Broad Infinity implies that the derivations of elements from a rubric form
a set. This yields the existence of Tarski-style universes.

Additionally, we reveal a pattern of resemblance between “Wide” principles, that are provable in
ZFC, and “Broad” principles, that go beyond ZFC.

Note: this paper uses a base theory that is weaker than ZF but includes classical first-order logic
and Replacement.
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Part I

Introduction
1 Broad Infinity vs Mahlo’s principle

1.1 Broad Infinity in a nutshell
This paper is about a new axiom scheme of set theory, which is easy to state.

First, some preliminaries. For the sake of this introduction, assume either ZF or a variant that allows
urelements. We write T for the universal class and Set for the class of all sets; they are the same in ZF.
The axiom of choice (AC) is not assumed.

We must say how to encode ordered pairs and the like.

Definition 1.1. Let C be a class.
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(a) An ordered pair encoding on C is a binary operation ⟨−,−⟩ : C2 → C such that, for all
x, y, x′, y′∈C, if ⟨x, y⟩ = ⟨x′, y′⟩, then x = x′ and y = y′.

(b) A unary Dedekind encoding on C consists of an element Nothing ∈ C and a unary operation
Just :C → C, such that

• for all x∈C, we have Just(x) ̸= Nothing

• for all x, x′∈C, if Just(x) = Just(x′), then x = x′.

(c) A binary Dedekind encoding on C consists of an element Begin ∈ C and a binary operation
Make :C2 → C, such that

• for all x, y∈C, we have Make(x, y) ̸= Begin

• for all x, y, x′, y′∈C, if Make(x, y) = Make(x′, y′), then x = x′ and y = y′.

The following encodings are fixed throughout the paper.

Definition 1.2.

(a) We give an ordered pair encoding on T as follows:

⟨x, y⟩ def
= {{x}, {x, y}}

(b) We give a unary Dedekind encoding on T as follows:

Nothing
def
= ∅

Just(x)
def
= {x}

(c) We give a binary Dedekind encoding on T as follows:

Begin
def
= ∅

Make(x, y)
def
= {{x}, {x, y}}

For a class C and set K, we write CK for the class of all functions from K to C.
The axiom of Infinity is included in ZF. As formulated by Zermelo [Zer08], it says that there is a set

X with the following properties:

• Nothing ∈ X .

• For any x∈X , we have Just(x) ∈ X .

The new axiom scheme of Simple Broad Infinity is similar. It says that, for any function F :T → Set,
there is a set X with the following properties:

• Begin ∈ X .

• For any x∈X and y∈XFx, we have Make(x, y) ∈ X .

Here is a slogan: “Every time we construct a new element, we gain a new arity.”
ZF extended with this scheme is called Broad ZF. The following sections will motivate this extension

in light of a previously studied principle.
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1.2 Regular limits and stationary classes
We begin with some useful notions concerning ordinals. We write Ord for the class of all ordinals and
Lim for the class of all limit ordinals—ordinals that are neither 0 nor a successor. An initial ordinal is
one that is not the range of a function from a smaller ordinal; examples are the finite ordinals, ω and ω1.
(In ZFC, an initial ordinal is also called a “cardinal”.)

A limit ordinal κ is regular when, for all α < κ, the supremum function Ordα → Ord restricts to a
function κα → κ. (See Section 13.3 for an alternative definition.) It follows that κ is initial, so ω is the
only regular limit ordinal that is countable. We write Reg for the class of all regular limit ordinals.

For a function F : Ord → Ord, we say that an limit ordinal λ is F -closed when F restricts to a
function λ→ λ. Here are some examples:

• Let S be the successor function. Every limit ordinal is S-closed.

• For an ordinal α, let Constα be the constant function γ 7→ α. A limit ordinal is Constα-closed iff
it is > α.

• For functions F,G :Ord → Ord, let F ∨G be the pointwise maximum γ 7→ F (γ)∨G(γ). A limit
ordinal is (F ∨G)-closed iff it is both F -closed and G-closed.

A class of limit ordinalsD is stationary when, for every function F :Ord → Ord, there is an an F -closed
ordinal in D. (See Sections 13.1 and 14 for alternative definitions.) It follows that D is unbounded and
that, for every function F :Ord → Ord, there are stationarily many F -closed limit ordinals in D.

1.3 Two principles from the literature
Next we look at two principles that use the above notions.

• Mahlo’s principle, also known as “Ord is Mahlo”, says that Reg is stationary [Ham03, Jor70,
Lév60, May00, Wan77]. To illustrate its power, note that ZFC + Mahlo’s principle proves that
there are stationarily many inaccessible cardinals.1 That is because, in ZFC, an inaccessible car-
dinal is precisely an uncountable F -closed limit ordinal, where F sends α to 2α if α is a cardinal
and to 0 otherwise.

• Blass’s axiom [Bla83] says merely that Reg is unbounded. It follows from AC, but is it provable in
ZF alone? To answer this question, Gitik [Git80] showed that, if ZFC + “Arbitrarily large strongly
compact cardinals exist” is consistent, then so is ZF + “Every limit ordinal is the supremum of
a strictly increasing ω-sequence”. This means that ZF cannot even prove the existence of an
uncountable regular limit ordinal, let alone prove Blass’s axiom.

1.4 Limitations of Mahlo’s principle
Appealing though Mahlo’s principle may be, I consider it deficient as an axiom scheme, in two respects.

Firstly, it does not meet the ZF standard of simplicity. Each ZF axiom, other than Extensionality and
Foundation, expresses the idea that some easily grasped things form a set: the natural numbers (Infinity),
the subsets of a set (Powerset), the elements of a set that satisfy a property (Separation), the images
of a set’s elements under a function (Replacement), and so forth. This is what makes these axioms so
compelling. But Mahlo’s principle does not do this.

The second problem is that Mahlo’s principle, or indeed any addition to ZF that implies the existence
of an uncountable regular limit ordinal, seems to be entangled with choice in light of Gitik’s result. Ad-
mittedly this view is contentious, as some people would try to justify Mahlo’s principle via the following

1In the absence of AC, there is no accepted notion of inaccessible. See [BDL07] for a comparative analysis.
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choiceless argument: “For any F :Ord → Ord, the property of being an F -closed regular limit can be
reflected down from Absolute Infinity to an ordinal.” But such thinking is avoided in this paper.

1.5 Motivating Broad Infinity
In light of the preceding discussion, my primary goal was to obtain an axiom scheme that

1. is equivalent to Mahlo’s principle, assuming AC

2. asserts that some easily grasped things form a set

3. does not imply (given only ZF) that an uncountable regular limit ordinal exists.

To this end, I propose Simple Broad Infinity. Does it meet the requirements?

1. Assuming AC, we shall prove that Simple Broad Infinity is equivalent to Mahlo’s Principle. So
this requirement is met.

2. Simple Broad Infinity asserts, for each function F : T → Set, that the class of all simple F -
broad numbers (explained in Section 7.2 below) is a set. Arguably this is “easily grasped”, but the
question is subjective and must be left to the reader’s judgement.

3. I see no way to obtain the existence of an uncountable regular limit ordinal in Broad ZF. However,
an analogue of Gitik’s result is currently lacking.

2 Goals and structure of the paper

2.1 Plausible vs useful
Simple Broad Infinity has been designed to be as plausible as possible. In other words, I aimed to
minimize the mental effort needed to believe it. This is surely a desirable feature for an axiom scheme.
Furthermore, disentanglement from choice helps to achieve it because, even for a person who finds AC
intuitively convincing (as I do), it is easier to accept one intuition at a time.

My second goal was different: to find an equivalent scheme that is as useful as possible. In other
words, I wanted to minimize the effort needed to apply it. In particular, it should obviously imply the
existence of Grothendieck universes, without requiring a detour via notions of ordinal or cardinal.

To this end, I propose a scheme called Broad Set Generation. For people who accept AC, this meets
the stated goal. For those who do not, I offer instead a principle called Broad Derivation Set. The latter
yields the existence of “Tarski-style” universes that are sometimes used in the literature [ML84].

2.2 Urelements and non-well-founded membership
In ZF, everything is a set and the membership relation is well-founded. But our results also hold in vari-
ants of ZF that allow urelements and/or non-well-founded membership [Wik23, Yao23, Wik24, Acz88].
Making this clear is the third goal.

2.3 Weak choice principle
Although—as stated above—some of our results depend on AC, the full strength of this axiom is not
needed. More precisely, a weak form of choice known as WISC (Weakly Initial Set of Covers) suffices
for our results. Explaining this fact is the fourth goal.

Caveat: we shall see different versions of WISC, and care must be taken to use an appropriate one.
In ZF, they are all equivalent.

6



Without assuming the Axiom of Choice

Powerset + Infinity
Wide Infinity ∗

Wide Derivation Set †

Injective Wide Set Generation †

//

��

Broad Infinity ∗

Broad Derivation Set
Injective Broad Set Generation

��
Powerset + Wide Supgeneration ∗

Powerset + Blass’s Axiom
Wide Set Generation †

//
Powerset + Broad Supgeneration ∗

Powerset + Mahlo’s Principle
Broad Set Generation

Assuming the Axiom of Choice or at least WISC

Powerset + Infinity
Wide Infinity ∗

Wide Derivation Set †

Powerset + Wide Supgeneration ∗

Powerset + Blass’s Axiom
Wide Set Generation †

//

Broad Infinity ∗

Broad Derivation Set
Powerset + Broad Supgeneration ∗

Powerset + Mahlo’s Principle
Broad Set Generation

∗ The Simple and Full versions are equivalent.
† The Wide and Quasiwide versions are equivalent.

Figure 1: Diagram of theories, each extending the base theory

2.4 Wide vs Broad
We give the name “Broad” to the principles studied in this paper that go beyond ZFC. It turns out that
each of them has a ZFC-provable counterpart that we call “Wide”. For example, Mahlo’s principle is
Broad, and its Wide counterpart is Blass’s axiom.

The fifth goal is to convey this pattern of resemblance, which is depicted in Figure 1, a summary of
the results in the paper (using a base theory weaker than ZF). The rows within each block are equivalent,
and each arrow represents inclusion of theories—i.e., reverse implication. The Wide principles appear
on the left and the corresponding Broad principles on the right.

2.5 Summary of goals
To summarize the previous sections, our goals are as follows.

1. To give a simple and plausible axiom scheme, disentangled from choice, that is equivalent over
ZFC to Mahlo’s principle. Solution Simple Broad Infinity.

2. To give an equivalent principle that is convenient for applications. Solution Broad Set Generation
for those who accept AC, and Broad Derivation Set for those who do not.

3. To show that our results hold even when urelements and non-well-founded membership are al-
lowed.

4. To show that, for the results that rely on AC, a weak choice principle suffices.

5. To convey the resemblance between Wide principles (which are provable in ZFC) and Broad prin-
ciples (which are not, provided ZF is consistent).
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Throughout the paper, we use a base theory that includes classical first-order logic, and do not consider
the issue of logical complexity. Other versions of set theory are left to future work.

2.6 Related work
Many formulations of Mahlo’s principle have been studied [Jor70, May00, Lév60, Mon62, Dow11],
and variations have been given for type theory [Rat00, Set00] and Explicit Mathematics [KS10]. Other
principles have been considered that are equiconsistent with Mahlo’s principle [Ham03, Mat77].

Another related topic—which inspired the Broad Derivation Set principle—is the treatment of “in-
duction recursion” in type theory [DS06, GH16]. It is used in the proof assistant Agda, allows the
formation of Tarski-style universes (as in Section 8.4), and was modelled in [DS06] using a Mahlo car-
dinal.

2.7 Structure of paper
Before treating the wide and broad principles, the paper presents various foundational concepts in Part II,
beginning in Section 3 with an introduction to sets and classes. Section 4 treats well-foundedness,
and gives a way to generate subclasses and partial functions; this is is used throughout the paper, and
especially to formulate the Derivation Set principles. Next, Section 5 is devoted to ordinals, and explains
how to use an inductive chain to obtain a least prefixpoint. Lastly, Section 6 is devoted to category theory,
notably the concept of an initial algebra.

Part III is devoted to those wide and broad principles that are concerned with sets and rubrics (not or-
dinals), beginning in Section 7 with the Wide and Broad Infinity principles. This is followed in Section 8
by the useful principles of Set Generation and Derivation Set, with restricted versions of these principles
considered in Section 9. In Section 10, we see how to deduce Set Generation principles from Derivation
Set principles, by either imposing an injectivity condition or assuming AC or WISC.

Part IV presents the wide and broad principles for ordinals, beginning in Section 11 with “supgen-
eration” principles that connect the world of sets to that of ordinals. Section 12 explains the concept of
Lindenbaum numbers, which is known from the literature on choiceless mathematics. This allows us in
Section 13 to develop Mahlo’s principle and establish all its relationships. Lastly, Section 14 presents the
traditional use of Mahlo’s principle (in a class setting) to prove the existence of various kinds of ordinal.

Section 15 wraps up the paper by summarizing the contributions and suggesting further work.
Some readers may just want to see the ZFC proof that Simple Broad Infinity is equivalent to Mahlo’s

principle. This is divided into several steps:

• Simple Broad Infinity is equivalent to Full Broad Infinity—Theorem 7.5(a).

• Full Broad Infinity implies Broad Derivation Set—Proposition 8.19(b).

• Broad Derivation Set implies Broad Set Generation—Proposition 10.9(c). Only this step uses AC.

• Broad Set Generation implies Full Broad Infinity—Proposition 9.2(b).

• Broad Set Generation is equivalent to Broad Supgeneration—Theorem 11.4(b).

• Broad Supgeneration is equivalent to Mahlo’s principle—Theorem 13.11(b).

• Various definitions of stationarity, each giving a different formulation of Mahlo’s principle, are
equivalent—Proposition 14.9.
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Part II

Foundations
3 Basic theory of sets

3.1 Our base theory
For this paper, I have chosen a base theory that differs from ZF in several ways:

• It allows urelements and non-well-founded membership.

• It excludes Powerset and Infinity, so that we can examine how these axioms relate to other princi-
ples.

• It allows undefined unary predicate symbols, also known as class variables.

For a given set Pred of predicate symbols, the syntax is as follows:

ϕ, ψ ::= P (x) | IsSet(x) | x ∈ y | x = y | True | False

| ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ ψ | ∀x. ϕ | ∃x. ϕ

where P ∈Pred. The formula IsSet(x) asserts that x is a set.
We define the base theory over Pred to be the classical first-order theory with equality, axiomatized

as follows.

• Axiom of Extensionality: Any two sets with the same elements are equal.

• Axiom of Inhabitation: Anything that has an element is a set.

• Axiom scheme of Replacement: For any set A and binary predicate F such that each x∈A has a
unique F -image, there is a set {F (x) | x∈A} of all F -images of elements of A.

• Axiom of Twoity: There are sets 0, 1, 2 such that 0 = {} and 1 = {0} and 2 = {0, 1}.

• Axiom of Union Set: For any set of sets A, there s is a set
⋃
A of all elements of elements of A.

Henceforth we assume the base theory. Pairing and Separation follow via

{x0, x1}
def
= {xi | i ∈ {0, 1}}

{x∈A | P (x)} def
=

⋃
x∈A

{
{x} if P (x)
∅ otherwise

Related work For set theory without Powerset, see [GHJ16]. For set theory without Infinity, see [KW07].

3.2 Classes, functions and partial functions
Since classes are so important in our story, much of this paper is devoted to studying them. As usual in
set theory, a class is represented as a predicate formula with parameters. We write T for the class of all
things, Set for the class of all sets, and Ur for that of all urelements (things that are not sets). A class
C is inhabited when it has an element—i.e., is not empty. For x∈C, the phrase “x is contained in C”
mean x∈C.
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Given classes A and B, we write

A×B
def
= {⟨x, y⟩ | x∈A, y∈B}

A+B
def
= {inl x | x∈A} ∪ {inr y | y∈B}

where ⟨x, y⟩ def
= {{x}, {x, y}} and inl x

def
= ⟨0, x⟩ and inr y

def
= ⟨1, y⟩. The notation A ⊆ B means that A

is included in (i.e., a subclass of) B. The notation F :A → B means that F is a function sending each
x∈A to an element of B.

For a function F on a class A, the restriction of F to a subclass C of A is written F ↾C , or simply as
F when C is clear from the context.

For a set K, a K-tuple is a function on K. It is written as [xk]k∈K and envisaged as a column with
K entries. It is within a class C when, for all k∈K, we have xk ∈ C.

A family consists of a set I and a function x on I . More generally, a class-family consists of a class
I and function x on I . It may be written as (I, x) or as (xi)i∈I . It is injective when the function x is
injective, and its range is the range of x. It is within a class C when, for all i∈I , we have xi ∈ C.

Given class-families (xi)i∈I and (yj)j∈J , we say that the former is included in the latter when
I ⊆ J and x = y ↾I . A map (xi)i∈I → (yj)j∈J is a function f : I → J such that, for all i∈ I , we have
xi = yf(i). It is an isomorphism when f is bijective; note that isomorphic class-families have the same
range.

The following will be useful.

Proposition 3.1. Let C be a class. Any sets A,B and surjection f :A → B yield an injective function
Cf :CB → CA sending [xb]b∈B to [xf(a)]a∈A. Its range is the class of all A-tuples y such that, for all
a, a′∈A with the same f -image, we have ya = ya′ .

Proof. Straightforward.

For a class C, we write PC for the class of all subsets of C, and PinhC for the class of all inhabited
subsets of C. We write Fam(C) for the class of all families within C, and InjFam(C) for the class of all
injective families within C. For any set I , we write CI for the class of all I-tuples within C.

Given a classes A and B, a partial function G :A ⇀ B consists of a subclass Dom(G) of A and a
function G :Dom(G) → B. Put differently, it is a class-family (M,F ) such that for all x∈M we have
x ∈ A and F (x) ∈ B.

We also speak about “collections”, although such talk is informal.
We write Class for the collection of all classes. Given a class C, we write Sub(C) for the collection

of all subclasses of C. We write ClassFam(C) for the collection of all class-families within C, and
InjClassFam(C) for the collection of all injective class-families within C.

Given a class A, we may speak of a function B :A → Class, also called an A-tuple of classes and
written [Ba]a∈A. It is represented as a binary predicate formula ϕ(x, y) with parameters, so that, for
x∈A, we have Bx = {y | ϕ(x, y)}. The pair (A,B), also written (Bx)x∈A, is called a class-family of
classes, or a family of classes if A is a set.

Given a class-family of classes (Bx)x∈A, we form the class∑
x∈A

Bx
def
= {⟨x, y⟩ | x∈A, y∈Bx}

The notation F ∈
∏

x∈ABx means that F is a function on A that sends each x ∈ A to an element
of Bx. Likewise, a partial function G ∈

∏⇀
x∈ABx consists of a subclass Dom(G) of A and function

G ∈
∏

x∈Dom(G)Bx. Put differently, it is a class-family (M,F ) such that for all x∈M we have x ∈ A

and F (x) ∈ Bx. It is small when it is a family—i.e., the domain is a set.
Two other kinds of function occur in the paper.
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• Given a class A, we speak of a function F :A→ B, where B is a collection, or—more generally—
of a function F ∈

∏
x∈A Bx, where B is an A-tuple of collections. In each instance, it is obvious

how F can be represented. For example, we can represent F :A → Class2 as a pair of functions
A→ Class.

• Given collections A and B, we speak of a function A → B. For example, P is an endofunction on
Class.

3.3 Class reasoning: arbitrariness and predicativity
When speaking about classes, we must observe two disciplines.

Firstly, in order to assert that all classes have a given property, it is insufficient to prove this merely
for classes that are definable from first-order parameters. Instead we must prove that an arbitrary class
has the property. That is because our base theory’s syntax includes class variables.

Secondly, in order to assert the existence of a class with a given property, we must prove this pred-
icatively—i.e., without quantification over class variables. That is because our base theory’s syntax does
not provide such quantification.

Both requirements are illustrated in Section 3.7.

3.4 Powerset, Choice and Collection
We now present some additional principles, beginning with Powerset.

Proposition 3.2. The following are equivalent.

• Powerset: For any set A, the class PA is a set.

• Exponentiation: For any sets A and B, the class BA is a set.

• For any family of sets (Bi)i∈I , the class
∏

i∈I Bi is a set.

Proof. Via the following constructions.

PA def
= {{x∈A | f(x) = 1} | f ∈ {0, 1}A}

BA def
=

∏
x∈A

B∏
i∈I

Bi
def
= {f ∈ P

∑
i∈I

Bi | ∀i∈I. ∃!b∈Bi. ⟨i, b⟩ ∈ f}

We continue with the following principles.

• The axiom of Choice (AC): For any family of inhabited sets (Ai)i∈I , the class
∏

i∈I Ai is inhab-
ited.

• The axiom scheme of Collective Choice: For any family of inhabited classes (Ai)i∈I , the class∏
i∈I Ai is inhabited.

• The axiom scheme of Collection: For any family of inhabited classes (Ai)i∈I , the class
∏

i∈I PinhAi

is inhabited.

Proposition 3.3.

11



(a) Collective Choice is equivalent to Collection + AC.

(b) In ZF Collection holds.

Proof.

(a) For (⇒), it is obvious that AC holds, and Collection is proved as follows. Given a set I and I-
tuple of inhabited classes A, we obtain x ∈

∏
i∈I Ai by Collective Choice, and then i 7→ {xi}

inhabits
∏

i∈I PinhAi. For (⇐), given a set I and I-tuple of inhabited classes A, we obtain B ∈∏
i∈I PinhAi by Collection, and then—by AC—the subclass

∏
i∈I Bi of

∏
i∈I Ai is inhabited.

(b) We write (Vα)α∈Ord for the cumulative hierarchy in the usual way. Given a set I and I-tuple of
inhabited classes A, we proceed as follows. For each i ∈ I , define t(i) to be the least ordinal α
such that Ai ∩ Vα is inhabited. Then i 7→ Ai ∩ Vt(i) inhabits

∏
i∈I PinhAi.

3.5 Ordered collections
Order plays a large role in our story, so we present some useful notions.

Given an ordered collection A, a subcollection B is lower when, for any x∈B and y ⩽ x, we have
y ∈ B.

Given ordered collections A and B, a function h :A → B is monotone when x ⩽ y implies h(x) ⩽
h(y).

In this paper, a standard ordered collection is a collection E equipped with a class-family of classes
(Bx)x∈A, and a bijection E ∼=

∏⇀
x∈ABx. This structure induces an order on E , so we write

∨
for

supremum and ⊥ for the least element. It also induces a notion of smallness: we write Esmall for the class
of all small elements. For x∈E , we write

↠

x for the class of all y∈Esmall such that y ⩽ x.
For example, let C be a class.

• Sub(C) is a standard ordered collection, since subclasses of C correspond to partial functions
C ⇀ 1 via the bijection X 7→ (X,x 7→ ∗). A small element is a subset of C.

• ClassFam(C) is a standard ordered collection, since class-families within C are the same thing as
partial functions T⇀ C. A small element is a family within C.

The following is adapted from [Acz88, Tak69].

Definition 3.4. Let D and E be standard ordered collections.

(a) For any monotone function f : Dsmall → E , the monotone extension f̂ : D → E is defined as
x 7→

∨
y∈

↠

x f(y).
2

(b) A function h : D → E that arises from its restriction to Dsmall in this way is said to be set-
continuous. Explicitly, this means that h sends each x∈D to

∨
y∈

↠

x h(y).

For example, P is a set-continuous endofunction on Class. All functions between standard ordered
collections considered in this paper are set-continuous (and hence monotone).

Note: since a set-continuous function D → E can be represented by its restriction to Dsmall, any
quantifier ranging over set-continuous functions can be regarded as ranging over classes.

2In the language of category theory, f̂ is the left Kan extension of f along the inclusion Dsmall ⊆ D. That is, the least monotone
function g :D → E such that f ⩽ g ↾Dsmall

.
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3.6 Fixpoints
We present some notions of fixpoints and order, as they are repeatedly used in the paper.

Let E be a collection, and h an endofunction on E . Then an element x∈E is h-fixed or an h-fixpoint
iff h(x) = x. The prefix h can be omitted when clear from the context.

Now let E be an ordered collection, and F a monotone endofunction on E . An element x ∈ E is
h-prefixed or an h-prefixpoint when h(x) ⩽ x, and h-postfixed or an h-postfixpoint when x ⩽ h(x).3

So x is fixed iff it is both prefixed and postfixed. Note that an infimum of prefixpoints is prefixed, and a
supremum of postifxpoints is postfixed.

We say that h is inflationary when every x∈E is a postfixpoint, and deflationary when every x∈E is
a prefixpoint.

The least prefixpoint of h, if it exists, is written µh. It is necessarily fixed; this fact is called inductive
inversion. Dually the greatest postfixpoint of h, if it exists, is written νh and is necessarily fixed.

A prefixpoint x is minimal when the only prefixpoint y such that y ⩽ x is x itself. A least prefix-
point is minimal, and conversely if E has binary meets, which is always the case for a standard ordered
collection.

3.7 Natural numbers
Bearing in mind that we do not assume Infinity, we must carefully define the class N of all natural
numbers. Specifically, we shall construct the Zermelo natural numbers:

N = {Nothing, Just(Nothing), Just(Just(Nothing)), . . .}

where Nothing
def
= ∅ and Just(x)

def
= {x}. Firstly, we define the monotone endofunction Maybe on Class

that sends X to {Nothing}∪{Just(x) | x∈X}.4 So a class X is Maybe-prefixed iff it contains Nothing
and, for any x∈X , contains Just(x). We want N to be the least Maybe-prefixed class—“least” means
that N is included in an arbitrary Maybe-prefixed class.

We cannot simply define N to be the intersection of all Maybe-prefixed classes, as that would be
impredicative. Instead we proceed as follows.

Proposition 3.5. The class N
def
= µMaybe exists.

Proof. First note that a classX is Maybe-postfixed iff every x∈X is either Nothing or Just(x) for some
x∈X . When this is so, say that a subclass U of X is inductive when it contains Nothing if X does, and,
for all x∈U , contains Just(x) if X does.

For an inhabited class I , we note that Maybe preserves I-indexed intersections, and so any I-indexed
intersection of Maybe-postfixpoints is Maybe-postfixed. Therefore, any thing x that is contained in a
Maybe-postfixed set is contained in a least such set—viz., the intersection of all Maybe-postfixed sets
that contain x. We call this set ↓x.

Define N to be the class of all x such that ↓ x exists and its only inductive subset is ↓ x itself. This
class has the required properties.

We often write 0
def
= Nothing and, for n∈N, write n + 1

def
= Just(n). The standard properties of N

hold, including the following.

Proposition 3.6 (Recursion over N). For any sequence of classes (Bn)n∈N and any p ∈ B0 and L ∈∏
n∈N(Bn → Bn+1), there is a unique sequence b∈

∏
n∈N Bn such that b0 = p and, for all n∈N, we

have bn+1 = Ln(bn).

The axiom of Infinity says that a Maybe-prefixed set exists; this is equivalent to N being a set.
3This terminology follows [SP82]. Some authors use the opposite terminology, following [MS78].
4This terminology comes from functional programming [Ha06].
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4 Well-foundedness and scaffolds

4.1 Set-based relations
We shall now consider relations on a class, leading up to the key notion of well-foundedness.

Definition 4.1. Let (C,<) be a class equipped with a relation.

(a) A subclass X of C is hereditary when every child of an element of X is in X .

(b) Let x∈C. An element y∈x is

• a child of x when y < x.

• a descendant of x, written y <∗ x, when there is a sequence

y = z0 < · · · < zn = x

• a strict descendant of x, written y <+ x, when there is such a sequence with n > 0.

We write J<(x) for the class of all children of x, and J∗
<(x) for the class of all descendants, and

J+
< (x) for the class of all strict descendants. Thus J∗

<(x) is the least hereditary subclass of C that
contains x. The subscript < is often omitted.

Example 4.2. Consider the membership relation on T. A class X is membership-hereditary or transitive
when every element of an element of X is in X . For a thing x, we write E(x) for its element set, which
is x or ∅ according as x is a set or an urelement. We write E∗(x) for the class of all membership-
descendants of x, and E+(x) for the class of all strict ones. Thus E∗(x) is the least transitive class
containing x.

Definition 4.3. A relation < on a class C is

• set-based when J(x) is a set for all x∈C.

• iteratively set-based when each x∈C is contained in a hereditary subset of C; this is equivalent
to J∗(x) being a set.

Thus < is iteratively set-based iff <∗ is set-based.

Proposition 4.4. Infinity is equivalent to the statement: “Every set-based relation on a class is iteratively
set-based.”

Proof. For (⇒), let < be a set-based relation on a class C, and x∈C. By induction on n∈N, the class
Jn(x) of descendants of x at depth n is a set, since

J0(x) = {x}
Jn+1(x) =

⋃
y∈Jn(x)

J(y)

So the class J∗(x) =
⋃

n∈N J
n(x) is a set.

For (⇐), the relation on T given by {⟨x, y⟩ | y = Just(x)} is set-based, and the descendant class of
Nothing is N. So if set-based implies iteratively set-based, then N is a set.

Example 4.5. The membership relation on T is set-based, and is iteratively set-based iff the Transitive
Containment axiom holds: Every thing is contained in a transitive set. Thus, by Proposition 4.4, this
axiom follows from Infinity.
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4.2 Well-founded set-based relations
The notion of well-foundedness relies on the following concepts.

Definition 4.6. Let (C,<) be a class equipped with a relation. Let X be a subclass.

(a) X is inductive when every element of C whose children are all in X is in X .

(b) An element of X is minimal when it has no child in X .

Now we are ready to formulate well-foundedness.

Proposition 4.7. Let (C,<) be a class equipped with a set-based relation. The following are equivalent:

(a) The only inductive subclass of C is C itself.

(b) Every inhabited subclass of C has a minimal element.

(c) The relation < is iteratively set-based, and every inhabited subset of C has a minimal element.

Proof. Conditions (a) and (b) are equivalent because a subclass of C is inductive iff its complement has
no minimal element.

To prove (a) implies (c), we need only show that < is iteratively set-based: for all x∈C, the class
J∗(x) is a set, by induction on x.

To show (c) implies (b), any subclass Y of C inhabited by x gives a subset Y ∩J∗(x) of C inhabited
by x. The latter has a minimal element, which is also a minimal element of Y .

When the above conditions hold, we say that < is a well-founded set-based relation.

Example 4.8. Consider again the membership relation on T. A class X is membership-inductive when
every thing whose elements are all in X is in X . An element x∈X is membership-minimal when it has
no element in common with X . We can say that membership is well-founded in each of the following
ways.

• The axiom scheme of Membership Induction: The only membership-inductive class is T.

• The axiom scheme of Class Regularity: Every inhabited class has a membership-minimal element.

• Transitive Containment + the axiom of Regularity: Every inhabited set has a membership-minimal
element.

Here are some basic properties of well-founded relations.

Proposition 4.9. Let (A,<) and (B,<′) be classes equipped with a set-based relation, and f :A → B
a function such that x < y implies f(x) <′ f(y). If <′ is well-founded, then < is too.

Proof. Let X be an inductive subclass of A. We prove by induction on y∈B that f−1(y) ⊆ X .

Proposition 4.10. Let (C,<) be a class equipped with a set-based relation.

(a) The relation <+ is well-founded iff < is.

(b) If < is well-founded, then there is no infinite sequence · · · < x1 < x0.

Proof.

(a) The direction (⇒) is by Proposition 4.9. For (⇐), let X be a <+-inductive subclass of C. For all
x ∈ C, we prove J∗(x) ⊆ C by induction on x.

15



(b) Fix such a sequence. We prove that every x∈C fails to appear in it, by induction on x.

Functions and partial functions can be defined by well-founded recursion:

Proposition 4.11. Let (A,<) be a class equipped with a well-founded set-based relation, and B an
A-tuple of classes.

(a) For any L ∈
∏

x∈A((
∏

y∈J(x)By) → Bx), there is a unique function F ∈
∏

x∈ABx sending
x ∈ A to Lx(F ↾J(x))). In other words, the endofunction ΦL on

∏
x∈ABx sending F to x 7→

Lx(F ↾J(x)) has a unique fixpoint.

(b) For any L ∈
∏

x∈A((
∏

y∈J(x)By) ⇀ Bx), let ΨL be the monotone endofunction on
∏⇀

x∈ABx

sending (M,F ) to (N,G), where N is the class of all x∈A such that J(x) ⊆ M and F ↾J(x)∈
Dom(Lx), and G sends such an x to Lx(F ↾J(x)). Then ΨL has a least prefixpoint that is also a
greatest postfixpoint and therefore a unique fixpoint.

Proof. We first prove part (b). For a hereditary subclass M of A, an attempt on M is a function F ∈∏
x∈M Bx such that, for all x ∈M , we have F ↾J(x)∈ Dom(Lx) and F (x) = Lx(Fx ↾J(x)). Thus a

ΨL-postfixpoint (M,F ) consists of a hereditary subclass M of A, and an attempt F on M . Induction
shows that

• any attempt on M and attempt on M ′ agree on M ∩M ′

• any postfixpoint is included in any prefixpoint.

Let P be the class of all x such that there is a (necessarily unique) attempt on J∗(x). Let H send each
x∈P to its image under the attempt on J∗(x). Then (P,H) is a fixpoint, since any attempt g on J+(x)
such that g ↾J(x)∈ Dom(Lx) extends to an attempt g ∪ {⟨x, Lx(g ↾J(x))⟩} on J∗(x). So part (b) is
proved.

If Lx is total for all x∈A, then any ΨL-prefixpoint is total, and ΦL is the restriction of ΨL to total
functions, so part (a) follows.

4.3 Generating a subclass
Suppose we have a class C. We sometimes want to show that a given endofunction on Sub(C) has a
least prefixpoint. The following makes this possible.

Definition 4.12.

(a) A scaffold on C consists of

• a subclass D

• a relation < from C to D.

We call x∈D a parent and y < x a child of x. The scaffold is set-based when, for all x∈D, the
class J<(x)

def
= {y∈C | y < x} is a set.

(b) A scaffold (D,<) on C gives rise to a set-continuous endofunction Γ(D,<) on Sub(C), sending
X to the class of all x∈D whose children are all in X .

Thus a subclass X of C is

• Γ(D,<)-prefixed iff every parent whose children are all in X is in X

• Γ(D,<)-postfixed iff it is a hereditary subclass of D.
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Proposition 4.13. Let (D,<) be a scaffold on C.

(a) (Generated subclass.) If the scaffold is set-based, then Γ(D,<) has a least prefixpoint, which is
also the greatest postfixpoint on which < is well-founded.

(b) (Cogenerated subclass.) The endofunction Γ(D,<) has a greatest postfixpoint.

Proof.

(a) First note that < is a set-based relation on C, since for x∈C \D, the class J(x) is ∅.

Take the class of all x∈C such that J∗(x) is a subset of D whose only inductive subset is itself.
This is clearly the least Γ(D,<)-prefixed subclass. By inductive inversion, it is Γ(D,<)-postfixed.
The rest is straightforward, using the fact that any set-based well-founded relation is iteratively
set-based.

(b) Take the class of all x∈C such that J∗(x) ⊆ D.

Note All scaffolds in this paper are on T, except in the proof of Theorem 7.3, where we use a scaffold
on a set.

Example 4.14. The endofunction Maybe arises from the following scaffold on T: a parent is either
Nothing, which has no children, or Just(x), whose sole child is x. So Proposition 3.5 is an instance of
Proposition 4.13(a).

Example 4.15. The endofunction Γ(T,∈) sends a class X to Ur ∪ PX . We define

Vimpure
def
= µΓ(T,∈)

which is the least P-prefixed class that includes Ur. Proposition 4.13(a) tells us that Vimpure is the least
membership-inductive class, and the greatest transitive class on which membership is well-founded. An
element is called a vonniad—the name alludes to “von Neumann iteration”.

Example 4.16. A thing is pure when its membership-descendants are all sets. The class of all pure things
is νP , which is an instance of Proposition 4.13(b) since P = Γ(Set,∈). Likewise, the class of all pure
vonniads is given by

Vpure
def
= µP

which is an instance of Proposition 4.13(a).

4.4 Generating a partial function
Now suppose we have a class-family of classes (Bx)x∈a. We sometime want to show that a given
endofunction on

∏⇀
x∈ABx has a least prefixpoint. The following makes this possible.

Definition 4.17. Let (D,<) be a set-based scaffold on A.

(a) A functionalization of (D,<) on B is an L ∈
∏

x∈D((
∏

y∈J(x)By)⇀ Bx).

(b) Let L be such a functionalization. The set-continuous endofunction ∆L
(D,<) on

∏⇀
x∈ABx sends

(M,F ) to (N,G), where

• N is the class of x∈D such that J(x) ⊆M and F ↾J(x)∈ Dom(Lx)

• G sends each such x to Lx(F ↾J(x)).
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Proposition 4.18 (Generated partial function). Let (D,<) be a set-based scaffold on A with functional-
ization L on B. Then ∆L

(D,<) has a least prefixpoint, which is also the greatest postfixpoint (M,F ) such
that < is well-founded on M .

Proof. Let E be the subclass of A generated by (D,<). Since E is Γ(D,<)-prefixed, ∆L
(D,<) restricts to

an endofunction on
∏⇀

x∈E Bx. By Proposition 4.11(b), the latter has a least prefixpoint (M,F ) that is
also a greatest postfixpoint, since < is well-founded on E. Because (M,F ) is a minimal prefixpoint in∏⇀

x∈E Bx, which is a lower subcollection of
∏⇀

x∈ABx, it is a minimal and therefore least prefixpoint in∏⇀
x∈ABx.

For any postfixpoint (N,G), the class N is Γ(D,<)-postfixed. So if < is well-founded on N , then
N ⊆ E, giving (N,G) ∈

∏⇀
x∈E Bx and so (N,G) ⩽ (M,F ).

4.5 Introspection
This section is not used in the sequel.

If membership is well-founded, then N is the unique Maybe-fixpoint, i.e., the unique class X such
that x ∈ X iff either x = Nothing or x = Just(y) for some y∈X . Various other classes defined in the
paper, such as Wide(S) and Broad(G) and DerivR and Ord, have a similar property. That is because
they are “introspectively generated”, in a sense that I now explain.

Definition 4.19. Let C be a class.

(a) A relation < on C is introspective when < is included in ∈+. In other words: when, for all x∈C,
we have J(x) ⊆ E+(x).

(b) Likewise, a scaffold (D,<) on C is introspective when < is included in ∈+.

Proposition 4.20.

(a) Transitive Containment is equivalent to the statement: “Every introspective relation on a class is
iteratively set-based.”

(b) Membership Induction is equivalent to the statement: “Every introspective relation on a class is
well-founded.”

Proof.

(a) Transitive Containment is equivalent to membership being iteratively set-based, which is equiv-
alent to ∈+ being iteratively set-based, which is equivalent to every introspective relation being
iteratively set-based.

(b) Similar.

Now we come to the key result of the section:

Proposition 4.21. Each of the following is equivalent to Membership Induction.

(a) For any class C, and any set-based introspective scaffold (D,<) on C, the endofunction Γ(D,<)

on Sub(C) has a unique fixpoint.

(b) For any class A and A-tuple of classes B, and any set-based introspective scaffold (D,<) on A
with functionalization L on B, the endofunction ∆L

(D,<) on
∏⇀

x∈ABx has a unique fixpoint.

Proof.
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(a) Membership Induction implies this by Proposition 4.20(b) and Proposition 4.13(a), since a least
prefixpoint that is also a greatest postfixpoint is a unique fixpoint. For the converse, since T is a
fixpoint of Γ(T,∈), it must be the least prefixpoint and so ∈ is well-founded over it.

(b) Membership Induction implies this by Proposition 4.20(b) and Proposition 4.18. For the converse,
the scaffold (T,∈) on T has a functionalization L on (1)x∈T that at x takes [∗]y∈E(x) to ∗. Since
the partial function (T, x 7→ ∗) is a fixpoint of ∆L

(T,∈)), it must be the least prefixpoint and so < is
well-founded over T.

Example 4.22. Let us apply Proposition 4.21(a) to Example 4.14. We see that, if Membership Induction
holds, then N is the unique Maybe-fixpoint.

5 Using ordinals

5.1 Set-based well-orderings
Having completed our study of sets, we move on to the study of ordinals. Since the notion of ordinal is
based on that of well-ordering, we consider the latter first. As in Section 4.2, we treat not only relations
on a set, but also on a class.

Let C be a class with a relation <. Recall the notation J(x) def
= {y∈C | y < x}. We write ⊑ for the

extensional preorder, given by x ⊑ y
def⇐⇒ J(x) ⊆ J(y). This is an order iff J is injective, and we

then say that < is extensional.
A strict order on a class C is an irreflexive transitive relation <. We write ⩽ for the corresponding

order, given by x ⩽ y
def⇐⇒ x < y ∨ x = y. Thus a subclass is lower iff it is hereditary.

A linear order on a class C is a relation < such that no two elements of C are mutually related and,
for any x, y∈C, either x = y or x < y or y < x. It follows that < is both extensional and a strict order,
with ⊑ and ⩽ coinciding.

Now let us formulate the notion of well-ordering.5

Proposition 5.1. Let (C,<) be a class equipped with a set-based relation. The following are equivalent:

(a) < is well-founded, extensional and transitive.

(b) < is well-founded and, for any x, y∈C, either x = y or x < y or y < x.

(c) < is a strict order, and any inhabited subclass has a least element.

(d) < is a strict order, and any inhabited subset has a least element.

Moreover, when these conditions hold, the relations ⊑ and ⩽ coincide.

Proof. Firstly, (b) implies (a) since a well-founded relation cannot mutually relate two elements, by
Proposition 4.10(b).

For (a) ⇒ (b) say that x, y∈C are comparable when either x = y or x < y or y < x. We claim that,
for all a, b∈C, if a is comparable with all y∈J(b), and all x∈J(a) with b, then a is with b. It follows
by induction that any a, b∈C are comparable.

To prove the claim, it suffices to show that a ̸< b and b ̸< a implies a = b. Any x ∈ J(a) is
comparable with b, and is therefore < b as b ⩽ x would imply b < a. Thus J(a) ⊆ J(b), and likewise
J(b) ⊆ J(a). Extensionality gives a = b.

The rest follows from Proposition 4.7, noting that any set-based transitive relation is iteratively set-
based.

5Cf. [Gra78, Page 93].
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A relation satisfying the above conditions is called a set-based well-ordering. Henceforth, we often
abbreviate (C,<) as C. Now we consider how to compare set-based well-ordered classes.

Proposition 5.2. Let A and B be set-based well-ordered classes. For a function f : A → B, the
following are equivalent.

• f is an isomorphism from A to a hereditary subclass of B.

• The square

A

J
��

f // B

J
��

PA
Pf
// PB

commutes.6 Explicitly: for all x∈A, we have J(f(x)) = {f(y) | y∈J(x)}.

Proof. (⇒) is straightforward. For (⇐), we show that f(x) = f(x′) implies x = x′ by induction on
x∈A as follows: f(x) = f(x′) implies that for all y∈J(x) there is y′ ∈J(x′) such that f(y) = f(y′)
and hence y = y′ so J(x) ⊆ J(x′), and the reverse inclusion likewise, so extensionality of A gives
x = x′.

A function satisfying the above conditions is called an embedding.

Proposition 5.3.

(a) For set-based well-ordered classes A,B,C, the composite of embeddings A → B and B → C is
an embedding A→ C.

(b) For set-based well-ordered classes A and B, there is at most one embedding A→ B.

Proof.

(a) Follows from the fact that, for any hereditary subclass X of B, an embedding B → C restricts to
an embedding X → C.

(b) For embeddings f, g :A→ B, we show f(x) = g(x) by induction on x∈A.

Next we consider isomorphisms:

Proposition 5.4. Let A and B be set-based well-ordered classes.

(a) For a function f :A→ B, the following are equivalent:

• f is an isomorphism.

• f is a surjective embedding.

• f is an embedding, and there is an embedding B → A.

(b) There is at most one isomorphism A ∼= B.

Proof.

(a) Clearly, the first two conditions are equivalent and imply the third. Lastly, if f and g :D → C
are embeddings, then Proposition 5.3(a) gives endo-embeddings g ◦ f on C and f ◦ g on D. By
Proposition 5.3(b), both are identity maps.

6In the language of category theory, this says that f is a P-coalgebra map.
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(b) Special case of Proposition 5.3(b).

Proposition 5.5. Let C be a set-based well-ordered class.

(a) The only hereditary subclasses of C are J(x), for x∈C, and C itself.

(b) These are pairwise non-isomorphic. In other words:

• For any x, y∈C, if J(x) ∼= J(y), then x = y.

• For any x∈C, we do not have J(x) ∼= C.

Proof.

(a) Let X be a hereditary subclass. If it has a strict upper bound, it has a strict supremum x and is
J(x). Otherwise it is C.

(b) For x ∈ C and a hereditary subclass Y of C, any isomorphism θ : J(x) ∼= Y is an embedding
J(x) → C. By Proposition 5.3(b), this must be the inclusion, so J(x) = Y . Since x ̸∈ Y , we
cannot have Y = C, nor X = J(y) for y > x. Lastly, for y < x, we canot have Y = J(y) since
y ∈ Y .

Proposition 5.6.

(a) For set-based well-ordered classes C and D, either C embeds into D or vice versa.

(b) Let B be a subclass of a set-based well-ordered class (C,<). Then < is a set-based well-ordering
on B, and there is a deflationary embedding B → C.

Proof.

(a) DefineR(C,D) to be the relation from C toD that relates x∈C to y∈D when J(x) ∼= J(y). It is
an isomorphism from a hereditary subclass X of C to a hereditary subclass Y of D. If X = J(x)
and Y = J(y), then (x, y) ∈ R(C,D), contradiction. Therefore either X = C or Y = D, which
gives the two cases.

(b) On the subclassB, the relation< is set-based and well-founded by Proposition 4.9, and also linear,
hence a well-ordering. Obtain R(B,C) as before. Induction shows that, for each x∈B, there is
y ⩽ x such that (x, y) ∈ R(B,C). Thus R is total and deflationary.

Proposition 5.7. Let (C,<) be a set-based well-ordered class. The following are equivalent.

(a) C is a proper class.

(b) Every subset of C has a strict supremum.

(c) Every hereditary subset of C has a strict supremum.

(d) Every set-based well-ordered class embeds into C.

(e) Every well-ordered set is isomorphic to J(x) for some x∈C.

Proof. Clearly (b) implies (c). For the converse, given a subsetA ofC, its hereditary closure {x∈C | ∃y∈A. x ⩽ y}
has the same strict upper bounds.

(c) implies (a), because C itself does not have a strict upper bound, so is not a set.
(a) implies (d) because, for any set-based well-ordered class B that does not embed into C, Propo-

sition 5.6(a) gives an embedding f : C → B. The range of f is a hereditary subclass of B that is not
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a set, and therefore is B by Proposition 5.5(a). So f is an isomorphism C ∼= B, and its inverse is an
embedding B → C, contradiction.

Clearly (d) implies (e).
Lastly, (e) implies (c) because, for any hereditary subset A of C, there is an isomorphism f :A ∼=

J(x) for some x∈A, which is the identity by Proposition 5.3(b). So x is a strict supremum of A.

We say that (C,<) is complete when it has the above properties.

Proposition 5.8. Any two complete set-based well-ordered classes are uniquely isomorphic.

Proof. By Propositions 5.7(d) and 5.4.

5.2 Ordinals
Our next task is to define Ord. To do this, we write TrSet for the class of all transitive sets. Thus the
function Γ(TrSet,∈) sends a class X to the class of all its transitive subsets. By Proposition 4.13(a), we
can define

Ord
def
= µΓ(TrSet,∈)

Alternatively, we can say that an ordinal is a transitive set of transitive pure vonniads. Here is yet another
characterization of Ord:

Proposition 5.9. Ord is the unique class of setsX such that (X,∈) is a complete set-based well-ordered
class.

Proof. To prove uniqueness, let X,Y be two such classes. Proposition 5.8 gives an isomorphism f :
(X,∈) ⇒ (Y,∈). For all x∈X , we have f(x) = x, by induction on x: since f(x) and x are sets that
(by the inductive hypothesis) have the same elements, they are equal. So X = Y .

Now we show Ord has the required property. By inductive inversion, every ordinal is a transitive set
of ordinals, so membership is extensional and transitive on Ord. Furthermore, membership is (set-based
and) well-founded on Ord, so it is a well-ordering. Lastly, (Ord,∈) is complete since any transitive set
of ordinals is an ordinal and its own supremum.

It is convenient to refer to a special value ∞∞ that is deemed greater than every ordinal. (Some authors
call it “Absolute Infinity”.) To ensure that it is not an ordinal, we define ∞∞ def

= {{0}}. We obtain the
ordered class Ord∞

def
= Ord ∪ {∞∞}, whose elements are called extended ordinals. For any extended

ordinals α ⩽ β, we define intervals

(α . . β)
def
= {γ∈Ord | α < γ < β}

[α . . β)
def
= {γ∈Ord | α ⩽ γ < β}

We define 0
def
= ∅ and, for any ordinal α, define Sα

def
= α ∪ {α}. For each class I , we have the supremum

function
∨

I : OrdI∞ → Ord∞ and the strict supremum function ssupI : OrdI → Ord∞. They are
connected via the equation ssupi∈Iαi =

∨
i∈I Sαi.

By Proposition 5.5(a), we have a bijection from Ord∞ to the collection of all lower classes of ordi-
nals, sending α to [0 . . α). The inverse sends a lower class to its strict supremum.

By completeness, any set-based well-ordered class C is uniquely isomorphic to a lower class of
ordinals, whose strict supremum is called the order-type of C.

More generally, let (C,<) be a class equipped with a well-founded set-based relation. We recursively
define the rank function ρ :C → Ord, sending x to ssupy∈J(x)ρ(y), which by induction is also the strict
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supremum of the lower set {ρ(y) | y∈J+(x)}. The range of ρ is a lower class, and its strict supremum
called the height of (C,<).

As an example, for m,n∈N, define m ≺ n
def⇐⇒ m+ 1 = n. Since ≺ is a set-based well-founded

relation on N, we obtain the injection ι : N → Ord sending Nothing 7→ 0 and Just(n) 7→ S(ιn). The
height of (N,≺), denoted ω, is also the order-type of (N, <). It is a limit ordinal if Infinity holds, and ∞∞
otherwise.

5.3 Inductive chains for set-continuous functions
We recall a widely used notion in set theory:

Definition 5.10. An ascending chain within an ordered collection A is a monotone function Ord → A.
That is, a sequence (xα)α∈Ord such that α ⩽ β implies xα ⩽ xβ .

Proposition 5.11. For standard ordered collections D and E , a set-continuous function h : D → E
preserves the supremum of every ascending chain (xα)α∈Ord.

Proof. Define p def
=

∨
α∈Ord xα.

First we show that

↠

p =
⋃

α∈Ord

↠

xα. We just prove ⩽, as ⩾ is obvious. Suppose E =
∏⇀

x∈ABx

and p = (N,F ). We thus have N =
⋃

α∈OrdMα, where for each α∈Ord we have xα = (Mα, F ↾Mα
).

Given an element y ∈

↠

p, we have y = (K,N ↾K), for some subset K of N . For each k∈N , let k be
the least ordinal β such that k ∈ Mβ . Put α def

=
∨

k∈K k, and we see that K ⊆ Mα. Hence y ∈

↠

xα as
required.

It follows that

h(p) =
∨
y∈

↠

p

h(y)

=
∨

α∈Ord

∨
y∈

↠

xα

h(y)

=
∨

α∈Ord

xα

The notion of ascending chain is used as follows.

Definition 5.12. Let h be a set-continuous endofunction on a standard ordered collection E . An inductive
chain for h is an ascending chain (xα)α∈Ord within E such that

x0 = ⊥
xSα = h(xα) for any ordinal α
xα =

∨
β<α xβ for any limit ordinal α.

Equivalently: such that Xα =
∨

β<α h(µ
βh), for every ordinal α.

Clearly, there is at most one inductive chain. It it exists, it is written (µαh)α∈Ord and its supremum
µ∞∞h. Existence is unclear in general, since we cannot recursively define a sequence of classes, but we
shall see various cases where it does exist.

An inductive chain yields a least prefixpoint:

23



Proposition 5.13. Let h be a set-continuous endofunction on a standard ordered collection E . If h has
an inductive chain, then µ∞∞h is a least h-prefixpoint.

Proof. Applying Proposition 5.11 to the inductive chain tells us that µ∞∞h is h-fixed. To show leastness,
let z be a prefixpoint. Induction on α∈Ord gives µαh ⩽ z. So µ∞∞h ⩽ z.

For an extended ordinal α, an inductive chain stabilizes at α when µαh is h-prefixed, or equivalently
when µαh = µ∞∞h. Here is an application of this notion:

Proposition 5.14. For a set-continuous endofunction h on a standard ordered collection E , the following
are equivalent.

• h has a small prefixpoint.

• h has a small least prefixpoint.

• h has an inductive chain within Esmall that stabilizes at an ordinal.

Proof. If h has an inductive chain within Esmall that stabilizes at an ordinal α, then µαh is a small least
prefixpoint. Conversely, suppose h has a small prefixpoint x. Then we can define the inductive chain
by well-founded recursion as a function Ord →

↠
x. For stabilization, we prove a general fact: for any

any ascending chain (xα)α∈Ord in E , if
∨

α∈Ord p ∈ Esmall, then there is β ∈ Ord such that (xfα)α⩾β

is constant. Suppose E =
∏⇀

x∈ABx, and
∨

α∈Ord xα = (K,F ). By hypothesis, K is a set. For each
ordinal α, we have xα = (Mα, F ↾Mα

) for a subset Mα of N . For each k∈K, let k be the least ordinal
α such that k ∈Mα. Then β def

=
∨

k∈K k has the required property.

Here is the most important case (for our purposes) where inductive chains exist:

Proposition 5.15. Let E be a standard ordered collection, and h a set-continuous endofunction on E
that preserves smallness.

(a) h has an inductive chain within Esmall, and a least prefixpoint.

(b) The following are equivalent:

• h has a small prefixpoint.

• µh is small.

• The inductive chain stabilizes at an ordinal.

Proof.

(a) We define the inductive chain by well-founded recursion as a function Ord → Esmall.

(b) By Proposition 5.14.

As an example of Proposition 5.15(a), if Powerset is assumed, then P has an inductive chain consist-
ing of sets. It is the well-known cumulative hierarchy.

We see next that Collection guarantees the existence of inductive chains. This is adapted from [Tak69,
Theorem 1] and [Acz88, Theorem 6.4] and [AR01, Theorem 5.1].

Proposition 5.16. (Assuming Collection.) Let h be a set-continuous endofunction on a standard
ordered collection E . Then h has an inductive chain and a least prefixpoint.
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Proof. Via the bijection E ∼=
∏⇀

x∈ABx we identify elements of E with subclasses W of
∑

x∈ABx that
are single-valued, meaning that, for all x∈A, there is at most one y∈Bx such that ⟨x, y⟩ ∈W .

A subclass M of Ord×
∑

x∈ABx represents a sequence (Mα)α∈Ord of subclasses of
∑

x∈ABx via
Mα

def
= {x∈C | ⟨α, x⟩ ∈M}. We say thatM is good when (Mα)α∈Ord is ascending and, for any ordinal

α and ⟨x, y⟩∈Mα, there is β < α and a single-valued subset W of Mβ such that ⟨x, y⟩ ∈ h(W ).
For a good class M , we show by induction on α∈Ord that the class Mα is single-valued, as follows.

For x∈A and y, y′ ∈Bx, suppose ⟨x, y⟩ and ⟨x, y′⟩ are in Mα. We obtain β < α and a single-valued
subset W of Mβ such that ⟨x, y⟩ ∈ h(W ), and likewise β′ < α and a single-valued subset W ′ of Rβ′

such that ⟨x, y′⟩ ∈ h(W ′). Without loss of generality we have β ⩽ β′, so W ′ is a subset of Mβ′ , and
henceW ∪W ′ is too. By the inductive hypothesis at β′, the classMβ is single-valued, so the setW ∪W ′

is too. Next, ⟨x, y⟩ ∈ h(W ) gives ⟨x, y⟩ ∈ h(W ∪W ′), and likewise ⟨x, y′⟩ ∈ h(W ∪W ′). So y = y′.
Clearly, any union of good classes is good; in particular, the union R of all good sets. We show that,

for any ordinal α, we have Rα =
∨

β<α h(Rβ). so that (Rα)α∈Ord is an inductive chain. We just prove
⩾, as ⩽ is obvious. Given β < α and ⟨x, y⟩∈h(Rβ), there is a subset K of Rβ such that ⟨x, y⟩ ∈ h(K).
For each k∈K, we have k ∈ Rβ since K ⊆ Rβ , so the class Tk of all good sets X such that k ∈ Xβ is
inhabited. By Collection, there is S∈

∏
k∈K PinhTk. For each k∈K, the set Lk

def
=

⋃
Sk is a member of

Tk.
The set N def

=
⋃

k∈K Lk is good; and K ⊆ Nβ since, for all k ∈ K, we have k ∈ Lk. Putting
N ′ def

= {⟨α, ⟨x, y⟩⟩}∪N , we have N ′
β = Nβ , so ⟨x, y⟩ ∈ h(K) ⊆ h(Nβ) = h(N ′

β), so N ′ is good. Thus
⟨x, y⟩ ∈ N ′

α ⊆ Rα as required.
The supremum

∨
α∈Ord is a least prefixpoint by Proposition 5.13.

Proposition 4.13(b) and Proposition 5.16 suggest the following question: for a class C, does ev-
ery set-continuous endofunction on Sub(C) have a greatest postfixpoint? The question is addressed
in [Acz88, Theorem 6.5] and [Acz08].

5.4 Inductive chains for scaffold functions
We see next that every function arising from a set-based scaffold has an inductive chain.

Proposition 5.17. Let (D,<) be a set-based scaffold on a class C, generating M ∈Sub(C).

(a) For each extended ordinal α, we define Mα
def
= {x∈M | ρ(x) < α}. Then Γ(D,<) has inductive

chain (Mα)α∈Ord with supremum M∞∞.

(b) The height of (M,<) is the least extended ordinal at which the inductive chain stabilizes.

(c) If Γ(D,<) preserves smallness, then M is a set iff the height of (M,<) is an ordinal.

Proof.

(a) The requirements for zero, limit ordinals and ∞∞ are obvious. The requirement for MSα holds
because it says that an element of M with rank ⩽ α is the same thing as an element of D whose
children are all in M and have rank < α.

(b) Since the height is the strict supremum of the ranks in M .

(c) By part (b) and Proposition 5.15.

As an example of Proposition 5.17(a)–(b), we see that P has an inductive chain of classes, which
does not stabilize at any ordinal, since every ordinal is its own rank. Its supremum (union) is Vpure.
Another example: for any broad arity F , we see that Maybe◦F has an inductive chain, whose supremum
is SimpleBroad(F ).

Here is the analogue of Proposition 5.17 for partial functions:
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Proposition 5.18. Let (D,<) be a set-based scaffold on a classAwith functionalizationL on anA-tuple
of classes B, generating (M,F )∈

∏⇀
x∈ABx.

(a) For each extended ordinal α, we define Mα
def
= {x∈M | ρ(x) < α} and pα

def
= (Mα, F ↾Mα

).
Then (pα)α∈Ord is an inductive chain for ∆L

(D,<) with supremum p∞∞.

(b) The height of (M,<) is the least extended ordinal at which the inductive chain stabilizes.

(c) If ∆L
(D,<) preserves smallness, then M is a set iff the height of (M,<) is an ordinal.

Proof. Similar to the proof of Proposition 5.17

6 Category theory

6.1 Categories and functors
To help organize parts of our story, we use some category theory:

• The fact that initial algebras of isomorphic functors are isomorphic.

• The notion of an “algebraically least” prefixpoint.

• The fact that class summation preserves connected limits.

For the sake of this paper, a category C consists of a collection ob C and an indexed family of
collections (C(x, y))x,y∈ob C , together with composition and identity morphisms satisfying the usual
three laws. For example:

• Class is the category of all classes and functions.

• For a class E, we write ClassFam(E) for the category of all class-families within E and maps
between them.

We also consider the following functors.

• P is an endofunctor on Class, sending f :A→ B to the function

PA → PB
U 7→ {f(x) | x∈U}

• Maybe is an endofunctor on Class.

• Any class I gives a functor
∑

:ClassI → Class.

• Any set K gives a functor
∏

:ClassK → Class.

As stated in Section 3.2, all talk about collections—and therefore all talk about categories—is informal.
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6.2 Initial algebras
Since initial algebras frequently appear in our story, we present the key notions.

Definition 6.1. Let F be an endofunctor on a category C.

(a) An F -algebra (x, θ) consists of a C-object x (the carrier) and morphism θ :Fx → x (the struc-
ture).

(b) Given F -algebras (x, θ) and (y, ϕ), a map (x, θ) → (y, ϕ) is a C-morphism f : x → y such that

the square Fx

θ

��

Ff // Fy

ϕ

��
x

f
// y

commutes.

An F -algebra (x, θ) is initial when, for every F -algebra (y, ϕ), there is a unique map (x, θ) → (y, ϕ).
It follows that θ is an isomorphism; this fact is called Lambek’s lemma, and inductive inversion is a
special case. Here are some examples of initial algebras.

• The endofunctor P on Class has initial algebra (Vpure, idVpure).

• The endofunctor Maybe on Class has initial algebra (N, idN).

These statements hold because Vpure and N are each equipped with a well-founded relation by Proposi-
tion 4.13(a). So we can use Proposition 4.11(a) to construct a unique algebra map to any algebra.

We next see that initial algebras of isomorphic endofunctors are isomorphic. Recall that, for cate-
gories C,D and functors F,G : C → D, a natural isomorphism α : F ∼= G associates to each object
x∈ C a D-isomorphism αx :Fx ∼= Gx in such a way that, for each C-morphism f : x → y, the square
Fx

αx

//

Ff

��

Gx

Gf

��
Fy

αy // Gy

commutes.

Proposition 6.2. On a category C, let F and G be endofunctors with initial algebras (x, θ) and (y, ϕ)
respectively. Then any natural isomorphism α :F ∼= G induces an isomorphism x ∼= y.

Proof. Let f be the unique F -algebra map (x, θ) → (y, ϕ◦αy) and g the uniqueG-algebra map (y, ϕ) →

(x, θ◦α−1
x ). The diagram Fx

Ff //

θ

��

Fy

αy

��

Fg // Fx

αx

��
idFx

��

Gy

ϕ

��

Gg // Gx

α−1
x

��
Fx

θ

��
x

f
// y

g
// x

commutes, so g◦f is an F -algebra endomap

on (x, θ). Since idx is too, they are equal. Likewise f ◦ g = idy .
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6.3 Algebraically least prefixpoints
Observe that our examples Vpure and N serve as both least prefixpoints and initial algebras. We shall now
formulate this situation in general.

Definition 6.3. An ordered category consists of

• a category C

• an order ⩽ on the collection ob C

• for each pair of objects x ⩽ y, an inclusion morphism ix,y :x→ y

For each object x we must have ix,x = idx, and for any objects x ⩽ y ⩽ z the triangle x
ix,y //

ix,z ��

y

iy,z

��
z

must commute.

Our main examples of ordered categories are Class and ClassFam(E) for any class E.

Definition 6.4. Let C and D be ordered categories. A functor F : C → D is monotone when, for any
C-objects x ⩽ y, we have Fx ⩽ Fy and Fix,y = iFx,Fy.

Now let F be a monotone endofunctor on an ordered category C. Any F -prefixpoint x gives an
F -algebra R(x) def

= (x, iFx,x). Furthermore, for F -prefixpoints x ⩽ y, we have an algebra map ix,y :
R(x) → R(y).

Definition 6.5. A least F -prefixpoint a is algebraically least when the F -algebra R(a) is initial.

For example:

• P is a monotone endofunctor on Class, and Vpure is its algebraically least prefixpoint.

• Maybe is a monotone endofunctor on Class, and N is its algebraically least prefixpoint.

Here is a final observation (not used in the sequel). As stated above, our main examples are where C is
either Class or ClassFam(E) for a class E. In these cases, the requirement in Definition 6.5 for a to
be least is redundant. For suppose that a is an F -prefixpoint such that R(a) is initial. To show leastness
of a, it suffices to show minimality, since the ordered collection (ob C,⩽) has binary meets. So suppose
x is an F -prefixpoint such that x ⩽ a. Since R(a) is initial, the algebra morphism ix,a :R(x) → R(a)
has a section, so it is surjective, giving x = a.

6.4 Connected limits
Before we can discuss limits, we have to formulate the notion of a diagram.

A quiver (also called a directed multigraph) consists of a set of nodes and a set of edges, with each
edge having a source node and a target node. For nodes m,n we write m ↔ n when either an edge
m → n or an edge m → n exists. A quiver M is connected when there is a node a such that every node
m satisfies a↔∗ m.

Let M be a quiver. For a category C, an M-indexed diagram D in C consists of

• an object Dm for each node m

• a morphism Df :Dm → Dn for each edge f :m→ n.
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In the case that C = Class, we write limm∈M Dm for the limit of D, i.e., the class of all x∈
∏

m∈M Dm

satisfying Df (xm) = xn for every edge f :m→ n. Now we come to the promised result:

Proposition 6.6. For any class I , the functor
∑

:ClassI → Class preserves connected limits. More
precisely, for a connected quiver M and M-indexed diagram D in ClassI , the map

α :
∑
i∈I

lim
m∈M

Dm,i → lim
m∈M

∑
i∈I

Dm,i

sending ⟨i, [xm]m∈M⟩ to [⟨i, xm⟩]m∈M is bijective.7

Proof. Let y∈ limm∈M
∑

i∈I Dm,i. For any edge f :m → n, we see that ym and yn have the same left
component, since

(
∑
i∈I

Df,i)(ym) = yn

Hence, for any nodes m and n such that m↔∗ n, we see that ym and yn have the same left component.
By hypothesis, there is a node a such, for every nodem, we have a↔∗ m. Write i for the left component
of ya. Then for each node m, we can express ym as ⟨i, xm⟩. We obtain x ∈ limm∈M Dm,i, since for any
edge f :m→ n, we have

(
∑
i∈I

Df,i)(ym) = yn

i.e., ⟨i,Df,i(xm)⟩ = ⟨i, xn⟩
so Df,i(xm) = xn

So ⟨i, [xm]n∈M⟩, which is the unique α-preimage of y, is in
∑

i∈I limm∈M Dm,i.

Part III

Wide and Broad principles for sets
7 Infinity principles

7.1 Wide Infinity
Let us review what we have seen previously. The class N of all natural numbers is the algebraically least
Maybe-prefixpoint. The axiom of Infinity says that a Maybe-prefixed set exists, which is equivalent to
N being a set.

Now we continue. A set K (which in this context may be called an arity) gives rise to a monotone
endofunctor Maybe◦K on Class, sending X to MaybeXK . Thus a class X is Maybe◦K-prefixed iff it
contains Nothing and, for any K-tuple y within X , contains Just(y).

The algebraically least such class is called the class of all simple K-wide numbers, denoted by
SimpleWide(K). To show it exists, note that Maybe arises from the following set-based scaffold on
T: a parent is either Nothing, which has no children, or Just(y), for any K-tuple y, in which case
the set of children is {yk | k∈K}. So Proposition 4.13(a) gives a least Maybe◦K-prefixed class, and
Proposition 4.11(a) gives the initial algebra property.

7This result is an instance of [nLa24, Theorem 4.2] via the equivalence

ClassI ≃ ClassFam(I) = Class/I

that sends B to the class-family (i)⟨i,x⟩∈
∑

i∈I Bi
.
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Just

0
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1
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Nothing

Nothing

Figure 2: Visualization of a simple wide number

Example 7.1. Define K to be the arity {0, 1, 2}. The following are simple K-wide numbers:

• Nothing

• Just

NothingNothing
Nothing



• Just


Nothing
Nothing

Just

NothingNothing
Nothing




We can visualise a wide number as a two-dimensional well-founded tree. For example, the last number in
Example 7.1 is visualized in Figure 2, using the vertical dimension for

[
...
]

and the horizontal dimension
for internal structure, with the root appearing at the left and the Nothing-marked leaves at the right.
The axiom of Simple Wide Infinity says, for every arity K, that a Maybe◦K-prefixed set exists; this is
equivalent to SimpleWide(K) being a set.

There is an alternative version, formulated as follows.
A signature is a family of sets S = (Ki)i∈I , where we call i∈ I a symbol and the set Ki its arity.

It gives rise to a monotone endofunctor HS on Class, sending X to
∑

i∈I X
Ki . Thus a class X is HS-

prefixed iff, for any i∈I and Ki-tuple y within X , it contains ⟨i, y⟩. As before, there is an algebraically
least such class, which we call the class of all S-wide numbers, denoted by Wide(S).

The axiom of Full Wide Infinity says, for every signature S, that an HS-prefixed set exists; this is
equivalent to Wide(S) being a set. Previously this axiom has appeared in [vdB11, page 15] under the
name “Smallness of W-types”, alluding to the notion of W-type in type theory [ML84, MP00, AAG05].

Before giving the main result of the section, we give a result that allows us to work with injections
rather than inclusions:

Proposition 7.2.

(a) Infinity is equivalent to Dedekind Infinity: There is a set X and injection MaybeX → X .8

(b) Let K be a set. Then SimpleWide(K) is a set iff there is a set X and injection Maybe◦KX → X .

8For a class X , an injection MaybeX → X corresponds to a unary Dedekind encoding on X . When such an injection exists,
X is said to be Dedekind-infinite..
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(c) Let S be a signature. Then Wide(S) is a set iff there is a set X and injection HSX → X .

Proof. We just prove part (c), as the rest is similar. Any HS-prefixed class X , such as µHS , is equpped
with an injection iHSX,X :HSX → X . Conversely, given a class X and injection θ :HSX → X , the
unique algebra morphism f :R(µHS) → (X, θ) is injective. (For this says that any x∈µHS is the only
f -preimage of its f -image, which is proved by induction on x.) So if X is a set, then µHS is a set.

Theorem 7.3. Simple Wide Infinity, Full Wide Infinity and Exponentiation + Infinity are all equivalent.

Proof. To show that Full Wide Infinity implies Simple Wide Infinity: given a set K, define S to be the
signature (Li)i∈{0,1} where L0

def
= ∅ and L1

def
= K. We have a natural isomorphism Maybe◦K

∼= HS , so
Proposition 6.2 tells us that SimpleWide(K) is a set iff Wide(S) is a set.

To show that Simple Wide Infinity implies Infinity, we have a natural isomorphism Maybe ∼= Maybe1,
so Proposition 6.2 tells us that N is a set iff SimpleWide(1) is a set.

To show that Full Wide Infinity implies Exponentiation, let A and B be sets. Define the signature S
with nullary symbols (Leafb)b∈B and an A-ary symbol Node. Consider the injection BA → Wide(S)
sending a function f to the S-wide number

⟨Node, [⟨Leaff(a), [ ]⟩]a∈A⟩

Since Wide(S) is a set, BA is a set.
To show that Exponentiation+Infinity implies Full Wide Infinity, let S be a signature. By Exponen-

tiation, HS restricts to an endofunctor on Set. Following [Bar93], we form the ωop-chain

1 HS1
⟨⟩oo H2

S1
HS⟨⟩oo · · ·

H2
S⟨⟩oo

which may be called the “coinductive chain”. (Intuitively Hn
S1 is the set of S-trees with stumps at level

n.) Let M be the limit and θ : HSM → M the canonical map. (Intuitively M is the set of non-well-
founded S-trees.) We note, by Proposition 6.6, that HS preserves connected limits. So θ is bijective, and
therefore Wide(S) is a set by Proposition 7.2(c).

To show that Simple Wide Infinity implies Full Wide Infinity, let S = (Ki)i∈I be a signature. Define
the set S def

= I +
∑

i∈I Ki, so SimpleWide(S) is a set. We obtain an injection HSSimpleWide(S) →
SimpleWide(S) sending ⟨i, [ak]k∈Ki

⟩ to Just([bp]p∈S), where

binl i
def
= Just([Nothing]p∈S)

binl j
def
= Nothing (for j∈I, j ̸= i)

binr ⟨i,k⟩
def
= ak (for k∈Ki)

binr ⟨j,k⟩
def
= Nothing (for j∈I, j ̸= i, k∈Kj)

So Wide(S) is a set by Proposition 7.2(c).

Related work The idea that every signature has an initial algebra (meaning: algebra carried by a set)
has often appeared in the literature. Apparently, the earliest ZFC proof was given by Słomiński [Sł58],
and the earliest ZF proof by Kerkhoff [Ker65]. Furthermore, as explained in [PS78, Bla83, MP00], the
result holds in any topos with a natural number object.
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7.2 Broad Infinity
Now we come to the main principle of the paper, which was briefly described in Section 1.1. We shall
use the following notation. For any class A and A-tuple of classes B, we write∑Maybe

x∈A B(x)
def
= {Begin} ∪ {Make(x, y) | x∈A, y∈B(x)}

Thus we have a bijection
∑Maybe

x∈A B(x) ∼= Maybe
∑

x∈AB(x), sending Begin to Nothing and Make(x, y)
to Just⟨x, y⟩.

A broad arity is a function F :T → Set. It gives rise to a monotone endofunction Maybe◦F on Class,
sending X to

∑Maybe
x∈X XFx. Thus a class X is Maybe◦F -prefixed when it contains Begin and, for any

x∈X and Fx-tuple y within X , contains Make(x, y).
The least such class is called the class of all simple F -broad numbers and written SimpleBroad(F ).

To show it exists, note that Maybe◦F arises from the following set-based scaffold on T: a parent is either
Begin, which has no children, or Make(x, y), for a thing x and Fx-tuple y, in which case the set of
children is {x} ∪ {yk | k∈K}. So we apply Proposition 4.13(a).

Although F is defined over T, only its restriction to SimpleBroad(F ) matters. More precisely, for
broad arities F and F ′ with the same restriction to SimpleBroad(F ) ∩ SimpleBroad(F ′), we have
SimpleBroad(F ) = SimpleBroad(F ′). Proof: the class SimpleBroad(F ) ∩ SimpleBroad(F ′) is both
Maybe◦F -prefixed and Maybe◦F ′ -prefixed.

Let us see some examples of simple broad numbers.

Example 7.4. Define F to be the broad arity that sends Make(Begin, [ ]) to {0, 1}, and everything else to
∅. The following are simple F -broad numbers:

• Begin

• Make(Begin, [ ])

• Make(Make(Begin, [ ]),

[
Begin

Make(Begin, [ ])

]
)

• Make(Make(Make(Begin, [ ]),

[
Begin

Make(Begin, [ ])

]
), [ ])

We can visualise a broad number as a well-founded three-dimensional tree, using the vertical dimension
for

[
...
]
, the horizontal dimension for Make(−,−) and the depth dimension for internal structure. The

root appears at the front, and the Begin-marked leaves at the rear.
The axiom scheme of Simple Broad Infinity says, for every broad arity F , that a Maybe◦F -prefixed

set exists; this is equivalent to SimpleBroad(F ) being a set.
There is an alternative version, formulated as follows. Note that Fam(Set) is the class of all signa-

tures. Any function G :T → Fam(Set), called a broad signature, gives rise to a monotone endofunction
MaybeG on Class, sendingX to

∑Maybe
x∈X HGxX . Thus a classX is MaybeG-prefixed iff it contains Begin

and, for any x∈X with Gx = (Ki)i∈I and any i∈I and Ki-tuple y within X , contains Make(x, ⟨i, y⟩).
As before, there is a least such class, which we call the class of all G-broad numbers, denoted by

Broad(G). For functions G,G′ :T → Fam(Set) with the same restriction to Broad(G)∩Broad(G′), we
have Broad(G) = Broad(G′).

The axiom scheme of Full Broad Infinity says that, for every functionG :T → Fam(Set), a MaybeG-
prefixed set exists. We call G a broad signature.

Theorem 7.5.

(a) Simple Broad Infinity and Full Broad Infinity are equivalent.
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(b) Full Broad Infinity implies Full Wide Infinity.

Proof.

(a) To show (⇐), let F be a broad arity. We recursively define the injection f on SimpleBroad(F )
that sends

• Begin to Begin.

• Make(w, [ak]k∈Fw) to Make(f(w), ⟨0, [f(ak)]k∈Fw⟩).

Define the broad signature G sending

• f(x), for x∈SimpleBroad(F ), to (Fx)i∈{0}

• everything else to the empty signature.

Observe that f sends each w∈ SimpleBroad(F ) to a G-broad number, by induction on w. Since
Broad(G) is a set, SimpleBroad(F ) is a set.

To show (⇒), for a signature S = (Ki)i∈I , we write S def
= I +

∑
i∈I Ki. Given a broad signature

G, we recursively define an injection g on Broad(G) whose range does not contain Begin, as
follows. It sends

• Begin to Make(Begin, [ ])

• Make(w, ⟨i, [ak]k∈Ki
⟩), where Gw = (Ki)i∈I , to Make(g(w), [bp]p∈Gw), using the defini-

tions
binl i

def
= Make(Begin, [ ])

binl j
def
= Begin (for j∈I, j ̸= i)

binr ⟨i,k⟩
def
= g(ak) (for k∈Ki)

binr ⟨j,k⟩
def
= Begin (for j∈I, j ̸= i, k∈Kj).

Let F be the broad arity that sends

• Just(g(w)), for w∈Broad(G), to Gw

• everything else, including Begin, to ∅.

For anyw∈Broad(G), we have g(w) ∈ SimpleBroad(F ), by induction onw. Since SimpleBroad(F )
is a set, Broad(G) is a set.

(b) Given a signature S, let G be the broad signature sending everything to S. Recursively define the
injection g :Wide(S) → Broad(G) sending ⟨i, [ak]k∈Ki⟩ to Make(Begin, ⟨i, [g(ak)]k∈Fa⟩). Since
Broad(G) is a set, Wide(S) is a set.

8 Introducing rubrics

8.1 Generating a subset
Having completed our presentation of the “plausible” principles, we now move on to the “useful” ones.
First we consider how to generate a subset of a class using a suitable collection of rules, called a rubric.

Definition 8.1. Let C be a class.

(a) A wide rule on C consists of a set K (the arity) and a function R : CK → Fam(C). It is written
⟨K,R⟩, and the collection of all such is denoted WideRule(C).
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(b) A wide rubric on C is a family of wide rules—i.e., a set I and function r : I → WideRule(C). It
is written (ri)i∈I , and the collection of all such is denoted WideRub(C).

(c) A broad rule on C consists of a set L (the arity) and a function S : CL → WideRub(C). It is
written ⟨L, S⟩, and the collection of all such is denoted BroadRule(C).

(d) A broad rubric on C is a family of broad rules—i.e., a set J and function s :J → BroadRule(C).
It is written (sj)j∈J , and the collection of all such is denoted BroadRub(C).

Example 8.2. Here is a wide rubric on N, consisting of two wide rules.

• Rule 0 is binary and sends
[
m0

m1

]
7→ (m0 +m1 + p)p⩾2m0 .

• Rule 1 is nullary and sends [ ] 7→ (2p)p⩾50.

Informally, these rules prescribe when an element of N is acceptable. Rule 0 says that, if m0 and m1 are
acceptable, then m0 +m1 + p is acceptable for all p ⩾ 2m0. Rule 1 says that 2p is acceptable for all
p ⩾ 50. So 100, 102 and 402 are acceptable, and by induction every acceptable number is ⩾ 100.

Example 8.3. Here is a broad rubric on N, consisting of two broad rules. Broad rule 0 is nullary and
sends [ ] to the wide rubric described in Example 8.2. Broad rule 1 is unary. It sends [7] to the the
following wide rubric, consisting of one wide rule.

• Rule 0 is binary and sends
[
m0

m1

]
7→ (m0 +m1 + 500p)p⩾9.

It sends [100] to the following wide rubric, consisting of three wide rules.

• Rule 0 is ternary and sends

m0

m1

m2

 7→ (m0 +m1m2 + p)p⩾17.

• Rule 1 is nullary and sends [ ] 7→ (p)p⩾1000.

• Rule 2 is binary and sends
[
m0

m1

]
7→ (m1 + p)p⩾4.

And it sends [n], for n∈N \ {7, 100}, to the empty wide rubric.
Informally, these rules prescribe when an element of N is acceptable. For example, if 100 is accept-

able and m0,m1,m2 are too, then so is m0 +m1m2 + p for all p ⩾ 17. So 100, 102, 402 and 107 are
acceptable, and by induction every acceptable number is ⩾ 100.

To make the notion of “acceptable element” precise, we proceed as follows.

Definition 8.4. Let C be a class. A subclass X is

• ⟨K,R⟩-closed, for a wide rule ⟨K,R⟩ on C, when the family R(x) is within X for all x∈XK .

• R-complete, for a wide rubric R = (ri)i∈I on C, when X is ri-closed for all i∈I .

• ⟨L, S⟩-closed, for a broad rule ⟨L, S⟩ on C, when X is S(y)-complete for all y∈XL.

• S-complete for a broad rubric S = (sj)j∈J on C, when X is sj-closed for all j∈J .

Our next task is to give an alternative formulation of completeness, using a notion of “plate”. First
we give preliminary notions that do not depend on a rubric.
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Definition 8.5.

(a) A wide preplate is a triple w = ⟨i, [xk]k∈K , p⟩, where K can be any set. The component set of w
is

χ(w)
def
= {xk | k∈K}

(b) A broad preplate is a 5-tuple w = ⟨j, [yl]l∈L, i, [xk]k∈K , p⟩, where L and K can be any sets. The
component set of w is

χ(w)
def
= {yl | l∈L} ∪ {xk | k∈K}

(c) A preplate w is within a class X when χ(w) ⊆ X .

Now we turn to rubrics.

Definition 8.6. Let C be a class.

(a) Let R be a wide rubric on C. An R-plate is a wide preplate

w = ⟨i, [xk]k∈K , p⟩

within C such that

• writing R = (⟨Ki, Ri⟩)i∈I , we have i∈I and K = Ki

• writing Rj(x) = (bp)p∈P , we have p∈P .

The result of w is bp.

(b) Let S be a broad rubric on C. An S-plate is a broad preplate

w = ⟨j, [yl]l∈L, i, [xk]k∈K , p⟩

within C such that

• writing S = (⟨Lj , Sj⟩)j∈J , we have j∈J and L = Lj

• writing Sj(y) = (⟨Ki, Ri⟩)i∈I , we have i∈I and K = Ki

• writing Ri(x) = (bp)p∈P , we have p∈P .

The result of w is bp.

Definition 8.7. Let R be a rubric on a class C. We write ΓR for the set-continuous endofunction on
Sub(C) sending X to the class of all results of R-plates within X .

Clearly a subclass of C is R-complete iff ΓR-prefixed.
The least R-complete subclass of C, if it exists, is said to be R-generated. We shall see below

(Proposition 10.3) that this class exists if Powerset or Collection holds. However, I do not know whether
our base theory alone guarantees its existence. In any case, a rubric’s purpose is to generate a set, not
merely a class. So we formulate the following principles.

• The Wide Set Generation scheme says that any wide rubric on a class generates a subset.

• The Broad Set Generation scheme says that any broad rubric on a class generates a subset.

By Proposition 5.14, a rubric R on a class C generates a subset iff C has an R-complete subset.
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8.2 Application: Grothendieck universes
For this section, assume Powerset + Infinity.

As promised in Section 2.1, we see the utility of Broad Set Generation: it gives Grothendieck uni-
verses without any detour via notions of cardinal or ordinal.

Definition 8.8. A Grothendieck universe is a transitive set U with the following properties:

• For every set A ∈ U, we have PA ∈ U.

• N ∈ U.

• For every set of sets A ∈ U, we have
⋃

A ∈ U.

• For every set K ∈ U and K-tuple [ak]k∈K within U, we have {ak | k ∈ K} ∈ U.

Proposition 8.9. Broad Set Generation implies the “Axiom of Universes”: For every set X , there is a
least Grothendieck universe U with X ⊆ U.

Proof. We define a broad rubric B on T, consisting of two rules. Broad rule 0 is nullary and sends [ ] to
the following wide rubric indexed by X + 4.

• To achieve X ⊆ U, rule inl x (for x ∈ X) is nullary, and sends [ ] to (x).

• To achieve transitivity, rule inr 0 is unary, sending [A] to (b)b∈A if A is a set, and the empty family
otherwise.

• Rule inr 1 is nullary, and sends [ ] to (N).

• Rule inr 2 is unary, sending [A] to (
⋃
A) if A is a set of sets, and the empty signature otherwise.

• Rule inr 3 has arity 1, sending [A] to (PA) if A is a set, and the empty signature otherwise.

Broad rule 1 is unary. For any set B, it sends [B] to the rubric consisting of one B-ary rule that sends
[ak]k∈B to ({ak | k ∈ B}). If b is not a set, then Broad Rule 1 sends [b] to the empty rubric. This
completes the definition of B. The set that it generates is the desired Grothendieck universe.

8.3 Derivations
Intuitively, when we have a rubric on a class C, each acceptable element x∈C has one or more “deriva-
tions” that explain why it is acceptable.

Example 8.10. For the wide rubric in Example 8.2:

• ⟨1, [ ], 50⟩ derives 100.

• ⟨1, [ ], 51⟩ derives 102.

• ⟨0,
[
⟨1, [ ], 50⟩
⟨1, [ ], 50⟩

]
, 202⟩ and ⟨0,

[
⟨1, [ ], 50⟩
⟨1, [ ], 51⟩

]
, 200⟩ derive 402.

Note that each derivation is a wide preplate whose components are derivations.

Example 8.11. For the broad rubric in Example 8.3:

• ⟨0, [ ], 1, [ ], 50⟩ derives 100.

• ⟨0, [ ], 1, [ ], 51⟩ derives 102.
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• ⟨0, [⟨0, [ ], 1, [ ], 50⟩], 2,
[
⟨0, [ ], 1, [ ], 50⟩
⟨0, [ ], 1, [ ], 51⟩

]
, 5⟩ derives 107.

Note that each derivation is a broad preplate whose components are derivations.
Given a rubric R on a classC, we would like to define the class DerivR of all R-derivations. Each R-

derivation x will have an overall result OR(x) ∈ C. We shall call (DerivR,OR(x)) the R-derivational
class-family within C—it is the algebraically least prefixpoint of an endofunctor ∆R on ClassFam(C)
that we shall define. To do this, we adapt the notion of R-plate (Definition 8.6). First we give preliminary
notation that does not depend on a rubric.

Definition 8.12.

(a) For a wide preplate w = ⟨i, [xk]k∈K , p⟩, and a function h on χ(w), we write

ĥ(w)
def
= ⟨i, [h(xk)]k∈K , p⟩

(b) For a broad preplate w = ⟨j, [yl]l∈L, i, [xk]k∈K , p⟩, and function h on χ(w), we write

ĥ(w)
def
= ⟨j, [h(yl)]l∈L, i, [h(xk)]k∈K , p⟩

Now we turn to rubrics.

Definition 8.13. Let (M,F ) be a class-family within a class C.

(a) Let R be a wide rubric on C. An (R,M, F )-plate w is a wide preplate within M whose F̂ -image
is an R-plate. The result of w is the result of F̂ (w).

(b) Let S be a broad rubric on C. An (S,M, F )-plate w is a broad preplate withinM whose F̂ -image
is an S-plate. The result of w is the result of F̂ (w).

Definition 8.14. Let R be a rubric on a class C. We define the set-continuous endofunctor ∆R on
ClassFam(C) sending

• a class-family (M,F ) to (N,G), where N is the class of all (R,M, F )-plates and G sends each
such plate to its result

• a map h : (M,F ) → (M ′, F ′) to the map w 7→ ĥ(w).

Proposition 8.15. Let R be a rubric on a classC. Then ∆R has an inductive chain and an algebraically
least prefixpoint.

Proof. We show ∆R has an inductive chain and a least prefixpoint by Proposition 5.18(a). Noting
that ClassFam(C) =

∏⇀
x∈T C, we express ∆R as ∆L

(D,<), for a set-based scaffold (D,<) on T with
functionalization L on x 7→ C.

We give the wide case, as the broad case is similar. Firstly, we have a set-based scaffold (D,<) on
T, where D is the class of all wide preplates and < is componenthood.

Now let R be a wide rubric on C. Then (D,<) has the following functionalization L to (C)x∈T.
For a wide preplate u, we define Dom(Lu) to be the class of all functions f :J(u) → C such that f̂(u)
is an R-plate, and Lu sends such a function f to the result of f̂(u).

It is then evident that ∆R = ∆L
(D,<), so we obtain a least ∆R-prefixpoint, and Proposition 4.11(a)

gives the initial algebra property.

Thus we define the R-derivational class-family (DerivR,OR)
def
= µ∆R. We want to know whether

this is a family—i.e., whether DerivR is a set. So we formulate the following principles.

• Wide Derivation Set: Any wide rubric on a class has a derivation set.

• Broad Derivation Set: Any broad rubric on a class has a derivation set.
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8.4 Application: Tarski-style universes
For this section, assume Powerset + Infinity.

In the type theory literature [ML84], a “Tarski-style universe” is a family of types that is closed
under various constructions, such as

∑
. Furthermore, the existence of such universes follows from

various “induction-recursion” principles [DS06, GH16].
In a similar way, we show that Broad Derivation Set yields the existence of arbitrarily large Tarski-

style universes.

Definition 8.16. A Tarski-style universe consists of the following data.

• A family of sets (Dm)m∈M . Elements of M are called codes.

• For each code m, a code pow(m) and bijection Dpow(m)
∼= PDm.

• A code zero and bijection Dzero
∼= ∅.

• A code nat and bijection Dnat
∼= N.

• For each code m and tuple of codes [gk]k∈Dm , a code sigma(m, g) and bijection Dsigma(m,g)
∼=∑

k∈Dm
Dg(m).

Definition 8.17. For a family of sets (Ba)a∈A, a Tarski-style universe extension consists of the following
data:

• A Tarski-style universe (Dm)m∈M .

• For each a∈A, a code j(a) and bijection Dj(a)
∼= Ba.

Proposition 8.18. Broad Derivation Set implies that every family of sets (Ba)a∈A has a Tarski-style
universe extension.

Proof. We shall construct the extension so that all the required bijections are identities. To begin, define
a broad rubric B on Set, consisting of two broad rules. Broad rule 0 is nullary and sends [ ] to the
following rule indexed by A+ {0, 1, 2}.

• Rule inl a (for a ∈ A) has arity 0 and sends [ ] to (Ba).

• Rule inr 0 has arity 1 and sends X to (PX).

• Rule inr 1 has arity 0 and sends [ ] to (∅).

• Rule inr 2 has arity 0 and sends [ ] to (N).

Broad rule 1 is unary, and sends [X] to the following rubric indexed by {0}.

• Rule 0 has arity X and sends [Yx]x∈X to (
∑

x∈X Yx).

The B-derivational family is the desired universe extension, where we define

j(a)
def
= ⟨0, [ ], inl a, [ ], ∗⟩

pow(m)
def
= ⟨0, [ ], inr 0, [m], ∗⟩

zero
def
= ⟨0, [ ], inr 1, [ ], ∗⟩

nat
def
= ⟨0, [ ], inr 2, [ ], ∗⟩

sigma(m, g)
def
= ⟨1, [m], 0, g, ∗⟩
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8.5 Proving the Derivation Set principles
The following is the central result of the paper (at least for people who do not accept AC), since it says
that plausible principles entail useful ones.

Proposition 8.19.

(a) Full Wide Infinity implies Wide Derivation Set.

(b) Full Broad Infinity implies Broad Derivation Set.

Proof.

(a) Let R = (⟨Ki, Ri⟩)i∈I be a wide rubric on a class C. Define the signature S to be (Ki)i∈I .
We recursively associate to each t ∈ Wide(S) a family (Mt, Ft) within C as follows. For t =
⟨i, [tk]k∈Ki

⟩, an element of Mt is a triple ⟨i, [mk]k∈Ki
, p⟩ where i ∈ I and m ∈

∏
k∈Ki

Mtk with
Ri[Ftk(mk)]k∈Ki

= (bp)p∈P and p ∈ P , and Ft sends this element to bp. For any t, t′ ∈ Wide(S),
if Mt ∩M ′

t is inhabited, then t = t′, by induction on t.

We define the family (M,F ) within C to be the union of all these. Thus we define M def
=⋃

t∈Wide(S)Mt, and F sends m∈Mt to Ft(m). It is then evident that (M,F ) is the derivational
family of R.

(b) Let S = (⟨Lj , Sj⟩)j∈J be a broad rubric on a class C. We recursively define the function θ on
DerivS that sends ⟨j, [yl]l∈Lj , i, [xk]k∈Ki , p⟩ to

Make(Make(Make(Begin, ⟨j, [θyi]i∈Lj
⟩), ⟨i, [θxk]k∈Ki

⟩), ⟨p, [ ]⟩)

By induction, θ is injective. To show that DerivS is a set, it suffices to give a broad signature G
such that the range of θ is included in Broad(G), which by Full Broad Infinity is a set. Define
G :T → Set to send

• Begin to (Lj)j∈J

• Make(Begin, ⟨j, [θyl]l∈Lj
⟩) obtained from

– an index j∈J and y∈Deriv
Lj

S , giving

Sj [OR(yl)]l∈Lj
= (⟨Ki, Ri⟩)i∈I

to (Ki)i∈I

• Make(Make(Begin, ⟨j, [θyi]i∈Lj
⟩), ⟨i, [θxk]k∈Ki

⟩) obtained from

– an index j∈J and y∈Deriv
Lj

S , giving

Sj [OR(yl)]l∈Lj = (⟨Ki, Ri⟩)i∈I

– and an index j∈J and x∈Deriv
Lj

S , giving

Ri[OR(xk)]k∈Ki
= (bp)p∈P

to (∅)p∈P

• everything else to the empty signature.

By induction, for every S-derivation x, we see that θx is a G-broad number, as required.
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9 Special kinds of rubric

9.1 Injective rubrics
Definition 9.1. Let C be a class. A rubric R on C is injective when any two R-plates with the same
result are equal.

We now give the following principles.

• Injective Wide Set Generation: Any injective wide rubric on a class generates a subset.

• Injective Broad Set Generation: Any injective broad rubric on a class generates a subset.

Proposition 9.2.

(a) Injective Wide Set Generation implies Full Wide Infinity.

(b) Injective Broad Set Generation implies Full Broad Infinity.

Proof.

(a) Let S = (Ki)i∈I be a signature. A class is HS-prefixed iff it is Ŝ-complete, writing Ŝ for the
following injective wide rubric on T: it consists of I rules, and rule i∈ I has arity Ki and sends
a Ki-tuple x to the singleton (⟨i, x⟩). So Wide(S) is generated by Ŝ, and is therefore a set by
Injective Wide Set Generation.

(b) Let G be a broad signature. A class is MaybeG-prefixed iff it is Ĝ-complete, writing Ĝ for the
injective broad rubric on T consisting of two rules:

• Rule 0 is nullary and sends [ ] to the wide rubric consisting of a nullary broad rule that returns
the singleton (Nothing).

• Rule 1 is unary and sends [w], where Gw = (Ki)i∈I to the wide rubric consisting of I rules,
where rule I has arity Ki and sends a Ki-tuple x to the singleton (Make(w, ⟨i, x⟩)).

So Broad(G) is generated by Ĝ, and is therefore a set by Injective Broad Set Generation.

9.2 Comparing rubrics
Suppose we have two rubrics R and S on the same class, and want to show they are “essentially the
same”. Giving a natural isomorphism ∆R ∼= ∆S suffices for our purposes:

Proposition 9.3. Let C be a class. Let R and S be rubrics on C, and α : ∆R ∼= ∆S a natural
isomorphism.

(a) R has a derivation set iff S does.

(b) The square ClassFam(C)
∆S //

∆R

��

ClassFam(C)

Range

��
ClassFam(C)

Range
// Sub(C)

commutes.

(c) The functions ΓR and ΓS are equal.

(d) R is injective iff S is.

40



Proof.

(a) By Proposition 6.2.

(b) Obvious.

(c) The range of ∆R(X, iX,C) is ΓRX , and the range of ∆S(X, iX,C) is ΓSX . These ranges are the
same, by part (b).

(d) Since R-plates are the same thing as (R, C, idC)-plates.

9.3 Quasiwide rubrics
For any rubric R, we shall now consider the class Arit(R) of all arities that appear inside it, defined
explicitly as follows.

Definition 9.4. Let C be a class.

(a) For a wide rubric R = (⟨Ki, Ri⟩)i∈I on C, we obtain the set

Arit(R)
def
= {Ki | i∈I}

(b) For a broad rule ⟨L, S⟩ on C, we obtain the class

Arit(S)
def
=

⋃
x∈CL

Arit(S(x))

(c) For a broad rubric S = (⟨Lj , Sj⟩)j∈J on C, we obtain the class

Arit(S) def
=

⋃
j∈J

({Lj} ∪ Arit(Sj))

The fact that Arit(R) is a set for a wide rubric R motivates the following.

Definition 9.5. Let C be a class. A quasiwide rubric on C is a broad rubric S such that Arit(S) is a set.

We see that wide and quasiwide are essentially the same for our purposes:

Proposition 9.6. Let C be a class.

(a) For any wide rubric R on C, there is a quasiwide rubric S on C and natural isomorphism ∆R ∼=
∆S .

(b) For any quasiwide rubric S on C, there is a wide rubric R on C and natural isomorphism ∆S ∼=
∆R.

Proof.

(a) Let S be given by a single nullary broad rule that sends [ ] to R. For a class-family (M,F ) within
C, the (R,M, F )-plate ⟨i, [xk]k∈K , p⟩ corresponds to the (S,M, F )-plate ⟨∗, [ ], i, [xk]k∈K , p⟩.

(b) We introduce notation, for sets A and B. Given an A-tuple u and B-tuple v, we write copair(u, v)
for the A+B tuple whose rth component is ua or vb according as r is inl a or inr b.

Given a quasiwide rubric S on C, we form a wide rubric indexed by the set Arit(S)2 as follows:

R def
= (⟨L+K,RL,K⟩)L,K∈Arit(S)

whereRL,K sends copair(y, x), for y∈CL and x∈CK , to the family (cn)n∈N defined as follows.
An element of N is a triple ⟨j, i, p⟩ such that
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• writing S = (⟨Lj , Sj⟩)j∈J , we have j∈J and Lj = L

• writing Sj(y) = (⟨Ki, Ri⟩)i∈I , we have i∈I and Ki = K

• writing Ri(x) = (zp)p∈P , we have p∈P

with c⟨j,i,p⟩
def
= zp. For a class-family (M,F ) within C, an (S,M, F )-plate

⟨j, [yl]l∈L, i, [xk]k∈K , p⟩

corresponds to the (R,M, F )-plate

⟨⟨L,K⟩, copair(y, x), ⟨j, i, p⟩⟩

Corollary 9.7.

(a) Wide Set Generation is equivalent to Quasiwide Set Generation: Any quasiwide rubric on a class
generates a subset.

(b) Wide Derivation Set is equivalent to Quasiwide Derivation Set: Any quasiwide rubric on a class
has a derivation set.

(c) Injective Wide Set Generation is equivalent to Injective Quasiwide Set Generation: Any injective
quasiwide rubric on a class generates a subset.

9.4 Application: rubrics on a set
We now consider the special case of a rubric on a set. Clearly such a rubric generates a subset, but does
it have a derivation set? The following answer is adapted from [HMG+13].

Proposition 9.8.

(a) Exponentiation is equivalent to the assertion “Any broad rubric on a set is quasiwide.”

(b) Full Wide Infinity is equivalent to the assertion “Any rubric on a set has a derivation set.”

Proof.

(a) Since (⇒) is evident, we just prove (⇐). For a function f on a set, we write graph(f) for f
regarded as a set of ordered pairs.

Given sets A and B, define the broad rubric S on B consisting of one A-ary rule, sending a tuple
x to the wide rubric consisting of one graph(x)-ary rule, sending each tuple to the empty family.
If S is quasiwide, then BA is a set.

(b) For (⇒), Full Wide Infinity gives Wide Derivation Set by Proposition 8.19(a) and hence Quasiwide
Derivation Set by Corollary 9.7(b). It also gives Exponentiation, so any broad rubric on a set is
quasiwide by part (a), and therefore has a derivation set.

For (⇐), given a signature S = (Ki)i∈I , form a wide rubric on 1 via

R def
= (⟨Ki, [∗]k∈K 7→ (∗)⟩)i∈I

Recursively define the bijection θ :Wide(S) ∼= DerivR sending ⟨i, [xk]k∈Ki⟩ to ⟨i, [θ(xk)]k∈K , ∗⟩.
Thus Wide(S) is a set iff DerivR is.
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10 Properties of rubric functions

10.1 Preservation of smallness and injectivity
Given a rubric R on a class C, does the endofunction ΓR on Sub(C) restrict to one on PC? Like-
wise, does the endofunction ∆R on ClassFam(C) restrict to one on Fam(C) or InjClassFam(C) or
InjFam(C)? The following results answer these questions.

Proposition 10.1. Let R be a rubric on a class C. Then R is injective iff the endofunction ∆R restricts
to one on InjClassFam(C).

Proof. For (⇒), let (M,F ) be an injective class-family, and let x and x′ be (R,M, F )-plates with the
same result c. Then the R-plates F̂ (x) and F̂ (x′) have result c, so, by injectivity of R, they are equal.
Injectivity of F implies that F̂ is injective, so x = x′.

For (⇐), observe that an R-plate is the same thing as an (R,M, idC)-plate, with the same result.
Thus the injectivity of the class-family ∆R(C, idC) means that R is injective.

Proposition 10.2. Each of the following is equivalent to Exponentiation.

(a) For any rubric R on a class C, the endofunction ΓR restricts to one on PC.

(b) For any rubric R on a class C, the endofunction ∆R restricts to one on Fam(C).

(c) For any injective rubric R on a class C, the endofunction ΓR restricts to one on PC.

(d) For any injective rubric R on a class C, the endofunction ∆R restricts to one on InjFam(C).

Proof. Assume Exponentiation. The R-plates within a set form a set, giving (a). For any family (M,F )
within C, the (R,M, F )-plates form a set, giving (b).

Clearly (a) implies (c), and (b) implies (d) by Proposition 10.1(⇒).
For any set K, define the injective family K def

= (K, idK), and the injective wide rubric K̇ on T
consisting of a single K-ary rule that sends x∈TK to (x). To deduce Exponentiation from (c) or (d), let
A and B be sets. Then we have

ΓȦ(B) = BA

∆Ȧ(B) = (x)⟨∗,x,∗⟩∈1×BA×1

∼= BA via ⟨∗, x, ∗⟩ 7→ x.

So if either ΓȦ(B) is a set or ∆Ȧ(B) is small, then BA is a set.

Here is an application:

Proposition 10.3. Let R be a rubric on a class C. Suppose that either C has an R-complete subset, or
Powerset or Collection holds. Then ΓR has an inductive chain and a least prefixpoint.

Proof. If C has an R-complete subset, apply Proposition 5.14. If Powerset holds, apply Proposi-
tion 5.15(a) using Proposition 10.2(a). If Collection holds, apply 5.16.
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10.2 Proving the Injective Set Generation principles
In order to prove the set generation principles for a rubric R, we establish a relationship between the
functions ΓR and ∆R.

Proposition 10.4. Let R be a rubric on a class C. The square

InjClassFam(C)
∆R //

Range

��

ClassFam(C)

Range

��
Sub(C)

ΓR

// Sub(C)

commutes.

Proof. Let (M,F ) be an injective class-family within C. Then F̂ is a result-preserving bijection from
the class of all (R,M, F )-plates to that of all R-plates within Range(M,F ). So an element c∈C is the
result of an (R,M, F )-plate iff it is the result of an R-plate within Range(M,F ).

Proposition 10.5. Let R be an injective rubric on a class C.

(a) ΓR has an inductive chain and least prefixpoint.

(b) For every extended ordinal α, the class-family µα∆R is injective, and its range is µαΓR.

(c) The class-family µ∆R is injective, and its range is µΓR.

Proof. Firstly, for every extended ordinal α, injectivity of µα∆R is proved by induction on α, using
Proposition 10.1(⇒) for the successor case.

All that remains is to show that (Range(µα∆R))α∈Ord is an inductive chain for ΓR, with supremum
Range(µ∞∞∆R), as part (c) follows by Proposition 5.13.

The zero and extended limit requirements are obvious. For the successor requirement, Range(µSα∆R)
is Range(ΓRµ

α∆R), which is ΓRRange(µα∆R) by Proposition 10.4.

Corollary 10.6. Let R be an injective rubric on a class C. If DerivR is a set, then R generates a subset
of C.

We arrive at our main result:

Theorem 10.7.

(a) Wide Infinity, Wide Derivation Set and Injective Wide Set Generation are equivalent.

(b) Full Broad Infinity, Broad Derivation Set and Injective Broad Set Generation are equivalent.

Proof. Follows from Propositions 8.19 and 9.2 and Corollary 10.6.

10.3 Proving the Set Generation Principles, assuming AC
We again present the relationship between ΓR and ∆R, this time assuming AC and ignoring injectivity.

Proposition 10.8. (Assuming AC.) Let R be a rubric on a class C.
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(a) The square

Fam(C)
∆R //

Range

��

ClassFam(C)

Range

��
PC

ΓR

// Sub(C)

commutes.

(b) If Collection holds, then the square

ClassFam(C)
∆R //

Range

��

ClassFam(C)

Range

��
Sub(C)

ΓR

// Sub(C)

commutes.

Proof.

(a) Let (M,F ) be a family within C. Then F̂ is a result-preserving surjection from the class of all
(R,M, F )-plates to that of all R-plates within Range(M,F ). To see surjectivity in the wide case
(the broad case is similar), let w = ⟨i, [ak]k∈Ki , p⟩ be an R-plate within Range(M,F ). By AC
and since M is a set, we can choose for each ak an F -preimage xk∈M , and then ⟨i, [xk]k∈Ki , p⟩
is a F̂ -preimage of w.

(b) Since Collection + AC gives Collective Choice—Proposition 3.3(a⇐)—we use the same argu-
ment as in part (a), except that (M,F ) is now a class-family.

Proposition 10.9. (Assuming AC.) Let R be a rubric on a class C. Suppose that either DerivR is a set,
or Powerset or Collection holds.

(a) ΓR has an inductive chain and a least prefixpoint.

(b) For each extended ordinal α, the range of µα∆R is µαΓR.

(c) The range of µ∆R is µΓR.

Proof. If DerivR is a set, then so is µα∆R, for every extended ordinal α. If Powerset holds, then µα∆R
is a set for every ordinal α, by induction on α, using Proposition 10.2(b) for the successor case.

All that remains is to show that (Range(µα∆R))α∈Ord is an inductive chain for ΓR with supremum
Range(µ∞∞∆R), as part (c) follows by Proposition 5.13.

The zero and extended limit requirements are obvious. For the successor requirement, Range(µSα∆R)
is Range(ΓRµ

α∆R), which is ΓRRange(µα∆R) by Proposition 10.8(a) in the case that DerivR is a set
or Powerset holds, and by Proposition 10.8(b) in the case that Collection holds.

Corollary 10.10. (Assuming AC.) Let R be a rubric on a class C. If DerivR is a set, then R generates
a subset of C.

We arrive at our main result for those who accept AC.

Theorem 10.11. (Assuming AC.)

(a) Wide Infinity, Wide Derivation Set and Wide Set Generation are equivalent.

(b) Broad Infinity, Broad Derivation Set and Broad Set Generation are equivalent.

Proof. Follows from Propositions 8.19 and 9.2 and Corollary 10.10.
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10.4 WISC principles
Our goal is to improve Theorem 10.11, by replacing AC with a weak form of choice called WISC,
originally studied in [Str05, vdBM14]. We shall formulate three versions of WISC, using the following
notions.

Definition 10.12. Let K be a set.

(a) A K-cover is a K-tuple of inhabited sets. More generally, a K-class-cover is a K-tuple of inhab-
ited classes.

(b) For any K-class-cover A, the surjection π :
∑
A→ K sends ⟨k, a⟩ to k.

(c) Given K-class-covers A and B, a map f :A→ B is a K-tuple of functions [fk : Ak → Bk]k∈K .

(d) A WISC for K is a set A of K-covers that is weakly initial—i.e., for any K-cover B, there is
A∈A and a map f :A→ B.

Although the definition of WISC does not mention class-covers, only covers, we note the following
result.

Proposition 10.13. (Assuming Collection.) Let K be a set, and A a WISC for K. Then, for any K-
class-cover B, there is A∈A and a map f :A→ B.

Proof. Collection yields an element X ∈
∏

k∈K PinhBk. Since X is a K-cover, there is A ∈ A and a
map f :A→ X , so we have f :A→ B.

We continue without assuming Collection.

Definition 10.14. Let K be a class of sets. A WISC function on K sends each K∈K to a WISC for K.

Now consider the following principles.

• Simple WISC: Every set has a WISC.

• Local WISC: Every set of sets has a WISC function.

• Global WISC: The class Set has a WISC function.

These principles are related as follows.

Proposition 10.15.

(a) AC implies Global WISC, which implies Local WISC, which is equivalent to Simple WISC.

(b) In ZF the three WISC principles are equivalent.

Proof.

(a) To show that AC implies Global WISC: note that AC is equivalent to K 7→ {[1]k∈K} being a
global WISC function.

To show that Global WISC implies Local WISC: given a set of sets K, restrict the global WISC
function to it.

To show that Local WISC implies Simple WISC: for any set K, obtain a WISC function for the
singleton {K} and apply it to K.

To show that Simple WISC implies Local WISC: let K be a set of sets, and write L def
=

∑
K∈KK.

For each K ∈ K, define Ḱ to be the functor from the category of L-covers to that of K-covers,
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sending [Al]l∈L to [A⟨K,k⟩]k∈K and likewise for maps. Given an WISC A for L, define f to be
the function sending K∈K to the set of K-covers {Ḱ(A) | A∈K}, which is weakly initial by the
following argument. Any K-cover B is equal to Ḱ(C), where C is the L-cover whose ⟨M,k⟩-
component is Bk if M = K and 1 otherwise. Weak initiality of A gives an L-cover A∈A and
map g :A→ C, so we obtain Ḱ(A) ∈ f(K) and Ḱ(g) :Ḱ(A) → Ḱ(C) = B. Thus f is a WISC
function on K.

(b) We write (Vα)α∈Ord for the cumulative hierarchy in the usual way. Suppose Simple WISC holds.
For each set K, define t(K) to be the least ordinal α such that the set (PinhVα)

K of all “α-
bounded” K-covers is weakly initial. Then K 7→ (PinhVt(K))

K is a global WISC function.

It has been shown that the theory ZF + WISC is strictly between ZF and ZFC, provided ZF is consis-
tent [Kar14, Rob15]. For applications of WISC, see [vdBM14, FPS22, PS21].

10.5 Proving the Set Generation Principles, assuming WISC
Our task is to weaken the AC assumption of Theorem 10.11. Specifically, we shall prove that Local
WISC suffices for part (a), and Global WISC for part (b).

First we shall provide some constructions. For a rubric R on a class C, and any WISC function f on
Arit(R), we shall construct an “extended” rubric Rf onC. This is done as follows, using Proposition 3.1.

Definition 10.16. Let C be a class.

(a) Let ⟨K,R⟩ be a wide rule on C. For any K-cover A, define the wide rule ⟨K,R⟩A consisting of
the arity

∑
A and function C

∑
A → Fam(C) sending Cπ(x) to R(x) and everything else to the

empty family.

(b) Let R = (⟨Ki, Ri⟩)i∈I be a wide rubric on C. For any WISC function f on Arit(R), define the
wide rubric

Rf
def
= (⟨Ki, Ri⟩A)i∈I,A∈f(Ki)

(c) Let ⟨L, S⟩ be a broad rule on C. For any L-cover B and WISC function f on Arit(S), define
the broad rule ⟨L, S⟩Bf consisting of the arity

∑
B and function C

∑
B → WideRub(C) sending

Cπ(x) to S(x)f and everything else to the empty rubric.

(d) Let S = (⟨Lj , Sj⟩)j∈J be a broad rubric on C. For any WISC function f on Arit(S), define the
broad rubric

Sf
def
= (⟨Lj , Sj⟩Bf )j∈J,B∈f(Lj)

Now we adapt Proposition 10.8 as follows.

Proposition 10.17. Let R be a rubric on a class C, and f a WISC function on Arit(R).

(a) The square

Fam(C)
∆Rf //

Range

��

ClassFam(C)

Range

��
PC

ΓR

// Sub(C)

commutes.
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(b) If Collection holds, then the square

ClassFam(C)
∆Rf //

Range

��

ClassFam(C)

Range

��
Sub(C)

ΓR

// Sub(C)

commutes.

Proof.

(a) We just prove the wide case, as the broad case is similar. Let (M,F ) be a family within C. For
any (Rf ,M, F )-plate

m = ⟨⟨i, A⟩, [xk,a]k∈Ki,a∈Ak
, p⟩

the tuple [F (xk,a)]k∈Ki,a∈Ak
is (uniquely) expressible asCπ(u), and we obtain an R-plate F̃ (m)

def
=

⟨i, u, p⟩.
We see next that F̃ is a result-preserving surjection from the class of all (Rf ,M, F )-plates to that
of all R-plates within Range(M,F ). To prove surjectivity, let n = ⟨i, y, p⟩ be an R-plate within
Range(M,F ). We obtain a Ki-cover [F−1(yk)]k∈Ki , so there is A∈ f(Ki) and a K-cover map
g :A→ [F−1(yk)]k∈Ki . We then obtain an (Rf ,M, F )-plate

m = ⟨⟨i, A⟩, [gk(a)]k∈Ki,a∈Ak
, p⟩

Since F (gk(a)) = yk for all k∈Ki and a∈Ak, we have F̃ (m) = n.

So an element c∈C is the result of an (Rf ,M, F )-plate iff it is the result of an R-plates within
Range(M,F ).

(b) Similar to part (a), except that we use Proposition 10.13 and speak of classes rather than sets.

Proposition 10.18. Let R be a rubric on a class C, and f a WISC function on Arit(R). Suppose that
either DerivRf

is a set, or Powerset or Collection holds.

(a) ΓR has an inductive chain and a least prefixpoint.

(b) For each extended ordinal α, the range of µα∆Rf
is µαΓR.

(c) The range of µ∆Rf
is µΓR.

Proof. Similar to the proof of Proposition 10.9, using Proposition 10.17 rather than Proposition 10.8.

Corollary 10.19. Let R be a rubric on a class C, and f a WISC function on Arit(R). If DerivRf
is a

set, then R generates a subset of C.

The key question is whether Arit(R) has a WISC function, which we answer as follows.

Proposition 10.20.

(a) Local WISC is equivalent to the assertion “For any wide rubric R on a class C, the set Arit(R)
has a WISC function.”

(b) Global WISC is equivalent to the assertion: “For any broad rubric R on a class C, the class
Arit(R) has a WISC function.”
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Proof. Since (⇒) is obvious, we just prove (⇐).

(a) Given a set of sets K, define R to be the following wide rubric on ∅: it is indexed by K, and rule
K has arity K. Then Arit(R) = K.

(b) Define S to be the broad rubric on Set consisting of a single unary rule, sending [X] to the wide
rubric consisting of a single X-ary rule, sending every tuple to empty family. Then Arit(S) =
Set.

We obtain our main result:

Theorem 10.21.

(a) (Assuming Local WISC.) Wide Infinity, Wide Derivation Set and Wide Set Generation are equiva-
lent.

(b) (Assuming Global WISC.) Broad Infinity, Broad Derivation Set and Broad Set Generation are
equivalent.

Proof. From Propositions 8.19 and 9.2, and Corollary 10.19 using Proposition 10.20.

Part IV

Wide and Broad principles for ordinals
11 From rubrics to supgeneration
Our next task will be to adapt Wide and Broad Set Generation into similar principles for ordinals. An
extended ordinal that is neither 0 nor an successor is called an extended limit. Recall that Definition 8.4
gave us the notion of a class being closed or complete. Here are analogous properties for extended
ordinals:

Definition 11.1. An extended limit λ is

• K-supclosed, for a set K, when
∨

K (or equivalently ssupK) restricts to a function [0 . . λ)K →
[0 . . λ).

• K-supcomplete, for a class of sets K, when it is K-supclosed for all K∈K.

• F -supclosed, for a function F :Ord → Set, when it is Fα-supclosed for all α < λ.

• H-supcomplete, for a function H :Ord → Sub(Set), when it is Hα-supcomplete for all α < λ.

Here are some examples.

1. For a class of sets K, let ConstK be the constant function γ 7→ K. An extended limit is ConstK-
supcomplete iff it is K-supcomplete.

2. For functions H,H ′ :Ord → Sub(Set), let H ∨H ′ be the pointwise union γ 7→ H(γ) ∪H ′(γ).
An extended limit is (H ∨H ′)-supcomplete iff it is both H-supcomplete and H ′-supcomplete.

Below (Proposition 13.6) we shall characterize supclosedness and supcompleteness in an explicit way.

Definition 11.2.
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(a) For a set K, the simply K-supgenerated extended limit is the least K-supclosed one.

(b) For a class of sets K, the K-supgenerated extended limit is the least K-supcomplete one.

(c) For a function F :Ord → Set, the simply F -supgenerated extended limit is the least F -supclosed
one.

(d) For a functionH :Ord → Sub(Set), theH-supgenerated extended limit is the leastH-supcomplete
one.

This leads to the following principles.

• Simple Wide Supgeneration: Any set simply supgenerates a limit ordinal.

• Full Wide Supgeneration: Any set of sets supgenerates a limit ordinal.

• Simple Broad Supgeneration: Any function Ord → Set simply supgenerates a limit ordinal.

• Full Broad Supgeneration: Any function Ord → PSet supgenerates a limit ordinal.

Theorem 11.3.

(a) The two forms of Wide Supgeneration are equivalent.

(b) The two forms of Broad Supgeneration are equivalent.

(c) Full Broad Supgeneration implies Full Wide Supgeneration.

Proof.

(a) Full ⇒ Simple is obvious. For the converse, we first note that, for a set of sets K, any extended
limit λ that is

∑
K∈KK-supclosed is K-supcomplete. That is because, forK∈K and p∈ [0 . . λ)K ,

we have ∨
k∈K

pk =
∨

⟨L,K⟩∈
∑

K∈K K

{
pk (L = K)
0 otherwise

< λ

(b) Full ⇒ Simple is obvious. For the converse: for a function H :Ord → PSet, any extended limit
that is (β 7→

∑
K∈Hβ K)-supclosed is H-supcomplete, as before.

(c) Given a set of sets K, the ConstK-supgenerated extended limit is K-supgenerated.

Now we give the relationship between supgeneration and set generation.

Theorem 11.4.

(a) Wide Set Generation is equivalent to Powerset + Full Wide Supgeneration.

(b) Broad Set Generation is equivalent to Powerset + Full Broad Supgeneration.

Proof.

(a) For (⇒), we have Powerset by Theorem 7.3 and Proposition 9.2(a). To show Full Wide Supgener-
ation, let K be a set of sets. A K-supcomplete ordinal is an R-inductive subset of Ord, where the
wide rubric R on Ord consists of the following.
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• The unary rule sending [α] to (β)β<α. (Note that a set is closed under this rule iff it is
transitive, i.e., an ordinal.)

• For each K∈K, a K-ary rule sending [αk]k∈K to (
∨

k∈K αk).

For (⇐), let R = (⟨Ki, Ri⟩)i∈I be a wide rubric on C. We show that the inductive chain of ΓR
(which preserves smallness by Exponentiation and Proposition 10.2(a)) stabilizes at an ordinal α.
Define the set of sets

K def
= {Ki | i∈I}

Let α be a K-supcomplete limit ordinal. For any x∈µαΓR, put x for the unique β < α such that
x ∈ µSβΓR \ µβΓR. Given an R-plate

w = ⟨i, x, p⟩

within µαΓR, put

β
def
= ssupl∈Lj

xl

Since α is Ki-supclosed, and yk < α for all k ∈Ki, we obtain β < α. Since w is an R-plate
within µβΓR, its result is in µSβΓR, which is included in µαΓR since Sβ < α.

(b) For (⇒), to show Full Broad Supgeneration, let H : Ord → PSet be a function. An H-
supcomplete ordinal is an R-inductive subset of Ord, where the broad rubric R on Ord consists of
the following.

• The nullary rule returning the wide rubric consisting of just the unary rule sending [α] to
(β)β<α. (Note that a set is closed under this rule iff it is transitive, i.e., an ordinal.)

• The unary rule sending [α] to the wide rubric consisting of, for each K∈Hα, the K-ary rule
sending [αk]k∈K to (

∨
k∈K αk).

For (⇐), let S = (⟨Lj , Sj⟩)j∈J be a broad rubric on C. We show that the inductive chain of ΓS
(which preserves smallness by Exponentiation and Proposition 10.2(a)) stabilizes at an ordinal α.
Define the set

L def
= {Lj | j∈J}

and the function H :Ord → PSet sending β to⋃
j∈J

⋃
y∈(µβΓS)Lj

Sj(y)=(⟨Ki,Ri⟩)i∈I

{Ki | i∈I}

Let α be a limit ordinal that is (ConstL ∨ H)-supcomplete—i.e., both L-supcomplete and H-
supcomplete. For any x∈µαΓS , put x for the unique β < α such that x ∈ µSβΓS \ µβΓS . Given
an S-plate

w = ⟨j, y, i, x, p⟩

within µαΓS , put

γ
def
= ssupl∈Lj

yl

β
def
= ssupk∈Ki

xk

Since α is Lj-supclosed, and yl < α for all l ∈ Lj , we obtain γ < α. We have y ∈ (µγΓS)
Lj

and Sj(y) = (⟨Ki, Ri⟩)i∈I , so Ki ∈ Hγ, so α is Ki-supclosed. Since xk < α for all k∈K, we
obtain β < α. Since w is an S-plate within µγ∨βΓS , its result is in µS(γ∨β)ΓS , which is included
in µαΓS since S(γ ∨ β) < α.
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12 Lindenbaum numbers
We interrupt our journey towards Mahlo’s principle to give some useful constructions that relate sets to
ordinals. First we give some notation:

Definition 12.1. Let A and B be sets.

(a) We write A ≼ B when there is an injection A→ B.

(b) We write A ≼∗B when there is a partial surjection B → A. Equivalently: when either A = ∅ or
there is a surjection B → A.

Thus A ≼ B implies A ≼∗B, and conversely if AC holds or B is well-orderable.

Definition 12.2. Let K be a set.

(a) Define R to be the class of all pairs (X,<), consisting of a subset X of K, and a well-order < on
X . Then we obtain a lower class

{order-type(X,<) | (X,<)∈R}

whose strict supremum is denoted ℵ(K).

(b) Let S be the class of all triples (X,∼, <), consisting of a subset X of K, and an equivalence
relation ∼ on X , and a well-order < on the set X/ ∼ of all equivalence classes. Then we obtain a
lower class

{order-type(X/ ∼, <) | (X,∼, <)∈S}

whose strict supremum is denoted ℵ∗(K).

The extended ordinals ℵ(K) and ℵ∗(K) are called the Hartogs number and the Lindenbaum number
of K, respectively.9 Note that ℵ(K) ⩽ ℵ∗(K), with equality if AC holds or K is well-orderable. For
any ordinal α, we have α ≼ K iff α < ℵ(K), and α ≼∗K iff α < ℵ∗(K). Thus we have ℵ(K) ̸≼ K
and ℵ∗(K) ̸≼∗K.

These constructions are often applied to an ordinal β, giving β < ℵ(β) ⩽ ℵ∗(β).
We use Lindenbaum numbers extensively in the next section, and consider some axioms about them.

The first is Full Lindenbaum: For any set K, the extended ordinal ℵ∗(K) is an ordinal.

Proposition 12.3.

(a) Powerset implies Full Lindenbaum.

(b) Wide Supgeneration implies Full Lindenbaum.

Proof.

(a) By Powerset, the classes R and S in Definition 12.2 are sets.

(b) For a set K, let λ be a K-closed limit ordinal. If λ < ℵ∗(K), then there is a surjection f :K → λ,
so λ = supk∈K f(k) < λ, contradiction. Thus ℵ∗(K) ⩽ λ, so ℵ∗(K) is an ordinal.

We divide Full Lindenbaum into two parts:

• Ordinal Lindenbaum: For any ordinal α, the extended ordinal ℵ∗(α) is an ordinal.

9See [KRS23] for analysis of the range of possibilities.
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• Relative Lindenbaum: For any set K, there is an ordinal α such that ℵ∗(K) ⊆ ℵ∗(α).

Proposition 12.4. Full Lindenbaum is equivalent to Ordinal Lindenbaum + Relative Lindenbaum.

Proof. (⇐) is obvious, and clearly Full Lindenbaum implies Ordinal Lindenbaum. To show that it
implies Relative Lindenbaum, put α def

= ℵ∗(K) so that ℵ∗(K) < ℵ∗(α).

Lastly we consider the Well-orderability axiom: Every set is well-orderable. This principle has the
following properties:

Proposition 12.5.

(a) AC + Powerset implies Well-orderability.

(b) Well-orderability implies AC + Relative Lindenbaum.

Proof. We prove only Well-orderability ⇒ Relative Lindenbaum, as the rest is standard. Given a set K,
define α to be the least order-type of a well-ordering of K. Since α ∼= K, we have ℵ∗(K) = ℵ∗(α).

13 From supgeneration to Mahlo’s principle

13.1 Unbounded and stationary classes
Now at last, it is time to treat Mahlo’s principle; but we approach it more slowly than in Section 1. To
begin, we revisit the notions of unbounded and stationary class from Section 1.2.

Definition 13.1. Let A be a set-based well-ordered class.

(a) A subclass B is cofinal when, for all x∈A, there is y∈B such that y ⩾ x. Equivalently: when it
has no strict upper bound.

(b) A subclass B is strictly cofinal when, for all x∈A, there is y∈B such that y > x. Equivalently:
when it has no upper bound.

If A has no greatest element (e.g., when A = Ord), then “cofinal” and “strictly cofinal” are equiva-
lent, and the word “unbounded” is also used.

We turn next to ordinal functions.

Definition 13.2. An extended limit λ is

• G-based, for a function G :Ord → Ord∞, when, for all α < λ, we have G(α) ⩽ λ.

• F -closed, for a function F :Ord → Ord, when, for all α < λ, we have F (α) < λ. In short: when
F restricts to an endofunction on λ.

Proposition 13.3. For a class of limit ordinals D, the following are equivalent.

(a) For every function F :Ord → Ord, there is a F -based limit ordinal in D.

(b) For every function F :Ord → Ord, there is a F -closed limit ordinal in D.

Proof. Since F -closed is the same as SF -based and implies F -based.

A class of limit ordinals with these properties is said to be stationary. It is then unbounded, and, for
any function F :Ord → Ord, contains stationarily many F -closed elements. Here is an application:
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Proposition 13.4. Each of the following is equivalent to Infinity.

(a) Lim is unbounded.

(b) Lim is stationary.

Proof. If Infinity does not hold, then Lim is empty.
Assume Infinity. To show Lim is stationary, let F :Ord ⇒ Ord. Define G :Ord ⇒ Ord sending α

to ssupβ<α(Sβ ∨ Fβ). We show that λ def
=

∨
n∈N G

n(1) is an F -closed limit ordinal. Firstly, 0 < 1 =
G0(1) ⩽ λ. If β < λ then there is n∈N such that β < Gn(1), so Sβ < Gn+1(1) ⩽ λ, and likewise
Fβ < λ.

13.2 Cofinality
The treatment of cofinality relies on the following result:

Proposition 13.5. For any extended ordinal α and function f : [0 . . α) → Ord, the range of f has a
cofinal subclass of order-type ⩽ α.

Proof. Let K be the class of all i < α such that f(i) is a strict upper bound of {f(j) | j < i}. We prove
by induction on i < α that there is k ⩽ i such that k ∈K and f(k) ⩾ f(i), as follows. If i ∈ K, put
k

def
= i, and if not, then there is j < i such that f(i) ⩽ f(j), and we apply the inductive hypothesis to it.

Thus the range of f ↾K is cofinal within that of f , and (since f ↾K is strictly monotone) has the same
order-type as K, which is ⩽ α by Proposition 5.6(b).

Let λ be an extended limit. The cofinal and strictly cofinal subclasses of [0 . . λ) are the same (as
stated above), and the order-type of each is a limit extended ordinal. The least such order-type is called
the cofinality of λ, and written cf(λ). Clearly it satisfies cf(λ) ⩽ λ and cf(cf(λ)) = cf(λ).

Now we use cofinality to characterize supclosedness and supcompleteness.

Proposition 13.6. Let λ be an extended limit. It is

(a) K-supclosed, for a set K, iff ℵ∗(K) ⩽ cf(λ).

(b) K-supcomplete, for a class of sets K, iff
∨

K∈K ℵ∗(K) ⩽ cf(λ).

(c) F -supclosed, for a function F :Ord → Set, iff cf(λ) is (α 7→ ℵ∗(F (α)))-based.

(d) H-supcomplete, for a function H :Ord → Sub(Set), iff cf(λ) is (α 7→
∨

K∈H(α) ℵ∗(K))-based.

Proof. We prove part (a), from which the other parts follow.
For (⇒), take a cofinal subclass B of [0 . . λ) with order-type cf(λ). If cf(λ) < ℵ∗(K), then we have

a surjectionK → [0 . . cf(λ)), and henceK → B, so λ isB-supclosed, so
∨

β<B β < λ, a contradiction.
For (⇐), the range of any f : K → [0 . . λ) has order-type in ℵ∗(K) and hence in cf(λ), so its

supremum is < λ.

Where the sets in questions are ordinals, we give a simpler characterization:

Proposition 13.7. Let λ be an extended limit. It is

(a) α-supclosed, for an ordinal α, iff α < cf(λ).

(b) ρ-supcomplete, for an extended ordinal ρ, iff ρ ⩽ cf(λ).

(c) F -supclosed, for a function F :Ord → Ord, iff cf(λ) is F -closed.

(d) G-supcomplete, for a function G :Ord → Ord∞, iff cf(λ) is G-based.

Proof. Part (a) is by Proposition 13.5, and the rest follows.
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13.3 Regularity
We revisit the notion of regularity from Section 1.2. First we note that Proposition 13.7(b) gives the
following:

Corollary 13.8. Let λ be an extended limit. It is λ-supcomplete iff cf(λ) = λ.

We say that λ is regular when it satisfies these conditions. Thus the cofinality of any extended limit
is regular. Here are more ways of obtaining examples:

Proposition 13.9. All of the following are regular.

• The extended limit that is simply supgenerated by a set K.

• The extended limit that is supgenerated by a class of sets K.

• The extended limit that is simply supgenerated by a function F :Ord → Set.

• The extended limit that is supgenerated a function H :Ord → Sub(Set).

Proof. We first prove that, for a class of sets K, a minimal K-supcomplete extended limit λ is regular. Fix
α < λ and a tuple [xi]i<α within λ. We shall show that

∨
i<α xi < λ. For β < λ, put β def

=
∨

i<α∧β xi.

The class P def
= {β < λ | β < λ} is a K-supcomplete limit ⩽ λ by the following reasoning.

• For γ ⩽ β∈P we have γ ∈ P , since γ ⩽ β. So P is an ordinal ⩽ λ.

• We have 0 ∈ P since 0 = 0, and for any β∈P we have Sβ ∈ P , since Sβ is β ∧ xβ if β < α and
β otherwise So P is a limit.

• For any K∈K and tuple [βk]k∈K within P , we have
∨

k∈K βk ∈ P since
∨

k∈K βk =
∨

k∈K βk.
So P is K-supcomplete.

Minimality of λ gives P = λ, so α ∈ P , meaning that
∨

i<α xi = α < λ as required.
Lastly, for H :Ord → Sub(Set), any minimal H-supcomplete limit λ is also a minimal (

⋃
β<λHβ)-

supcomplete limit, and therefore regular.

13.4 Blass’s axiom and Mahlo’s principle
Now we revisit the principles from Section 1.3: Blass’s axiom says that Reg is unbounded, and Mahlo’s
principle that Reg is stationary. We begin with basic consequences.

Proposition 13.10.

(a) Blass’s axiom implies Ordinal Lindenbaum + Infinity.

(b) Mahlo’s principle implies Blass’s axiom.

Proof.

(a) Given an ordinal α, take a regular limit ordinal λ > α. It is is α-supclosed by Proposition 13.7(a).
We show ℵ∗(α) ⩽ λ. For any β < ℵ∗(α), we have a partial surjection α→ β, so λ is β-supclosed,
so β < λ by Proposition 13.7(a). Infinity holds since Reg ⊆ Lim.

(b) Since stationary implies unbounded.

We arrive at the main result of the section:
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Theorem 13.11.

(a) Wide Supgeneration is equivalent to Blass’s axiom + Relative Lindenbaum.

(b) Broad Supgeneration is equivalent to Mahlo’s principle + Relative Lindenbaum.

Proof. We prove part (b), as part (a) is similar.
For (⇒), Broad Supgeneration implies Relative Lindenbaum by Proposition 12.3(b). To show that it

implies Mahlo’s principle, let F :Ord ⇒ Ord. The simply F supgenerated limit ordinal is F -supclosed,
so by Proposition 13.7(c) it is F -closed. It is regular by Proposition 13.9.

For (⇐), let F : Ord → Set. Define G : Ord → Ord sending α to the least ordinal β such that
ℵ∗(F (α)) ⩽ ℵ∗(β). Then there is a regular limit ordinal that is G-closed. By Proposition 13.7(c) it is
G-supclosed, so by Proposition 13.6(c) it is F -supclosed.

Corollary 13.12. (Assuming Powerset or Well-orderability.)

(a) Wide Supgeneration is equivalent to Blass’s axiom.

(b) Broad Supgeneration is equivalent to Mahlo’s principle.

Proof. Immediate from Theorem 13.11, using Proposition 12.3(a) and 12.5(b).

14 The power of stationarity

14.1 Club classes and continuous functions
Our final task is to develop the traditional theory of stationarity, in which “iterated inaccessibles” of
various kinds are obtained from Mahlo’s principle. Throughout this section, class will always mean a
class of ordinals, and function an endofunction on Ord. We use the following constructions:

Definition 14.1.

(a) For any monotone function H , we write Pref(H) for the class of all its prefixpoints.

(b) For any family of classes (Ci)i∈I , the intersection is given by⋂
i∈I

Ci
def
= {α∈Ord | ∀i∈I. α ∈ Ci}

(c) For any family of monotone functions (Hi)i∈I , the supremum is given by∨
i∈I

Hi : α 7→
∨
i∈I

Hi(α)

so that Pref(
∨
i∈I

Hi) =
⋂
i∈I

Pref(Hi)

(d) For any sequence of classes (Cα)α∈Ord, the diagonal intersection is given by

∆α∈OrdCα
def
= {α∈Ord | ∀β < α. α ∈ Cβ}

(e) For any sequence of monotone functions (Hα)α∈Ord, the diagonal supremum is given by

∇α∈OrdHα : α 7→
∨
β<α

H(β)

so that Pref(∇α∈OrdHα) = ∆α∈OrdPref(Hα)
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Definition 14.2. A function H is continuous when it is monotone and sends every limit ordinal λ to∨
α<λH(α).

Here are some ways to obtain continuous functions:

Proposition 14.3.

(a) For every ordinal α, the function Constα is continuous.

(b) For any family of continuous functions (Hi)i∈I , the supremum
∨

i∈I Hi is continuous.

(c) For any sequence of continuous functions (Hα)α∈Ord, the diagonal supremum ∇α∈OrdHα is con-
tinuous.

Proof.

(a) Obvious.

(b) Straightforward.

(c) Monotonicity is obvious. For continuity, let λ be a limit ordinal. Then

(∇α∈OrdHα)(λ) =
∨
α<λ

Hα(λ)

=
∨
α<λ

∨
β<λ

Hα(β)

⩽
∨
α<λ

∨
β<λ

Hα(β ∨ Sα)

⩽
∨
γ<λ

∨
α<γ

Hα(γ)

=
∨
γ<λ

(∇α∈OrdHα)(γ)

Definition 14.4. Let C be a class.

(a) A limit point of C is a limit ordinal λ such that λ ∩ C is unbounded in λ. The class of all such is
written LimPt(C).

(b) A class C is closed when it is LimPt-prefixed, i.e., contains every limit ordinal λ such that λ ∩ C
is unbounded in λ.

Here are some ways to obtain closed classes:

Proposition 14.5.

(a) For any continuous function H , the class Pref(H) is closed.

(b) For any class C, the class LimPt(C) is closed.

(c) For a family of closed classes (Ci)i∈I , the intersection
⋂

i∈I Ci is closed.

(d) For a sequence of closed classes (Cα)α∈Ord, the diagonal intersection ∆α∈OrdCα is closed.
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Proof.

(a) We must show that a limit point λ of Pref(H) is in Pref(H). For any γ < λ, there is β ∈
[γ . . λ) ∩ Pref(H), giving H(γ) ⩽ H(β) ⩽ β < λ. So we have H(λ) =

∨
γ<λH(γ) ⩽ λ as

required.

(b) We show that a limit point λ of LimPt(C) is a limit point of C. For any α < λ, there is β ∈
(α . . λ)∩LimPt(C). Since β ∈ LimPt(C), there is γ ∈ [α . . β)∩C. Thus we have γ ∈ [α . . λ)∩C
as required.

(c) Since an infimum of prefixpoints is a prefixpoint.

(d) It suffices to show that LimPt(∆α∈OrdCα) ⊆ ∆α∈OrdLimPt(Cα). This means that any limit
point λ of ∆α∈OrdCα is, for all α < λ, a limit point of Cα. For any β ∈ (α . . λ), there is
γ ∈ [β . . λ) ∩∆α∈OrdCα. Since α < β ⩽ γ, we have γ ∈ Cα as required.

Next we consider unbounded classes.

Definition 14.6.

(a) A closure operator (on Ord) is a function that is inflationary and idempotent.

(b) For an unbounded class C, we write HC for the unique closure operator whose range is C. Ex-
plicitly, it sends α to the least element of C that is ⩾ α.

Thus we have a bijection between the collection of all unbounded classes and that of all closure
operators. Moreover it is dual—i.e., for unbounded classes C and D, we have HC ⩽ HD iff D ⊆ C.

Proposition 14.7. For any unbounded class C, the following are equivalent:

• C is closed.

• HC is continuous.

Proof. Firstly, HC is continuous at every λ ∉ LimPt(C), since there is α < λ such that [α . . λ) has
no element in C, so HC sends every ordinal in this interval to HC(λ). As for λ∈ LimPt(C), we have∨

γ<λHC(γ) = λ, so HC is continuous at λ iff λ ∈ C.

Thus we have a dual bijection between the collection of all closed unbounded classes, known as club
classes, and that of all continuous closure operators. Here are some ways to obtain club classes:

Proposition 14.8. Each of the following is equivalent to Infinity.

(a) For any continuous function H , the class Pref(H) is club.

(b) For any unbounded class C, the class LimPt(C) is club.

(c) For a family of club classes (Ci)i∈I , the intersection
⋂

i∈I Ci is club.

(d) For a sequence of club classes (Cα)α∈Ord, the diagonal intersection ∆α∈OrdCα is club.

Proof. Firstly, if Infinity does not hold, then a club class is just an unbounded class of natural numbers,
and the statements are all false:

(a) Pref(S) is empty.

(b) LimPt(Ord) is empty.
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(c) Let C be the class of all even numbers and D that of all odd numbers. Each is club, but C ∩D is
empty.

(d) For each ordinal n, let Cn be the class of ordinals ⩾ n+2. Each of these is club, but ∆n∈OrdCn =
{0}.

Now assume Infinity. Because of Proposition 14.5, we need only prove unboundedness.

(a) Let α be an ordinal α. Form a strictly increasing sequence of ordinals (xn)n∈N via x0
def
= α and

xn+1
def
= S(xn) ∨H(xn). Its supremum λ is a limit ordinal and satisfies

H(λ) =
∨
γ<λ

H(β)

=
∨
n∈N

H(xn)

⩽
∨
n∈N

xn+1 (since H(xn) ⩽ xn+1)

= λ

so λ is an H-prefixpoint ⩾ α.

(b) Let α be an ordinal. Form a strictly increasing sequence of ordinals (xn)n∈N via x0
def
= α and

xn+1
def
= the least ordinal in C that is greater than xn. Then

∨
n∈N xn is in LimPt(C) and is > α.

(c) Since ⋂
i∈I

Ci =
⋂
i∈I

Pref(HCi)

= Pref(
∨
i∈I

HCi
)

which is club by part (a), using Proposition 14.3(b) .

(d) Similar.

Proposition 14.9. For a class of limit ordinals D, the following are equivalent.

(a) D is stationary.

(b) Every continuous function has a prefixpoint in D.

(c) Every club class has an element in D.

Proof. To show that (a) implies (b), let H be a continuous function. Then any H-based limit ordinal is
H-prefixed. To show the converse, let G be a function. Then the function H def

= ∇α∈OrdconstG(α) is
continuous by Proposition 14.3, and a limit ordinal is G-based iff it is H-prefixed.

To show that (b) implies (c): for any club class C, we have C = Pref(HC) and HC is continuous.
To show the converse, we note that the club class Ord has an element in D ⊆ Lim. So Infinity holds and
we can apply Proposition 14.8(a).

Corollary 14.10. LetD be a stationary class of limit ordinals. The intersection ofD with any club class
is stationary.
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14.2 Application: iterated inaccessibility
In order to formulate iterated inaccessibility, we use the following result.

Proposition 14.11. Let D be a class of limit ordinals.

(a) There is a sequence of classes (Xα)α∈Ord and class X∞∞ uniquely specified by

Xα = D ∩
⋂
β<α

LimPt(Xβ)

X∞∞ = D ∩∆β∈OrdLimPt(Xβ)

(b) If D is stationary, then so are all these classes.

Proof.

(a) We cannot define a sequence of classes recursively, so we proceed as follows. For any ordinal ρ,
we recursively define a sequence (Xρ

α)β∈Ord of subsets of ρ via

Xρ
α = ρ ∩D ∩

⋂
β<α

LimPt(Xρ
β)

These sequences are compatible in the sense that, for ρ ⩽ σ, we have Xρ
α = ρ ∩Xσ

α . We define

Xα
def
= {ρ ∈ Ord | ρ∈XSρ

α }

and obtain the required properties.

(b) Firstly, since D is stationary, Infinity holds and we can use Proposition 14.8.

We cannot simply prove Xα stationary by induction on α, as stationarity involves second-order
quantification. Instead, we prove unboundedness of Xα by induction on α, as follows. For all
β < α, the class Xβ is unbounded, so LimPt(Xβ) is club. So

⋂
β<αXβ is club, making Xα

stationary and hence unbounded. This completes the induction.

Next, for any ordinal α, we see (again) that
⋂

β<α LimPt(Xβ) is club, making Xα stationary.
Likewise ∇β∈OrdLimPt(Xβ) is club, making X∞∞ stationary.

For an application assuming Powerset + Infinity + AC, let D be the class of all inaccessible
cardinals. ThenXα is the class of all α-inaccessible cardinals, andX∞∞ the class of all hyper-inaccessible
cardinals. Proposition 14.11(b) tells us that these classes are stationary if Broad Infinity holds.

This construction can be further iterated, giving hyper-hyper-inaccessible cardinals and more. In
Carmody’s work [Car17], this is achieved by generalizing the subscripts used in Proposition 14.11 to a
system of “meta-ordinals”.

Related work A standard treatment of stationarity is given in [Jec03], not for classes but for subsets
of a given limit ordinal. So the predicativity issue does not arise, and additional results are obtained,
such as Fodor’s pressing-down lemma and Solovay’s partitioning theorem. See [GHK21] for an analysis
of whether Fodor’s lemma applies to classes.
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Part V

Wrapping up
15 Conclusions

15.1 Summary of achievements
We have now established all the relationships in Figure 1. The main technical achievement was proving
the equivalence (assuming Powerset + AC) of Simple Broad Infinity and Mahlo’s principle. The centre-
piece is the implication Full Broad Infinity ⇒ Broad Derivation Set, which relies on Proposition 4.18 to
generate the R-derivational class-family.

On the philosophical side, I claim that the notion of F -broad number (for a broad arity F ) is easily
grasped, making Simple Broad Infinity a plausible axiom scheme. This is for the reader to judge.

On the practical side, we have seen several equivalent principles that are convenient for applications.
Specifically:

• Broad Derivation Set yields the existence of Tarski-style universes.

• Broad Set Generation yields the existence of Grothendieck universes.

• Mahlo’s principle in the form “Every club class contains a regular limit” yields the existence of
α-inacessibles and hyper-inaccessibles.

As promised in Section 2.5, we have developed our results in a setting that allows urelements and non-
well-founded membership, proved the sufficiency of (a version of) WISC for our main AC-reliant results,
and seen the pattern of resemblance between Wide and Broad principles throughout the paper.

15.2 Further work
Beyond the above contributions, more work remains to be done. Firstly, there are unanswered questions,
particularly about the power of Broad ZF.

1. By analogy with Gitik’s work [Git80], can it be shown, under some consistency hypothesis for
large cardinals, that Broad ZF does not prove the existence of an uncountable regular limit?

2. Does Broad ZF + Blass’s axiom prove Mahlo’s principle?

3. Jech [Jec82] showed in ZF that the class of all hereditarily countable sets is a set, and his result
has been extended to other cardinalities [Die92, Hol14]. Can a stronger version be proved in
Broad ZF? For example, given a broad arity F :T → Set, let H(F ) denote the least class X that
contains Begin and, for any x ∈X and y ∈XF (x), contains Make(x,Range(y)). This exists by
Proposition 4.13(a). Does Broad ZF prove, for every broad arity F , that H(F ) is a set?

Everything in this paper has been done in a base theory that—like ZF—uses classical first-order logic
and ignores logical complexity. But some other versions of set theory use intuitionistic logic and/or
restrict the use of logically complex sentences [Cro20, Mat01]. The task of adapting our results to such
theories (as far as possible) is left to future work.

Lastly, the link between type-theoretic work on induction-recursion [DS06, GH16, GMNFS17] and
the principles in this paper remains to be developed.
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