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Functional language: call-by-name FPC

Types

A ::= A→ A |
∑

i∈IAi |
∏

i∈I Ai | X | rec X. A (I countable)

Terms

M ::= x | 〈i ,M〉 | match M as {〈i , x〉.Mi}i∈I

| λx.M | MM | Mi | λ{i .Mi}i∈I

| rec x. M | fold M | unfold M

A ground type is
∑

i∈I 1

The strategy types are of the form
∏∑∏∑∏∑

. . .

Cpo semantics:
∑

denotes lifted sum
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Big-step semantics (Cousot)

Convergence

Terminal terms T ::= λx.M | λ{i .Mi}i∈I | 〈i ,M〉

Define convergence M ⇓ T inductively, e.g.

M ⇓ λx.P P[N/x] ⇓ T

MN ⇓ T

Divergence

Define divergence M ⇑ coinductively, e.g.

M ⇓ λx.P P[N/x] ⇑

MN ⇑
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Imperative Language

Syntax

M ::= print c . M | x | rec x. M c ∈ A

Also allow countable mutual recursion.

Small-step semantics

print c . M  c M

rec x. M  M[rec x. M/x]

A program either

prints a finite string, then diverges

or prints an infinite string.
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Medium step semantics

Convergence

Define M ⇒c N inductively:

print c. M ⇒c M

M[rec x. M/x] ⇒c N

rec x. M ⇒c N

Divergence

Define M ⇑ coinductively:

M[rec x. M/x] ⇑

rec x. M ⇑

We have

M ⇒c N iff M  ∗  c N

M ⇑ iff M  ω
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From imperative to functional

Define the strategy type Proc
def
=
∑
c∈A

Proc

x0, . . . , xn−1 ` M in the imperative language

translates into x0 : Proc, . . . , xn−1 : Proc ` M : Proc in the functional
language.

This translation preserves operational semantics.

Since Proc denotes the domain A∗ω, it preserves cpo semantics too.

We could also translate interactive input, using nontrivial
∏

.

Paul Blain Levy (University of Birmingham) Nondeterminism survey November 12, 2010 7 / 37



From imperative to functional

Define the strategy type Proc
def
=
∑
c∈A

Proc

x0, . . . , xn−1 ` M in the imperative language

translates into x0 : Proc, . . . , xn−1 : Proc ` M : Proc in the functional
language.

This translation preserves operational semantics.

Since Proc denotes the domain A∗ω, it preserves cpo semantics too.

We could also translate interactive input, using nontrivial
∏

.

Paul Blain Levy (University of Birmingham) Nondeterminism survey November 12, 2010 7 / 37



From imperative to functional

Define the strategy type Proc
def
=
∑
c∈A

Proc

x0, . . . , xn−1 ` M in the imperative language

translates into x0 : Proc, . . . , xn−1 : Proc ` M : Proc in the functional
language.

This translation preserves operational semantics.

Since Proc denotes the domain A∗ω, it preserves cpo semantics too.

We could also translate interactive input, using nontrivial
∏

.

Paul Blain Levy (University of Birmingham) Nondeterminism survey November 12, 2010 7 / 37



From imperative to functional

Define the strategy type Proc
def
=
∑
c∈A

Proc

x0, . . . , xn−1 ` M in the imperative language

translates into x0 : Proc, . . . , xn−1 : Proc ` M : Proc in the functional
language.

This translation preserves operational semantics.

Since Proc denotes the domain A∗ω, it preserves cpo semantics too.

We could also translate interactive input, using nontrivial
∏

.

Paul Blain Levy (University of Birmingham) Nondeterminism survey November 12, 2010 7 / 37



Three kinds of nondeterminism

We can add to the functional language various kinds of nondeterminism.

Binary erratic nondeterminism M or M ′

Choose to go left (and evaluate M) or right (and evaluate M ′)

Countable erratic nondeterminism choose n ∈ N. Mn

Choose a number n, then evaluate Mn

Ambiguous nondeterminism M amb M ′

Evaluate M and M ′ fairly, return whatever you get first.
If M returns after 1 step, and M ′ returns after 10000 steps, could still
return the latter.
We require M,M ′ to have

∑
type.

Ground amb

Provides amb at ground type only.
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Expressiveness

Define

⊥ def
= rec x. x

choose⊥ n ∈ N. Mn
def
= ⊥ or choose n ∈ N. Mn

Binary erratic nondeterminism can express choose⊥ n ∈ N. Mn.

• //

  A
AA

AA
AA

A • //

""D
DD

DD
DD

D • //

""D
DD

DD
DD

D • //

""D
DD

DD
DD

D · · ·

M0 M1 M2 M3

Ground amb can express countable erratic nondeterminism,
parallel-or and parallel-exists.
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Example Application

The program must not kill the customer.
safety property

The program must greet the customer.
liveness property

If the program insults the customer, it must apologize.
conditional liveness property

The program must stop insulting the customer.
infinite liveness property
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May testing

The most basic equivalence on programs is may testing.
This asks: what are the things that we may observe?
Or equivalently, the things that we definitely won’t observe (safety
properties).

Definition

M 'may M ′ when, for every ground context C[·],

C[M] ⇓ n⇔ C[M ′] ⇓ n

Examples

M or ⊥ 'may M

M amb M ′ 'may M or M ′

In the imperative language, closed terms M and M ′ are identified when
they have the same finite traces.
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Rational continuity

May testing has a continuity property that gives rise to lower powerdomain
semantics.

Definition of recn x. M

rec0 x. M
def
= ⊥

recn+1 x. M
def
= M[recn x. M/x]

Theorem

If C[rec x. M] can print “hello”, then there exists n ∈ N such that
C[recn x. M] can print “hello”.

Cpo semantics for may testing is typically fully definable and fully abstract.
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Translation doesn’t preserve may-testing

Imperative a.(b.⊥ or c .⊥) 'may a.b.⊥ or a.c .⊥
Functional 〈a, 〈b,⊥〉 or 〈c ,⊥〉〉 〈a, 〈b,⊥〉〉 or 〈a, 〈c ,⊥〉〉

These can be distinguished by the context

match [·] as

 〈a, x〉. match x as

 〈b, y〉. match x as

{
〈c , z〉. true
〈6= c , z〉. ⊥

〈6= b, y〉. ⊥
〈6= a, x〉. ⊥

To rectify this, we need an affine target language (like Winskel’s Affine
HOPLA).

Paul Blain Levy (University of Birmingham) Nondeterminism survey November 12, 2010 13 / 37



Imperative language: infinite traces

For a closed term M, its set of behaviours [M] ∈ P(A∗∞)

The kernel of [ ] is called infinite trace equivalence.

Probably the most obvious equivalence to consider.

Can recognize all the properties of our customer service program.

Can we give a denotational semantics that agrees with [ ] on closed terms?
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Infinite traces
What doesn’t work (1): least fixpoint semantics

In least fixpoint semantics, ⊥ is the least fixpoint of the identity, so
⊥ 6 M.

Consider

M
def
= ⊥ or insult.apol.⊥

M ′
def
= ⊥ or insult.⊥ or insult.apol.⊥

We have

M = ⊥ or ⊥ or insult.apol.⊥ 6 M ′

M = ⊥ or insult.apol.⊥ or insult.apol.⊥ > M ′

So M = M ′, contradicting infinite trace equivalence.
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Infinite traces
What doesn’t work (2): well-pointed semantics

In well-pointed semantics, a term in context Γ denotes a function from a
set of environments.

Linked to a context lemma: two terms that are equivalent in every
environment are equivalent in every program context.

That is false for our language, in the case that A = {X}.
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Infinite traces
Counterexample to context lemma

Here are two terms with a free identifier x.

N = choose⊥ n ∈ N. Xn. ⊥ or x

N ′ = choose⊥ n ∈ N. Xn. ⊥ or x or X.x

Xn, then diverge Xω

N yes iff x can
N ′ yes iff x can

rec x. N yes no
rec x. N ′ yes yes
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Infinite traces
What does work: intensional semantics

N = choose⊥ n ∈ N. Xn. ⊥ or x

N ′ = choose⊥ n ∈ N. Xn. ⊥ or x or X.x

Somehow we have to distinguish N and N ′.

Game semantics

N ′ can print X, then force (i.e. execute) x.
Make forcing explicit in the denotational semantics.

Presheaf semantics

Interpret N and N ′ using alphabet A+ 1.
For n free identifiers, use alphabet A+ n.
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Seeing Beyond Divergence (1)

Definition of [M]I

the set of finite traces of M, together with extensions of divergences

the set of extensions of divergences of M

the set of infinite traces of M, together with extensions of divergences

This semantics is divergence strict.

To model recursion, we take the greatest fixpoint. (Reverse ordering is the
upper powerdomain.)
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Seeing Beyond Divergence (2)

Definition of [M]SBD

the set of finite traces of M

the set of divergences of M

the set of infinite traces, together with limits of divergences (called
“ω-divergences”)

To model recursion:

first compute the greatest fixpoint wrt [ ]I, giving an equivalence class
for [ ]SBD

then compute the least fixpoint wrt [ ]SBD within that class.

This is called the reflected fixpoint.
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Functional language: may and must testing

For a set A ⊆ N, we want to observe whether a program must return a
value in A.

This is a liveness property.

Definition

For two terms M,M ′, say M 'may−must M ′ when for every ground context
C[·], we have

C[M] ⇓ n ⇔ C[M ′] ⇓ n

C[M] ⇑ ⇔ C[M ′] ⇑

The context lemma holds for (binary or countable) erratic nondeterminism
under this equivalence. [Lassen]
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Powerdomain semantics for may-must: binary
nondeterminism

For binary nondeterminism, we have a continuity property for must-testing.

Theorem

For any A ⊆ N, if C[rec x. M] must return an element of A, then there
exists n such that C[recn x. M] must return an element of A.

This leads to convex powerdomain semantics for 'may−must [Plotkin].

Problem The model contains undefinable elements even at first order,
causing failure of full abstraction at second order.
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May-must equivalence for countable nondeterminism
What doesn’t work: continuity

Continuous semantics cannot recognize divergence.

Proof (Apt-Plotkin)

Define A
def
=
∏

n∈Nbool and define f : A ` M : A to be

λ


0. choose n > 0. f(n)
1. true
n > 1. f(n − 1)

and C[·] to be [·]0. Then, up to may-must equivalence,

C[reck f. M] is true or ⊥
C[rec f. M] is true

Plotkin et al developed a variant of the convex powerdomain for countable
nondeterminism, using transfinite approximants.
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Amb
What doesn’t work (1): least fixpoint semantics

How can we give denotational semantics for amb?

Least fixpoint semantics doesn’t work, even for ground amb.

true or ⊥ 6 true or true = true

true = if (false amb ⊥) then ⊥ else true

6 if (false amb true) then ⊥ else true

= true or ⊥

So true or ⊥ = true. That’s may-testing.
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Amb
What doesn’t work (2): well-pointed semantics

[MFPS 2007] Amb breaks the context lemma.

Let A be the strategy type
∏

1

∑
1

∏
1

∑
1 1.

A closed term of type A gives (operationally) an element of

[A]
def
= P((P(1⊥)⊥).

There exist two terms x : A ` M,M ′ : A giving (operationally) the same
endofunction on [A]

and a ground context C[·] such that

C[rec x. M] may diverge

C[rec x. M ′] must converge.

So no well-pointed semantics is possible.
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Context lemma for ground amb

[MFPS 2007] The context lemma holds in the presence of ground amb.

This suggests that there could be a well-pointed semantics for ground amb.
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Lower and convex bisimulation: imperative language

Let R be a binary relation on closed terms.

It is a lower simulation when M R M ′ and M ⇒c N implies ∃N ′ such that
M ′ ⇒c N ′ and N R N ′.

It is a lower bisimulation when R and Rop
are lower simulations.

It is a convex bisimulation when moreover M R M ′ implies M ⇑⇔ M ′ ⇑.

The greatest lower bisimulation is called lower bisimilarity.

Two terms are lower bisimilar

iff they satisfy the same formulas in Hennessy-Milner logic

iff there is a strategy for the bisimilarity game between them

iff they have the same anamorphic image.
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Bisimilarity
What doesn’t work: least fixpoint semantics

Once again

M
def
= ⊥ or insult.apol.⊥

M ′
def
= ⊥ or insult.⊥ or insult.apol.⊥

We have

M = ⊥ or ⊥ or insult.apol.⊥ 6 M ′

M = ⊥ or insult.apol.⊥ or insult.apol.⊥ > M ′

So M = M ′, but they are not lower bisimilar.
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Lower similarity
What doesn’t work: continuity [Boudol, Abramsky, Lassen]

Let the alphabet be N, and include a renaming operator [+1].

Let x ` M be ⊥ or (0. ⊥) or [+1]x

Let C[·] be (choose⊥ n ∈ N. 0. choose⊥ m 6 n. m. ⊥) or (0. [·])

Then. up to convex bisimilarity,

C[reck x. M] is (choose⊥ n ∈ N. 0. choose⊥ m 6 n. m. ⊥)

C[rec x. M] is (choose⊥ n ∈ N. 0. choose⊥ m 6 n. m. ⊥)

or (0. choose⊥ m ∈ N. m. ⊥)

The latter and the former are not related by lower similarity.

But they are identified by any continuous semantics.
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Denotational semantics of lower bisimilarity

Is there a well-pointed semantics of lower bisimilarity?

Abramsky’s domain equation

Abramsky presented a “domain equation for bisimulation”.

If M,M ′ have no divergences then [[M]] = [[M ′]] iff M,M ′ are lower
bisimilar.

But for general programs, that is not the case.

What kind of fixpoint should we use to interpret recursion?
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Applicative bisimilarity [Abramsky]: functional language

A binary relation R on closed terms is a lower applicative simulation when
M R M ′ : A implies

(if A = B → C ) for all closed N : B we have MN R M ′N

(if A =
∏

i∈I Bi ) for all i ∈ I we have Mi R M ′i

(if A =
∑

i∈IAi ) if M ⇓ 〈i ,N〉 then ∃N ′ such that M ′ ⇓ 〈i ,N ′〉 and
N R N ′.

Lower and convex bisimulation are as before.

The (imperative → functional) translation preserves and reflects lower and
convex bisimilarity.
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Properties of applicative bisimilarity

Lower applicative bisimilarity is a congruence, by Howe’s method.

Convex applicative bisimilarity is a congruence in the presence of erratic
nondeterminism, and [MFPS 2007] of ground amb.

But not in the presence of general amb (previous example).

In the nondeterministic setting, it is finer than may-must equivalence, e.g.
Boudol-Abramsky example.

choose⊥ n ∈ N. 〈i , choose⊥ m 6 n. m〉 'may−must

choose⊥ n ∈ N. 〈i , choose⊥ m 6 n. m〉 or 〈i , choose⊥ m ∈ N. m〉
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Howe’s method

Howe’s method, showing that applicative bisimilarity is a congruence, is
elegant but mysterious.

It assumes finitary syntax, but has been adapted [CMCS 2006] for
infinitary syntax.

Can we get some understanding of this method?

Böhm trees—also represented as innocent well-bracketed strategies, in the
deterministic setting—abstract away from syntactic detail.

Congruence of applicative bisimilarity says that composition of innocent
well-bracketed strategies preserves applicative bisimilarity. This may (?) be
easier to understand.
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Moving up the type hierarchy

To model lower applicative bisimilarity we have to say what functions are
definable, as we move up the type hierarchy.

This is similar to the quest for a model of sequential computation.

So far, we can characterize definable functions between strategy types:
they are the exploratory functions [L & Yemane, MFPS 2009].

Cf. Kahn-Plotkin sequentiality

This may be good enough for the imperative language.

But we cannot yet characterize definability at higher-order.

Is it computable at finite types? (Cf. Loader)
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Model of bisimilarity: nested simulation

A 2-nested lower simulation is a simulation contained in mutual similarity.

A 3-nested lower simulation is a simulation contained in mutual 2-nested
similarity. And so through all countable ordinals.

The intersection of n-nested similarity for n < ω1 is bisimilarity.
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Model of bisimilarity: suggested semantics

A nested similarity set is a set A equipped with an ω1 sequence of
preorders Rn where

Rn is contained in the symmetrization of Rm, for every m < n

the intersection of Rn over all n < ω1 is the discrete relation.

Rn represents n-nested simulation.

[2010] We compute the nesting fixpoint of a monotone endofunction by

taking the least fixpoint for R0, giving an equivalence class for R1

take the least fixpoint for R1 within this class, giving an equivalence
class for R2

etc.

provided these least fixpoints actually exist
and provided the intersections are nonempty.
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Summary

Infinite traces: now well understood.

Fully abstract model of may-must testing?

Any model of may-must testing with ground amb?

General amb: many basic operational questions.

After amb comes fair merge.

Lower bisimilarity: signs of progress.

Afterwards comes convex bisimilarity.

Affineness

Dataflow and call-by-need
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