
Transition systems over games

Paul Blain Levy
University of Birmingham
p.b.levy@cs.bham.ac.uk

Sam Staton
Radboud University Nijmegen

s.staton@cs.ru.nl

Abstract
We describe a framework for game semantics combining opera-
tional and denotational accounts. A game is a bipartite graph of
“passive” and “active” positions, or a categorical variant with mor-
phisms between positions.

The operational part of the framework is given by a labelled
transition system in which each state sits in a particular position of
the game. From a state in a passive position, transitions are labelled
with a valid O-move from that position, and take us to a state in
the updated position. Transitions from states in an active position
are likewise labelled with a valid P-move, but silent transitions are
allowed, which must take us to a state in the same position.

The denotational part is given by a “transfer” from one game
to another, a kind of program that converts moves between the two
games, giving an operation on strategies. The agreement between
the two parts is given by a relation called a “stepped bisimulation”.

The framework is illustrated by an example of substitution
within a lambda-calculus.

Categories and Subject Descriptors F.3.2 [Logic and meanings
of programs]: Semantics of programming languages

1. Introduction
This paper is concerned with two established lines of research in
the semantics of higher-order calculi. One is game semantics us-
ing pointers [10], a form of denotational semantics that has been
widely adapted successfully adapted to many language features,
including general references [3, 27], control operators [19], ex-
ceptions [20] and polymorphism [22, 23]. The other is open (aka
normal form) bisimulation [28], a convenient operational tech-
nique for establishing observational equivalences in various set-
tings [13, 24, 25, 26, 29], based on a transition system constructed
from the syntax of the calculus.

It is widely accepted that these two ideas have a lot in common,
and that both operational and denotational perspectives are impor-
tant [7, 14, 15, 16, 21]. The contribution of this paper is to elaborate
the connections and to develop some principles that underlie the re-
lationship.

Summary of the concepts
Our analysis is based on the following five key concepts:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603150

1. A game, which is essentially a bipartite graph describing the
moves that can be made as play passes between the different
positions of the two players.

2. A strategy for a game, which specifies a particular way of
playing a game, from a given starting position. Formally, it is
a set of paths through the graph.

3. A transition system over a game, which is the operational part of
the account. This can be thought of as an abstract machine that
performs a strategy. Formally, it is a transition system labelled
by legal moves of a game. (The set of legitimate actions changes
over time, by contrast with conventional LTSs.)

4. A way to transfer strategies from one game to another, which
is the denotational part of the account. We take as an example a
composition operation, which takes two strategies in a particu-
lar game G and composes them. We understand this as a transfer
from the tensor game G ⊗G (whose strategies are roughly pairs
of strategies) to the game G.

5. A stepped bisimulation across a transfer, which relates the
operational and denotational accounts. Our main theorem says
that, if x and y are states of transition systems for G and H
respectively, and they are stepped bisimilar across a transferO :
G → H, then the strategy performed by x is transfered by O
to the strategy performed by y. For the example of composing
strategies, we are able to relate the denotational operation of
composition and the operational results of substitution.

Goals and further discoveries
When we embarked on this project, we had a number of goals.
Primarily, we wanted to understand techniques for operating on
strategies. We also wanted to set the fundamental notions within
well-established mathematical frameworks, for example, transition
systems as coalgebras, and renaming in terms of functor categories.
As we report here, we have accomplished these things. But we have
made some surprising discoveries too.

• We found a convenient diagrammatic notation for operations on
strategies.

• Several well-known categorical concepts turn out to play an
interesting role, in particular two-dimensional partial map
(Sect. 5), bimodule (Sect. 8), and ∗-autonomous bicategory
(Sect. 9).

Related Work
Apart from papers about denotational and/or operational game
semantics, we briefly comment on some work that might seem
broadly related to our work. First, it seems appropriate to empha-
sise the difference between open bisimilarity, in which a function is
tested by calling it with a fresh identifier, and applicative bisimilar-
ity [1], in which a function is tested by calling it with all possible
arguments. For the latter there remains a big gap between oper-

ational and denotational accounts: Howe’s ingenious congruence
proof [9] appears unrelated to any denotational principles or mod-
els.

Second, we recall the ‘bialgebraic semantics’ of Turi and
Plotkin [30], which relates operational and denotational semantics
for simple first-order process calculi. But bialgebraic semantics
seems different in spirit from our work. On the one hand bial-
gebraic semantics neatly explains when the structural operational
semantics of a first-order process calculus is compositional by con-
struction. On the other hand we are investigating compositionality
properties for an abstract-machine-based operational semantics for
higher-order calculi, where compositionality is not immediate.

In addition to these, there are many other operational analyses
of game semantics, notably [5, 6] and the “traversal” technology
of [4]. Games similar to those in Sect. 3 appear in [12, 17]. Bimod-
ules (profunctors) are employed in game semantics in [8, 31].

2. Illustrative Example
2.1 Example calculus
The reader might expect at this point to see a rich example calculus,
e.g. call-by-value typed λ-calculus with recursive types and general
references. However, treating such a calculus would involve sev-
eral complications (answer moves, ultimate pattern matching [25],
renamings of references) that would distract somewhat from the
points we are presenting. So instead we shall omit the general ref-
erences, and consider a single recursive type

A = (A×A)→ 0

which is just complicated enough to illustrate the points we are
making in the paper. A value of this type is a function that is called
with two arguments and (as in CPS) never returns. By abbreviating

λ(x, y).M
def
= λz. split z as (x, y).M

we obtain the following untyped (or uni-typed) calculus. We stress
that it has no intrinsic importance; it is merely an illustrative frag-
ment of the rich calculus described above.

Value V ::= x | λ(x, y).M
Nonreturning command M ::= V (V, V)

where λ binds x and y; we work up to α-equivalence. For a finite
set Γ of identifiers, we write Γ `v V to say that V is a value with
free identifiers drawn from Γ, and Γ `nc M for a nonreturning
command. We omit the typing rules, which are evident.

Operational semantics of an open command Γ `nc M is given
by the C-machine, which β-reduces

Γ `nc (λ(x, y).M)(V,W) M [V/x,W/y]

until reaching a command of the form x(V,W) for some x ∈ Γ.

2.2 Example interaction
We consider interaction between two players called P (Proponent,
Patricia, the program) and O (Opponent, Oliver, the environment).
Each passes functions to the other, and the passed functions are
represented as fresh function-names. To illustrate this, consider the
program:

x, y `nc (λ(s, t).s(t, y))(x, λ(p, q).(λ(u, v).u(v, q))(p, x))

For this program, here is an interaction between P and O. Initially,
P has function-names x, y (i.e. has the ability to call them) and O
has none.

1. P firstly performs one β-reduction, giving

x(λ(p, q).(λ(u, v).u(v, q))(p, x), y)

so she calls x and passes to O two function-names b0 and b1
representing the functions λ(p, q).(λ(u, v).u(v, q))(p, x) and
y respectively. These names are fresh, i.e. not used previously.

2. Suppose O calls b0, passing to P two fresh function-names w0

and w1.

3. Then P executes (λ(p, q).(λ(u, v).u(v, q))(p, x))(w0, w1)
(λ(u, v).u(v, w1))(w0, x) w0(x, w1) so she calls w0, passing
two fresh function-names b2 and b3 representing the functions
x and w1 respectively.

4. Suppose O calls b1, passing to P two fresh function-names w2

and w3.

5. Then P executes y(w2, w3), i.e. immediately calls y, passing to
O two fresh function-names b4 and b5 representing the func-
tions w2 and w3 respectively.

We see that each player moves by calling a function-name from
their inventory, which grows over time. Consequently the set of
legitimate moves keeps changing.

Remark We are not explicitly using justification pointers in the
style of [10] but it is clear that, for example, when O calls b1 in
move 4, he could express this as “calling the second name I received
in move 1”. That is: as a justification pointer with some extra data.
On the other hand, when P calls y in move 5, there is no justification
pointer because she owned y at the start.

3. Games, Strategies, Transition Systems
We consider two kinds of games in this paper: a familiar “discrete”
kind in this section, and a more sophisticated “categorical” kind in
Sect. 4.

3.1 Games
DEFINITION 1. A (discrete) game G is a bipartite directed multi-
graph. Explicitly:

• a set Gpass of passive positions
• a set Gact of active positions
• for each passive position P ,

a set OmoveP of Opponent-moves from P
for each m ∈ OmoveP an active result position P.m

• for each active position Q,
a set PmoveQ of Proponent-moves from Q
for each n ∈ PmoveQ a passive result position Q.n.

Note that no position is designated “initial”. We write P ◦
m // Q

to mean that m ∈ OmoveP and Q = P.m, and we write
Q •

n // P to mean that n ∈ PmoveQ and P = Q.n.
Our main example of a game uses the notion of a gen-set,

intuitively a set of names with a facility for generating fresh ones.
Formally it is a setA equipped with a set of permitted finite subsets
of A, and for each permitted set R an element νR ∈ A \ R such
that R+ def

= R ∪ {νR} is permitted. Here are some examples.

1. N is a gen-set with $n
def
= {m ∈ N | m < n} permitted for all

n ∈ N, and ν($n) = n. This is similar to O’s function-names
in our example, viz. b0, b1, b2, b3, b4, b5.

2. If B is a set then B + N is a gen-set with U + $n permit-
ted for all finite U ⊆ B and n ∈ N, and ν(U + $n) =
inr n. This is similar to P’s function-names in our example, viz.
x, y, w0, w1, w2, w3. We would take B to be some set containing
x and y.

3. [Example with thanks to L. Moss; not used in the sequel.] The
universe of sets forms a gen-set, or strictly speaking a gen-class,

with every finite set R permitted and νR def
= {x ∈ R | x 6∈ x},

which is simply R if the Axiom of Foundation is assumed.

For a permitted set R and n ∈ N, we write R+n def
= R

nz }| {
+ · · ·+

and νnR
def
= νR+n, giving a sequence (νnR)n∈N of distinct names

not in R. For permitted sets R,S and function f : R → S and
n ∈ N, we write f+n : R+n → S+n for the extended function
f [νiR 7→ νiS]i<n.

Let us now fix two gen-sets of P’s function-names and of O’s
function-names respectively. We form a game λGame in which

• a passive position is a pair Γ ‖ ∆, where Γ and ∆ are permitted
sets of P’s names and O’s names respectively

• an active position is the same
• an O-move from Γ ‖ ∆ is b ∈ ∆, with result position Γ+2 ‖ ∆

• a P-move from Γ ‖ ∆ is x ∈ Γ, with result position Γ ‖ ∆+2.

This is in keeping with the interaction in Section 2: O moves
by selecting a function-name from his inventory, putting two new
function-names into P’s, and vice versa.

3.2 Strategies
Let G be a game. A play in G is any sequence of consecutive moves.
Strategies may be described as sets of plays, as follows.

DEFINITION 2. 1. A strategy for G starting from a passive posi-
tion P is a set σ of passive-ending plays

P ◦
m0 // · •

n0 // · · · · · ◦
mr−1 // · •

nr−1 // ·

such that the empty play is in σ, and smn ∈ σ implies s ∈ σ,
and tn, tn′ ∈ σ implies n = n′. We write Stratpass

G P for the
set of all such strategies.

2. A strategy for G starting from an active position Q is a set σ of
passive-ending plays

Q •
n0 // · ◦

m0 // · · · · · • nr // ·

such that smn ∈ σ implies s ∈ σ, and tn, tn′ ∈ σ implies
n = n′. We write Stratact

G Q for the set of all such strategies.

3.3 Transition systems
In the following, it is essential not to confuse positions with states.
For a computer program playing chess, the position describes the
current arrangement of the chessboard, which determines what
moves are legitimate, whereas a state describes the values of mem-
ory cells etc. used to determine how to play. Think of a position as
the “type” of a state.

DEFINITION 3. A small-step system over a game G consists of the
following data.

• For each passive position P a set Spass P of passive states in
position P .

• For each active position Q a set Sact Q of active states in
position Q.

• For each passive position P a function

ζpass
P : Spass P →

Y
m∈OmoveP

Sact P.m

• For each active position Q a function

ζact
Q : Sact Q → (

X
n∈PmoveQ

Spass Q.n) + Sact Q

For x ∈ Spass P and m ∈ OmoveP we write x@m for
ζpass
P (x)(m). For y ∈ Sact P we write y n x or y z (silent

transition) according as ζact
P (y) is inl (n, x) or inr z.

For our main example (§2), we form a transition system λSyst
over λGame as follows.

• A passive state in (passive) position Γ ‖ ∆ is a family of values
(Va)a∈∆, where Γ `v Va for each a ∈ ∆.

• An active state in (active) position Γ ‖ ∆ consists of a family of
values (Va)a∈∆ and a nonreturning command M , where Γ `v

Va for each a ∈ ∆ and Γ `nc M . We write (Va)a∈∆ I M for
an active state.

• For a passive state (Va)a∈∆ in position Γ ‖ ∆, we define
(Va)a∈∆@a

def
= (Va)a∈∆ I Va(ν0Γ, ν1Γ).

• For an active state (Va)a∈∆ IM in position Γ ‖ ∆, we set

(Va)a∈∆ IM

8<: (Va)a∈∆ IM ′ if M M ′

x

(Va)a∈∆ [νi∆ 7→ Vi]i=0,1

if M = x(V0, V1)

We often want to ignore the silent transitions, in which case we
use the following.

DEFINITION 4. A big-step system over a game G consists of the
following data.

• For each passive position P a set Spass P of passive states in
position P .

• For each active position Q a set Sact Q of active states in
position Q.

• For each passive position P a function

ζpass
P : Spass P →

Y
m∈OmoveP

Sact P.m

• For each active position Q a function

ζact
Q : Sact Q → (

X
n∈PmoveQ

Spass Q.n) + 1

For x ∈ Spass P and m ∈ OmoveP we write x@m for
ζpass
P (x)(m). For y ∈ Sact P we write y =⇒n x and y ⇑ according

as ζact
P (y) is inl (n, x) or inr (). A small-step system always gives

rise to a big-step one: we set y =⇒n x when y ∗ n x, and y ⇑
when y ω .

We may go a step further and dispense with the active states:

DEFINITION 5. A passive system over a game G consists of the
following data.

• For each passive position P a set Spass P of passive states in
position P .

• For each passive position P a function ζpass
P : Spass P →Y

m∈OmoveP

((
X

n∈PmoveP.m

Spass P.m.n) + 1)

For x ∈ Spass P and m ∈ OmoveP we write x@m
n
w and

x@m ⇑ according as ζact
P (x)(m) is inl (n,w) or inr (). (Here

@ and @⇑ are quaternary and binary predicates respectively,
and x@m has no meaning in a passive system.) Clearly a big-step
system gives rise to a passive one by taking just the passive states.

We could consider bisimulations for small-step or big-step sys-
tems, but it turns out that the most useful notion is for passive sys-
tems.

DEFINITION 6. Let S be a passive system over a game G. A passive
bisimulation on S associates to each passive positionP a binary re-
lationRP on Spass P , such that if x (RP)x′ and m ∈ OmoveP ,
either

• x@m =⇒n w and x′@m =⇒n w′ for some n ∈ PmoveP.m
and w (RP.m.n) w′

• or x@m ⇑ and x′@m ⇑.

3.4 From transition systems to strategies
Each state has an associated strategy that describes the plays it may
perform.

PROPOSITION 1. 1. Let S be a passive system over a game G,
and x a passive state in position P . Write [[x]]pass

P for the set
of traces of x, i.e. passive-ending plays m0n0 . . .mk−1nk−1

from P that arise from a sequence of states

x = x0 x0@m0
n0 x1 · · · xk−1@mk−1

nk−1 xk

Then [[x]]pass
P ∈ Stratpass

G P .
2. Let S be a big-step system over a game G, and y an active state

in positionQ. Write [[y]]act
Q for the set of traces of y i.e. passive-

ending plays n0m0n1 . . .mk−1nk from Q that arise from a
sequence of states

y
n0 x0 x0@m0

n1 x1 · · · xk−1@mk−1
nk xk

Then [[y]]act
Q ∈ Stratact

G Q.

As usual for deterministic systems, trace equivalence and bisim-
ilarity coincide:

PROPOSITION 2. 1. Let S be a passive system over a game G, and
x, x′ passive states in position P . Then [[x]]pass

P = [[x′]]pass
P iff

there is a passive bisimulationR on S such that x (RP) x′.
2. Let S be a big-step system over a game G, and y, y′ active states

in position Q. Then [[y]]act
Q = [[y′]]pass

Q iff there is a passive
bisimulationR on S such that either
• y =⇒n w and y′ =⇒n w′ for some n ∈ PmoveP.m and
w (RQ.n) w′

• or y ⇑ and y′ ⇑.

4. Position Morphisms
We return to our example (§2). Given functions p : Γ → Γ′ and
q : ∆′ → ∆, any passive state (Va)a∈∆ in position Γ ‖ ∆ can be
transformed into a passive state (p∗Vq(a))a∈∆′ in position Γ′ ‖ ∆′,
where p∗ indicates renaming. We would expect that the operational
meaning of the latter state can be obtained from that of the former
by the following operation transforming strategies σ on Γ ‖ ∆ to
strategies on Γ′ ‖ ∆′.

An O-move from the latter position is converted into an
O-move from the former by applying q. If we feed this to
σ and it responds with a P-move from Γ+2 ‖ ∆, we play
a P-move from Γ′+2 ‖ ∆′ by applying p+2. If we receive
another O-move, we continue in the same way.

The correctness of this construction is an instance of a general fact,
Proposition 5 below. The key idea is that the pair p ‖ q in the
preceding discussion may be called a morphism Γ ‖ ∆→ Γ′ ‖ ∆′,
and it is then evident that the passive positions form a category (and
likewise the active positions).

4.1 Categorical games
DEFINITION 7. A categorical game G is a game together with the
following additional data.

• For each pair of passive positions P, P ′, a set Gpass(P, P ′) of
passive position morphisms P → P ′.

• For two passive position morphisms P
f // P ′

f ′ // P ′′

a composite P
f ;f ′ // P ′′ , and an identity P

idP // P for

each passive position P , satisfying the usual left and right
identity and associativity laws.

• Likewise for active positions.
• For each passive position morphism f : P → P ′ and m′ ∈

OmoveP ′, a move (Omove f)(m′) ∈ OmoveP and active
position morphism f.m′ : P.(Omove f)(m′) → P ′.m′, sat-
isfying equations for identity and composition described below.

• For each active position morphism g : Q→ Q′ and each n ∈
PmoveQ, a move (Pmove g)(n) ∈ PmoveQ′ and passive
position morphism g.n : Q.n→ Q′.(Pmove g)(n), satisfying
equations for identity and composition described below.

We introduce a helpful diagrammatic notation. We shall draw
an O-move square

P ◦
m //

f

��

Q

g

��
P ′ ◦

m′
// Q′

(1)

to say thatm = (Omove f)(m′) and g = f.m′, and likewise draw
a P-move square

Q •
n //

g

��

P

f

��
Q′ •

n′
// P ′

(2)

to say that n′ = (Pmove g)(n) and f = g.n. Note the conven-
tions used: downwards arrows are position morphisms, rightwards
arrows are moves, and dashed arrows are derived.

The equations mentioned in Def.7 stipulate that identities and
composites of O-move squares

P ◦
m //

id

��

Q

id

��

P ◦
m //

f

��

Q

g

��
P ′ ◦

m′
//

f ′

��

Q′

g′

��
P ◦ m

// Q P ′′ ◦
m′′

// Q′′

are O-move squares, and likewise for P-move squares.
We may now describe how our main example λGame forms a

categorical game. In both the passive and active position categories
a morphism

p ‖ q : Γ ‖ ∆→ Γ′ ‖ ∆′ (3)
consists of functions p : Γ → Γ′ and q : ∆′ → ∆, with identity
and composite morphisms defined in the evident way. The squares
are

Γ ‖ ∆

p‖q

��

◦
l(b) // Γ+2 ‖ ∆

p+2‖q
O-move
square��

Γ′ ‖ ∆′ ◦
b // Γ′+2 ‖ ∆′

Γ ‖ ∆

p‖q

��

•
x // Γ ‖ ∆+2

p‖q+2 P-move
square��

Γ′ ‖ ∆′ •
k(x) // Γ′ ‖ ∆′+2

4.2 Position morphisms acting on strategies
The operation on strategies described at the start of the section
may now be given generally. Let G be a categorical game. A G-
interaction sequence is just a sequence of O-move and P-move
squares, e.g.

Q •
n0 //

g

��

· ◦
m0 //

��

·

��

•
n1 // ·

����

◦
m1 // ·

��

•
n2 // ·

��
Q′ •

n′0

// · ◦
m′0 // · •

n′1 // · ◦
m′1

// · •
n′2

// ·

We may describe this interaction sequence from g by the sequence
of moves n0m

′
0n1m

′
1n2 depicted as solid, since they determine the

other moves and morphisms. The play depicted along an interaction
sequence’s upper edge is its internal play; the one depicted along
its lower edge is its external play.

PROPOSITION 3. For any passive position morphism f : P → P ′

and σ ∈ Stratpass
G P , let (Stratpass

G f) (σ) be the set of external
plays of passive-ending G-interaction sequences from f whose in-
ternal play is in σ. Then (Stratpass

G f) (σ) ∈ Stratpass
G P ′. Like-

wise for an active position morphism.

PROPOSITION 4. (Functoriality of Stratpass
G and Stratact

G)

1. For a strategy σ ∈ Stratpass
G P we have

(Stratpass
G idP) (σ) = σ

and likewise for active positions.

2. For passive position morphisms P
f // P ′

g // P ′′ ,
and strategy σ ∈ Stratpass

G P , we have

(Stratpass
G (f ; g)) (σ) = (Stratpass

G g) (Stratpass
G f) (σ)

and likewise for active position morphisms.

4.3 Transition systems over a categorical game
As in Sect.3.3, we define small-step, big-step and passive systems
over a categorical game.

DEFINITION 8. Let G be a categorical game. A small-step system
over G is a small-step system over the discrete game G (as in
Definition 3), with the following additional data.

• For each passive position morphism f : P → P ′ a function
Spass f : Spass P → Spass P ′.

• For each active position morphism g : Q → Q′ a function
Sact g : Sact Q→ Sact Q′.

The following conditions must be satisfied.

• For x ∈ Spass P we have (SpassidP) (x) = x, and likewise for
active positions.

• For passive position morphisms P
f // P ′

g // P ′′ and
x ∈ Spass P we have (Spassf ; g) (x) = (Spassg) (Spassf) (x),
and likewise for active position morphisms.

• For every O-move square (1) and x ∈ SpassP , we have
(Sact g) (x@m) = ((Spass f) (x))@m′.

• For every active position morphism g : Q → Q′ and y ∈
Sact Q, if y z then (Sact g) (y) (Sact g) (z).

• For every P-move square (2) and y ∈ Sact Q, if y n x then
(Sact g) (y)

n′
(Spass f) (x).

We likewise define a big-step system and passive system over G.
Once again a small-step system gives rise to a big-step system, and
a big-step system to a passive system.

Our example λSyst forms a small-step system over the categor-
ical game λGame: a passive morphism (3) transforms (Va)a∈∆ to
(p∗Vq(b))b∈∆′ , and an active morphism (3) transforms (Va)a∈∆ I
M to (p∗Vq(b))b∈∆′ I p

∗M .

4.4 Compositionality theorem for position morphisms
We now substantiate the claim at the start of the section: it is an
instance of the following “compositionality theorem”.

PROPOSITION 5. (Naturality of [[−]]pass and [[−]]act)

1. Let S be a passive system over a categorical game G. For any
passive position morphism f : P → P ′ and state x ∈ Spass P
we have

[[(Spass f) (x)]]pass
P ′ = (Stratpass

G f) [[x]]pass
P

2. Let S be a big-step system over a categorical game G. For any
active position morphism g : Q → Q′ and state y ∈ Sact Q
we have

[[(Sact g) (y)]]act
Q′ = (Stratact

G g) [[y]]act
Q

5. Categorical Games via Two-Dimensional
Partial Maps

In this section, which is not used in the sequel, we present a con-
cise formulation of categorical game in terms of two-dimensional
partial maps [18].

DEFINITION 9. (Element category) Let C be a category. For a
functor G : C → Set, we write El(C, G) for the category
of pairs of A ∈ C and x ∈ GA. Its morphisms are C-morphisms
preserving the element. For a functor G : Cop → Set, we define
opEl(C, G) = (El(Cop, G))op. Each has a forgetful functor to C.

DEFINITION 10. (Families construction) Let C be a category.
We write Fam(C) for the category that has as objects fami-
lies of objects from C; the homset from (Ai)i∈I to (Bj)j∈J isQ
i∈I
P
j∈J C(Ai, Bj). We write opFam(C) for (Fam(Cop))op.

These are respectively the free category with coproducts and the
free category with products on C.

DEFINITION 11. Let C and D be categories.

1. A two-dimensional partial map C ⇀ D is a functor F : C →
Fam(D). Equivalently: it consists of a functor F0 : C → Set
and a functor F1 : El(C, F0) → D. Any functor H : D →
Set gives a functor

P
F H : C → Set defined to be the

composite of H with the coproduct-preserving extension of H
to Fam(D). Equivalently: the left Kan extension ofHF 1 along
the forgetful functor El(C, F0)→ C.

2. A 2-dimensional op-partial map C ⇁ D is a functor F : C →
opFam(D). Equivalently: it consists of a functor F0 : Cop →
Set and a functor F1 : opEl(C, F0) → D. Any functor
H : D → Set gives a functor

Q
F H : C → Set defined

to be the composite of H with the product-preserving extension
of H to opFam(D). Equivalently: the right Kan extension of
HF 1 along the forgetful functor opEl(C, F0)→ C.

Now we reformulate our key definitions.

PROPOSITION 6. A categorical game G consists of

• (small) categories Gpass and Gact

• a two-dimensional op-partial map Omove :Gpass ⇁ Gact

• a two-dimensional partial map Pmove : Gact ⇀ Gpass.

PROPOSITION 7. Let G be a categorical game.

1. A small-step system over G is a coalgebra for the endofunctor
on SetG

pass
× SetG

act
sending

(Spass, Sact) 7→ (
Y

Omove

Sact, (
X

Pmove

Spass) + Sact)

2. A big-step system over G is a coalgebra for the endofunctor on
SetG

pass
× SetG

act
sending

(Spass, Sact) 7→ (
Y

Omove

Sact, (
X

Pmove

Spass) + 1)

3. A passive system over G is a coalgebra for the endofunctor on
SetG

pass
sending

Spass 7→
Y

Omove

((
X

Pmove

Spass) + 1)

More surprisingly, a game is a coalgebra too:

PROPOSITION 8. A categorical game is a coalgebra for the endo-
functor on Cat2 sending

(Gpass,Gact) 7→ (opFam(Gact),Fam(Gpass))

6. Tensoring
6.1 Tensor games
We often want to run two games G and G′ in parallel, and we
describe this by a “tensor” game G ⊗ G′, following e.g. [2, 11].
A passive position in the tensor consists of a passive position from
each game. O can move in either component; then that component
becomes active and P can only respond within it, whereupon both
components are again passive.

DEFINITION 12. For games G and G′, let G ⊗ G′ be the following
game:

• A passive position is (P, P ′) where P and P ′ are passive in G
and G′ respectively.

• An active position is either inl(Q,P ′) with Q active in G and
P ′ passive in G′, or inr(P,Q′) with P passive in G and Q′

active in G′.
• An O-move from (P, P ′) is either inlm with m ∈ OmoveP ,

which has target inl(P.m,P ′), or inrm with m ∈ OmoveP ′,
which has target inr(P, P ′.m).

• A P-move from inl(Q,P ′) is n ∈ PmoveQ, and its target is
(Q.n, P ′). Likewise from an inr active position.

DEFINITION 13. For categorical games G and G′, define the cate-
gorical game G ⊗ G′ as in Definition 12, with the following addi-
tional data.

• A passive position morphism from (P, P ′) to (P ′′, P ′′′) is a
pair (f, f ′) with f : P → P ′′ and f ′ : P ′ → P ′′′. Composite
and identity morphisms are defined componentwise.

• Likewise for inl active positions, and likewise for inr active po-
sitions. There are no morphisms from inl to inr active positions
or vice versa.

6.2 Tensor strategies
Any play in G⊗G′ has a left play and a right play. This is illustrated
in Fig. 1.

PROPOSITION 9. Let G and G′ be games. For passive positions
P, P ′ in G,G′ respectively, and σ ∈ Stratpass

G P and σ′ ∈
Stratpass

G P ′, let σ⊗σ′ be the set of passive-ending plays in G⊗G′
from (P, P ′) whose left play is in σ and whose right play is in σ′.
Then σ ⊗ σ′ ∈ Stratpass

G⊗G′ (P, P
′). Likewise for inl and for inr

active positions.

PROPOSITION 10. (Naturality of ⊗)
Let G and G′ be categorical games. For passive position morphisms
f : P → P ′′ in G and f ′ : P ′ → P ′′′ in G′, and σ ∈ Stratpass

G P
and σ′ ∈ Stratpass

G′ P ′, we have

(Stratpass
G⊗G′ (f, f

′)) (σ ⊗ σ′) =

(Stratpass
G f) (σ)⊗ (Stratpass

G′ f ′) (σ′)

Likewise for inl and for inr active positions.

6.3 Tensor systems
DEFINITION 14. Let S and S′ be small-step systems over games G
and G′ respectively. The small-step system S⊗ S′ over G ⊗G′ is as
follows.

• A passive state in position (P, P ′) is a pair (x, x′) of states
x ∈ Spass P and x′ ∈ S′pass

P ′.
• An active state in position inl(Q,P ′) is a pair (y, x′) of states
y ∈ Sact Q and x′ ∈ Spass P ′, and likewise for inr.

• (x, x′)@(inlm)
def
= (x@m,x′), and likewise for inr m.

• inl (y, x′)


 inl (z, x′) if y z

n

(x, x′) if y n x

• likewise for inr(x, y′).

We likewise define the tensor of big-step or passive systems.
The following shows that this does not cause ambiguity.

PROPOSITION 11. 1. For small-step systems S and S′ over games
G and G′ respectively, the tensor of the big-step forms of G and
G′ is the big-step form of G ⊗ G′.

2. For big-step systems S and S′ over games G and G′ respectively,
the tensor of the passive forms of G and G′ is the passive form
of G ⊗ G′.

The tensor of systems over categorical games may be defined in the
evident way, though we shall not use this.

6.4 Compositionality theorem for tensors
We see how to obtain the operational meaning of a tensor state from
those of its components.

PROPOSITION 12. Let G and G′ be games.

1. Let S and S′ be passive systems over G and G′ respectively. For
x ∈ Spass P and x′ ∈ S′ pass

P ′ we have

[[(x, x′)]]pass
(P,P ′) = [[x]]pass

P ⊗ [[x′]]pass
P ′

2. Let S and S′ be big-step systems over G and G′ respectively. For
y ∈ Sact Q and x′ ∈ S′ pass

P ′, we have

[[(y, x′)]]act
inl (Q,P ′) = [[y]]act

Q ⊗ [[x′]]pass
P ′

Likewise for inr.

By Proposition 11 this result also holds for small-step systems.

7. Operating on strategies: the example of
substitution

We return to the transition system λSyst for our example calculus.
For terms x, y `nc M and z `v V , suppose we have been given
two black boxes: the left one containing active state I M in
position x, y ‖ and the right one containing passive state (a 7→ V)
in position z ‖ a. We can play O-moves into them and wait to
see what P-moves come out, but cannot see the syntax. We wish
to simulate the behaviour of active state I M [V/y], formed by
substitution, in position x, z ‖, just using the behaviour from the
left and right black boxes. How shall we proceed? We play on three
interfaces: with the left and right boxes and with the external world.

Play in G ⊗ G′ (P, P ′) ◦
inlm // inl (P.m,P ′) •

n // (P.m.n, P ′) ◦
inrm′ // inr (P.m.n, P ′.m′) •

n′ // (P.m.n, P ′.m′.n′)

Left play (in G) P ◦
m // P.m •

n // P.m.n P.m.n P.m.n

Right play (in G′) P ′ P ′ P ′ ◦
m′ // P ′.m′ •

n′ // P ′.m′.n′

Figure 1. Left and right play

We first wait for the left box I M . If it plays x, then M ∗

x(W0,W1) and O receives fresh names b0 and b1 representing W0

and W1 respectively. Thus M [V/y] ∗ x(W0[V/y],W1[V/y])
and we make the latter command our current “external state”—the
state we are trying to simulate. So we play x externally, resulting
in position x, z ‖ b0, b1, and our current external state becomes
(b0 7→ W0[V/y], b1 7→ W1[V/y]). We record the fact that b0 and
b1 at the external interface were respectively obtained from b0 and
b1 at the left interface, so that whenever external Opponent plays
b0, we play b0 into the left box.

On the other hand, suppose the left box plays y. Then M ∗

y(W0,W1) and O receives fresh names b0 and b1 representing W0

and W1 respectively. Thus M [V/y] ∗ V (W0[V/y],W1[V/y])
and we make the latter command our current external state. We
do not play y externally (indeed the external position is x, z ‖).
Instead, we play a into the right box, resulting in state a 7→ V I
V (w0, w1) in position z, w0, w1 ‖ a. We record that w0 and w1 at the
right interface were respectively obtained from b0 and b1 at the the
left interface, so that whenever the right box plays w0, we play b0
into the left box.

If now the right box plays z, then V (w0, w1) ∗ z(W2,W3) so
V (W0[V/y],W1[V/y]) ∗

z(W2

»
W0[V/y]/w0

W1[V/y]/w1

–
,W3

»
W0[V/y]/w0

W1[V/y]/w1

–
)

and we make the latter command our current external state. There-
fore we play z at the external interface. Several points may be learnt
from this discussion:

1. When we await the external Opponent, all interfaces are pas-
sive. When we await a box, it and the external interface are
active; the other box is passive.

2. We need to maintain a “linker” function saying where each O-
name in the external interface, and each P-name in each internal
interface, came from.

3. At any time there is a current external state that we are trying
to simulate. It is constructed from chains of substitutions that
grow as play continues.

4. When we move between internal (left and right) interfaces, the
external state does not change. We must rule out an infinite
sequence of consecutive such events, to ensure the external state
makes progress during our simulation.

8. Transfers Between Games
8.1 Transfers
We introduce a notion of transfer from one game to another, which
is a recipe for converting a strategy for the first game into a strategy
for the second. As we shall see, the procedure outlined in Section 7
forms a transfer λGame⊗ λGame→ λGame.

DEFINITION 15. Let G and H be (discrete) games. A transfer O :
G → H consists of the following data.

• For each pair of passive positions P in G and R in H, a set
Opass(P,R) of passive linkers P → R.

• For each pair of active positions Q in G and S in H, a set
Oact(Q,S) of active linkers Q→ S.

• For each passive linker h : P → R a function γpass
h ∈Y

m′∈OmoveR

((
X
m∈OmoveP

Oact(P.m,R.m′)) +(
X

n′∈Pmove (R.m′)

Opass(P,R.m′.n′)))

• For each active linker k : Q→ S a function γact
k ∈Y

n∈PmoveQ

((
X
m∈Omove (Q.n)

Oact(Q.n.m, S)) + (
X
n′∈PmoveS

Opass(Q.n, S.n′))

We depict the cases γpass
h (m) of inl (m, k) and inr (n′, h′) as

respectively:

P ◦ m
//

h

��

P.m

k
O-move
square��

R ◦
m′ // R.m′

P

h

��

P

h′
external
square��

R ◦
m′ // R.m′ •

n′ // R.m′.n′

We depict the cases γact
k (n′) of inl (m, k′) and inr (n′, h) as re-

spectively:

Q •
n

//

k

��

Q.n ◦
m

// Q.n.m

k′
internal
square

��
S S

Q •
n

//

k

��

Q.n

h
P-move
square��

S •
n′ // S.n′

As promised at the start of the section, we give a transfer λComp
from λGame⊗λGame to λGame. A passive linker (pl, pr)→
pe, where pl = Γl ‖ ∆l etc., is a function Γl + Γr + ∆e →
∆l+∆r+Γe mapping each name to one at a different interface. (We
use inl, inr, ine as ternary sum constructors.) Likewise for active
linkers inl (ql, pr)→ qe or inr (pl, qr)→ qe. The squares are

• if h(ine a) = inl b then O-move square

(pl, pr)

h

��

◦
inl b // ((Γ+2

l ‖ ∆l), pr)

h[inl νiΓl 7→ine νiΓe]i=0,1

��
pe ◦

a
// Γ+2

e ‖ ∆e

and likewise if h(ine a) = inr b

• if k(inl x) = ine y then P-move square

inl (ql, pr)

k

��

•
x // ((Γl ‖ ∆+2

l), pr)

k[ine νi∆e 7→inl νi∆l]i=0,1

��
qe •

y
// Γe ‖ ∆+2

e

and if k(inl x) = inr a then internal square

inl (ql, pr)

k

��

•
x // ((Γl ‖ ∆+2

l), pr) ◦
inr a // ((Γl ‖ ∆+2

l), (Γ+2
r ‖ ∆r))

k[inr νiΓr 7→inl νi∆l]i=0,1

��
qe qe

• likewise for inr.

To define a transfer between categorical games, we need the
well-known notion of bimodule (also called “profunctor” and “dis-
tributor”).

DEFINITION 16. Let C and D be categories. A (C,D)-bimodule
M consists of the following data:

• for each X ∈ C and Y ∈ D a setM(X,Y) of M-morphisms
X → Y

• for any C- andM-morphisms X ′
f // X

g // Y anM-morphism

X ′
f ;g // Y

• for anyM- andD-morphisms X
g // Y

h // Y ′ anM-morphism

X
g;h // Y ′

The following five equations must be satisfied:

• For a M-morphism g : X → Y we have idX ; g = g =
g; idY .

• For two C-morphisms and anM-morphism:

X ′′
f ′ // X ′

f // X
g // Y

we have (f ′; f); g = f ′; (f ; g)
• For a C-morphism andM-morphism and D-morphism:

X ′
f // X

g // Y
h // Y ′

we have (f ; g);h = f ; (g;h)
• For aM-morphism and two D-morphisms

X
g // Y

h // Y ′
h′ // Y ′′

we have (g;h);h′ = g; (h;h′).

Concisely: a (C,D)-bimodule is a functor Cop ×D → Set.

DEFINITION 17. Let G and H be categorical games. A transfer
O : G → H is defined as in Def. 15, with the following additional
data.

• Composition of a passive linker P → R with a passive position
morphism P ′ → P in G, and with a passive position morphism
R→ R′ inH, satisfying the five equations in Def. 16.

• Likewise for active linkers.

We require all composites

·

f

��

·

f
passive position

morphism inH��
·

��

·
external

square inO��
· ◦ // · • // ·

·

��

·
external

square inO��
· ◦ //

��

·

��

• // ·
O- and P-move

squares inG��
· ◦ // · • // ·

to be external squares, all composites

· ◦ //

��

·
O-move

square inH��

· ◦ //

��

·
O-move

square inO��
· ◦ //

��

·
O-move

square inO��

· ◦ //

��

·
O-move

square inG��
· ◦ // · · ◦ // ·

to be O-move squares, and likewise for P-move and internal
squares.

Our example λComp is a categorical transfer: linker composition
is given by function composition in the evident way.

8.2 Transfer operating on strategies
To define how a transfer O operates on strategies, we consider
“O-interaction sequences” comprised of O-move, external, P-move
and internal squares. An example is shown in Fig. 2. We may
describe this interaction sequence from h by the sequence of moves
m′0, n0, n1,m

′
1, n2,m

′
2 depicted as solid, since they determine the

other moves and morphisms. The play from P appearing along the
upper edge is called the internal play; the play from R appearing
along the lower edge is called the external play.

PROPOSITION 13. Let O : G → H be a transfer. For any passive
linker h :P → R and strategy σ ∈ Stratpass

G P let (Stratpass
O h)σ

be the set of all external plays of passive-ending O-interaction se-
quences from h whose internal play is in σ. Then (Stratpass

O h)σ ∈
Stratpass

H R. Likewise for an active linker.

PROPOSITION 14. Let O : G → H be a transfer of categorical
games.

1. For passive position morphism in G and linker

P ′
f // P

h // R

and strategy in Stratpass
G R′ we have

(Stratpass
O (f ;h)) (σ) = (Stratpass

O h) (Stratpass
G f) (σ)

Likewise for active positions.
2. For passive linker and position morphism inH

P
h // R

f // R′

and strategy in Stratpass
G R we have

(Stratpass
O (h; f)) (σ) = (Stratpass

H f) (Stratpass
O h) (σ)

Likewise for active positions.

P ◦ //

h
��

· •
n0 //

��

· ◦ // ·

��

•
n1 // ·

��

◦ // · •
n2 //

��

·

��

·

��
R ◦

m′0

// · · • // · ◦
m′1

// · • // · ◦
m′2

// · • // ·

Figure 2. An interaction sequence

8.3 Stepped bisimulation across a transfer
We now establish the relationship between transition systems and
transfers, i.e. between operational and denotational game seman-
tics. We shall consider only discrete games.

To ensure that we do not perform infinitely many operations
at the internal interface without making progress, we “grade” the
states to give a finite quota of internal operations.

DEFINITION 18. Given a transfer O : G → H and small-step
systems S over G and T over H, a stepped bisimulation from S to
T across O consists of the following data.

• For each passive linker h : P → R, a relation Rpass
h from

Spass P to Tpass R.
• For each active linker k : Q→ S,

a subset Uk of Sact Q
an increasing sequence (Vik)i∈N of subsets of Uk, such that
Uk =

S
i∈N V

i
k

and a relationRact
k from Uk to Tact S.

These are required to satisfy the following conditions.

• For any passive linker h : P → R and x (Rpass
h) x′ and

m′ ∈ OmoveR,
if m completes to an O-move square

P ◦ m
//

h

��

P.m

k then x@m (Ract
k) x′@m′

��
R ◦

m′ // R.m′

if m completes to an external square

P

h

��

P

h′

��
R ◦

m′ // R.m′ •
n′ // R.m′.n′

then x′@m′ n w′ with x (Rpass
h′) w′.

• For any active linker k : Q → S and i ∈ N and y ∈ Vik, if
y

n
x and n completes to an internal square

Q •
n

//

k

��

Q.n ◦
m

// Q.n.m

k′

��
S S

(4)

then x@m ∈ Vjk′ for some j < i.
• For any active linker k : Q→ S and y (Ract

k) y′,
if y z then y′ z′ with z (Ract

k) z′

if y n x and n completes to a P-move square

Q •
n

//

k

��

Q.n

h

��
S •

n′ // S.n′

then y′ n
′
x′ with x (Rpass

h) x′

if y n x and n completes to an internal square (4) then
x@m (Ract

k′) y′.

Recall our example transfer λComp : λGame⊗λGame→
λGame. We construct a stepped bisimulation (Rpass,U ,V,Ract)
from λSyst⊗ λSyst to λSyst across this transfer.

Given a passive linker h : (pl, pr) → pe, an h-grading φ
consists of a natural number |φ| (the number of “generations”)
and maps φl : ∆l → $|φ| and φr : ∆r → $|φ| (saying when
each name was generated). For an h-grading φ and i ∈ N we write
Olderφl i ⊆ Γl and Olderφr i ⊆ Γr for the names that are older than
generation i. Explicitly: Olderφl i consists of those x ∈ Γl such that
k(inl x) is either inr a with φr(a) < i or ine y. (External P-names
are deemed to have always existed.)

Now a passive state in position (pl, pr) takes the form

((V l
a)a∈∆l , (V

r
a)a∈∆r) (5)

The state (5) is graded by an h-grading φ when for all a ∈ ∆l

we have Olderφl φl(a) `v V l
a and likewise for a ∈ ∆r. If (5) is h-

gradeable (i.e. is graded by some h-grading), then we shall define
its h-substitution, a passive state in position pe as follows. First
associate to each u ∈ ∆l + ∆r + Γe a value Γe `v Wu by the
equations

Winl a = V l
a[Wh(inl x)/x]x∈Γl

Winr a = V r
a [Wh(inr x)/x]x∈Γr

Wine x = x

which have a unique solution by induction over a grading. Then
define the h-substitution of (5) to be (Wh(ine a))a∈∆e .

We setRpass
h to be the partial function relating each h-gradeable

state (5) to its h-substitution.
Given an active linker k : inl(ql, pr) → qe we likewise define

a k-grading. An active state in position inl(ql, pr) takes the form

((V l
a)a∈∆l IM, (V r

a)a∈∆r) (6)

The state (6) is graded by a k-grading φ when for all a ∈ ∆l we
have Olderφl φl(a) `v V l

a and likewise for a ∈ ∆r. For i ∈ N,
the state (6) is graded at level i by φ when the following additional
condition holds:

M = V (W,W ′) implies Olderφl i `
v V .

If (6) is k-gradeable, we define its k-substitution, an active state in
position qe, to be

(Wk(ine a))a∈∆e IM [Wk(inl x)/x]x∈Γl

where Wu is defined as in the passive case.
We set Uk to be the set of active states (6) that are k-gradeable,

and Vik to be the set of those that are k-gradeable at level i. We
setRact

k to be the function relating each k-gradeable state (6) to its
k-substitution. Likewise for the inr case.

It is then straightforward to verify that (Rpass,U ,V,Ract) is a
stepped bisimulation across λComp.

8.4 Compositionality theorem for transfers
PROPOSITION 15. Given a transfer O : G → H and small-
step systems S over G and T over H, let (Rpass,U ,V,Ract) be
a stepped bisimulation from S to T across O.

1. For a passive linker h : P → R, if x (Rpass
h)x′ then

[[x′]]pass
R = (Stratpass

O h) [[x]]pass
P

2. For an active linker k : Q→ S, if y (Ract
k) y′ then

[[y′]]pass
S = (Stratact

O k) [[y]]act
Q

We illustrate this with our example. Let the active linker

k : inl ((x, y ‖), (z ‖ a))→ (x, z ‖)

send inl x 7→ ine x and inl y 7→ inr a and inr z 7→ ine z. The state
inl (I M, (a 7→ V)) is graded by the k-grading (1, (), (a 7→ 0))
and its k-substitution is I M [V/y]. Since (Rpass,U ,V,Ract) is
a stepped bisimulation across λComp, we obtain

[[IM [V/y]]]act
x,z‖

= (Stratact
λComp k) [[inl (IM, (a 7→ V))]]act

inl ((x,y‖),(z‖a))

(by Prop. 15)

= (Stratact
λComp k) ([[IM]]act

x,y‖ ⊗ [[a 7→ V]]pass
z‖a)

(by Prop. 12)

This validates the procedure described in Sect. 7.

9. Dual Games and Transfers
There is an evident involution on games:

DEFINITION 19. For a categorical game

G = (Gpass,Gact,Omove ,Pmove)

its dual is given by

G⊥ def
= ((Gact)op, (Gpass)op,Pmove op,Omove op)

This provides a concise formulation of transfer:

PROPOSITION 16. Let G and H be categorical games. A transfer
G → H is a total passive system over G (H def

= (G ⊗H⊥)⊥

Remark Transfers cannot be composed, because of the possibility
of “infinite chattering” [2], but partial transfers can be, giving rise
to a ∗-autonomous bicategory.

10. Conclusions and Future Work
We have described a basic framework with a “checklist” for formu-
lating a game model of a language:

• give a small-step system over a categorical game
• for each syntactic operation, give a transfer, and a stepped

bisimulation across it to demonstrate its correctness.

It remains to examine the many game models in the literature
that use justification pointers to see how well they fit this frame-
work. We shall need to study transfers that create multiple threads
of the strategy they act on, as in [11]. We also should treat nondeter-
ministic systems, where there is a proliferation of notions of equiv-
alence, hence of strategy. A final intriguing question is whether our
sequential framework can be adapted for concurrent systems.

References
[1] Abramsky, S.: The lazy λ-calculus. In: Research topics in Functional

Programming, pp. 65–117. Addison Wesley (1990)
[2] Abramsky, S.: Semantics of interaction: an introduction to game se-

mantics. In: 1996 CLiCS Summer School. Cambridge U. Press (1997)
[3] Abramsky, S., Honda, K., McCusker, G.: A fully abstract game se-

mantics for general references. In: 13th LICS (1998)
[4] Blum, W., Ong, C.H.L.: The safe lambda calculus. Logical Methods

in Computer Science 5(1) (2009)
[5] Curien, P.L.: Abstract Böhm trees. Math. Structures in CS 8(6) (1998)
[6] Danos, V., Herbelin, H., Regnier, L.: Game semantics and abstract

machines. In: 11th LICS (1996)
[7] Ghica, D.R., Tzevelekos, N.: A system-level game semantics. 28th

Mathematical Foundations in Programming Semantics, ENTCS 286
[8] Harmer, R., Hyland, M., Melliès, P-A.: Categorical combinatorics for

innocent strategies. LICS 2007: 379-388
[9] Howe, D.J.: Proving congruence of bisimulation in functional pro-

gramming languages. Information and Computation 124(2) (1996)
[10] Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and

III. Information and Computation 163(2) (2000)
[11] Hyland, J.M.E.: Game semantics. In: Semantics and Logics of Com-

putation. Cambridge University Press (1997)
[12] Hyvernat, P.: A linear category of polynomial diagrams. Mathematical

Structures in Computer Science 24 (2013)
[13] Jagadeesan, R., Pitcher, C.S., Riely, J.: Open bisimulation for aspects.

In: Aspect-Oriented System Development. ACM Press (2007)
[14] Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via

layout randomization. In: 24th Computer Security Foundations Sym-
posium (2011),

[15] Jeffrey, A., Rathke, J.: Java Jr.: Fully abstract trace semantics for a core
Java language. European Symp. on Programming, LNCS 3444 (2005)

[16] Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for
concurrent objects. Theoretical Computer Science 338 (2005)

[17] Kozen, D.: Realization of coinductive types. In: 27th Conference on
the Math. Foundations of Programming Semantics ENTCS 276 (2011)

[18] Lack, S., Street, R.: The formal theory of monads II. Journal of Pure
and Applied Algebra 175 (2002)

[19] Laird, J.: Full abstraction for functional languages with control. In:
12th LICS (1997)

[20] Laird, J.: A fully abstract game semantics of local exceptions. In: 16th
LICS (2001)

[21] Laird, J.: A fully abstract trace semantics for general references. In:
34th ICALP, LNCS 4596 (2007)

[22] Laird, J.: Game semantics for a polymorphic programming language.
In: LICS (2010)

[23] Laird, J.: Game semantics for call-by-value polymorphism. In: 37th
ICALP, LNCS 6199 (2010)

[24] Lassen, S.B.: Eager normal form bisimulation. In: 20th LICS (2005)
[25] Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: 23rd

CSL, LNCS, 4646 (2007)
[26] Lassen, S.B., Levy, P.B.: Typed normal form bisimulation for para-

metric polymorphism. In: LICS (2008)
[27] Murawski, A.S., Tzevelekos, N.: Game semantics for good general

references. In: LICS (2011)
[28] Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario.

Information and Computation 111(1), 120–153 (1994)
[29] Støvring, K., Lassen, S.: A complete, co-inductive syntactic theory of

sequential control and state. In: Semantics and Algebraic Specifica-
tion, P. Mosses 60th birthday festschrift, LNCS 5700 (2009)

[30] Turi, Plotkin: Towards a mathematical operational semantics. In:
LICS: IEEE Symposium on Logic in Computer Science (1997)

[31] Winskel, G: Strategies as Profunctors. In: FoSSaCS 2013.

	Introduction
	Illustrative Example
	Example calculus
	Example interaction

	Games, Strategies, Transition Systems
	Games
	Strategies
	Transition systems
	From transition systems to strategies

	Position Morphisms
	Categorical games
	Position morphisms acting on strategies
	Transition systems over a categorical game
	Compositionality theorem for position morphisms

	Categorical Games via Two-Dimensional Partial Maps
	Tensoring
	Tensor games
	Tensor strategies
	Tensor systems
	Compositionality theorem for tensors

	Operating on strategies: the example of substitution
	Transfers Between Games
	Transfers
	Transfer operating on strategies
	Stepped bisimulation across a transfer
	Compositionality theorem for transfers

	Dual Games and Transfers
	Conclusions and Future Work

