
Typed Normal Form Bisimulation for Parametric Polymorphism

Soren B. Lassen
Google, Inc.

soren@google.com

Paul Blain Levy
University of Birmingham, U.K.

pbl@cs.bham.ac.uk

Abstract

This paper presents a new bisimulation theory for para-
metric polymorphism which enables straightforward co-
inductive proofs of program equivalences involving exis-
tential types. The theory is an instance of typed normal
form bisimulation and demonstrates the power of this re-
cent framework for modeling typed lambda calculi as la-
belled transition systems.

We develop our theory for a continuation-passing style
calculus, Jump-With-Argument, where normal form bisim-
ulation takes a simple form. We equip the calculus with
both existential and recursive types. An “ultimate pattern
matching theorem” enables us to define bisimilarity and we
show it to be a congruence. We apply our theory to proving
program equivalences, type isomorphisms and genericity.

1 Introduction

Parametric polymorphism is a captivating programming
language concept, both because of its important role in
modern programming language theory and practice, and be-
cause of its fascinating relational parametricity properties.
The need for good semantic theories for reasoning about
parametric polymorphism is evident and this has been the
subject of many research efforts, since Reynolds relational
parametricity result for the pure polymorphic λ-calculus
[22]. Theories for polymorphic calculi with fixed point re-
cursion or recursive types have encountered a number of
difficulties, either complex meta-theories, problems with
type recursion, or weak reasoning principles.

The theory we develop in this paper is an instance of
typed normal form bisimulation, a framework which was
recently introduced for a monomorphic, recursively typed
calculus [14]. Given a typed λ-calculus with an abstract ma-
chine semantics, the development of its normal form bisim-
ulation theory proceeds in four steps.

1. An ultimate pattern matching theorem uniquely de-
composes a value into an ultimate value pattern and
a “filling” of function value sub-terms.

2. Abstract machine states are interpreted as states in a
labelled transition system (LTS) with ultimate patterns
as labels.

3. Bisimilarity between LTS states defines a normal form
bisimulation congruence relation on terms.

4. The congruence property follows from a substitution
lemma about bisimilarity between LTS states which,
in turn, is proved by bisimulation.

The LTS is bi-partite: a state is either active or passive,
and a labelled transition is either an output transition from
an active to a passive state or an input transition from a pas-
sive to an active state. We think of labelled transitions as
alternating moves in a game between a program and its en-
vironment. Each input (output) move corresponds to the
invocation of a function exported by the program (environ-
ment). The label identifies the exported function and also
describes the function argument, as an ultimate value pat-
tern.

Following [14], we develop our theory for the
continuation-passing style calculus Jump-With-Argument
(JWA). Because functions never return, the LTS takes a sim-
ple form, with only one input and one output transition.
This simplifies the exposition and clarifies the underlying
concepts.

Although omitted in this presentation, we note that our
work generalizes to richer λ-calculi. Direct style typed λ-
calculi translate into JWA and the translations together with
the JWA normal form bisimulation theory induce normal
form bisimilation theories for the direct style source cal-
culi, analogously to the way CPS transforms preserve and
reflect normal form bisimilarity in the untyped λ-calculus
[12, 13]. For typed calculi, these translations and induced
theories factor through a typed normal form bisimulation
theory for the Call-By-Push-Value calculus and the stack-
passing transform into JWA [16].

Our theory is not fully abstract for JWA, for the same rea-
son (same counter examples) as in the monomorphic case
[14]. We expect that our treatment of polymorphism can be
combined with state in the style of [15, 10] and then, if we

1

extend the JWA calculus with state, we conjecture that our
theory becomes fully abstract.

1.1 Contributions

Parametric polymorphism is a very useful and non-trivial
addition to the growing set of normal form bisimulation the-
ories, thus both attesting to the power and scope of this se-
mantic framework and contributing towards the goal of scal-
ing normal form bisimulation to feature rich higher-order
typed programming languages. Compared to the monomor-
phic typed normal form bisimulation theory in [14], our key
discovery is the definition of ultimate patterns for existential
types.

In its own right, the bisimulation theory in this paper is
a novel semantic theory for second-order typed λ-calculi
with an elementary meta-theory and a new, powerful and
straightforward bisimulation proof rule for reasoning about
program equivalences involving existential types, which we
illustrate with several example proofs. The theory is robust
in that it supports recursive types and we expect that, like
other normal form bisimulation theories, it can be combined
with computational effects in the style of [15, 10].

Our LTS brings out connections with game semantics, by
design [15], and it seems likely that our theory could lead to
a Hyland-Ong style model of polymorphism, fully abstract
in the presence of state—by analogy with [1, 10].

1.2 Related Work

Our work builds on the LTS and typed normal form
bisimulation theory for a monomorphic recursively typed
CPS calculus in [14]. (See op.cit. for a survey of earlier
work on normal form bisimulation for untyped λ-calculi.)
Laird’s LTS for a direct style typed calculus [10] is very
similar and it also influenced the presentation of our LTS
in the present paper. Laird derives a trace semantics from
his LTS, whereas we derive a bisimulation semantics. Be-
cause our calculus is deterministic, the two coincide (in the
absence of Laird’s completeness constraint on traces, which
does not apply to a CPS calculus). We prefer bisimilarity to
trace equivalence because of the convenience of the associ-
ated co-induction proof principle for articulating proofs of
bisimilarity, namely by exhibiting a bisimulation.

Pitts’ operationally based logical relations [20] is a dif-
ferent syntactic theory for parametric polymorphism with
powerful relational proof principles comparable to normal
form bisimulation. The theory is fully abstract for a state-
less calculus, contrary to our theory, but recursive types
present a difficulty and are not covered. This limits the
scope of the theory and has motivated work on alternative
operationally based approaches, including our work.

Ahmed’s step-indexed syntactic logical relations [3]
solve the difficulty of recursive types by stratifying the rela-
tions by the number of steps available for future evaluation.
They form a fully abstract syntactic model for a state-less
polymorphic calculus with recursive types.

Gordon’s applicative bisimulation theory [7] and Sumii
and Pierce’s relation-sets bisimulation theory [24] for para-
metric polymorphism are two other operationally based the-
ories with recursive types, relational congruence proofs, and
straightforward bisimulation proof rules. Both theories are
fully abstract. Their bisimulation proof rules are weaker
than our normal form bisimulation, because their proof obli-
gations involve quantification over all closed arguments to
functions and all closed types to type abstractions, whereas
normal form bisimulation evaluates related functions and
type abstractions by effectively applying them to fresh iden-
tifiers or type identifiers. Because of this difference, normal
form bisimulation proofs are generally more direct without
any need for auxiliary “bisimulation up-to” techniques.

Many of the ideas we use to model second order types in
our LTS appear in the LTSs for polymorphically typed π-
calculi in [19, 4] but the combination with recursive, sum,
product, and function types via ultimate patterns is new.

Whereas typed normal form bisimulation for monomor-
phic types [14] appears to be closely related to the game se-
mantics of Hyland and Ong [9], our polymorphic extension
seems not to correspond to existing game models of poly-
morphism. They are either highly intensional [8, 5] or in
the Abramsky-Jagadeesan-Malacaria (AJM) style of game
semantics [2, 18].

Outline Section 2 introduces JWA and its operational se-
mantics with some examples to illustrate its continuation-
passing style. Section 3 introduces ultimate patterns and
states the ultimate pattern matching theorem. Section 4 de-
fines a LTS. We develop the resulting bisimulation theory
in Section 5. Section 6 uses bisimulation to establish some
non-trivial type isomorphisms and in Section 7 we prove a
genericity property of bisimilarity.

2 Jump-With-Argument

Syntax Jump-With-Argument is a continuation-passing
style calculus, extending the CPS calculus in [25]. Its types
are given by

A ::= X | 1 | A×A |
∑
i∈IAi | ¬A | µX.A | ∃X.A

where I is any finite set. Binary sums are, of course, a spe-
cial case of finite sums,A1 +A2

def=
∑2
i=1Ai, and the empty

type, 0, is the empty sum. The type ¬A is the type of func-
tions (or continuations) that take an argument of type A and
do not return.

2

−→
X ,
−→
x:A `v xi:Ai

−→
X ,
−→
x:A `v Vi:Bi (∀i ∈ {1, 2})

−→
X ,
−→
x:A `v 〈V1, V2〉 : B1 ×B2

−→
X ,
−→
x:A `v V :B1 ×B2

−→
X ,
−→
x:A, y1:B1, y2:B2 `n M

−→
X ,
−→
x:A `n pm V as 〈y1, y2〉.M

−→
X ,
−→
x:A ` Bi (∀i ∈ I) ı̂ ∈ I −→

X ,
−→
x:A `v V :Bı̂

−→
X ,
−→
x:A `v 〈̂ı, V 〉 :

∑
i∈IBi

−→
X ,
−→
x:A `v V :

∑
i∈IBi

−→
X ,
−→
x:A, yi:Bi `n Mi (∀i ∈ I)

−→
X ,
−→
x:A `n pm V as {〈i, yi〉.Mi}i∈I

−→
X ,
−→
x:A, y:B `n M

−→
X ,
−→
x:A `v λy.M : ¬B

−→
X ,
−→
x:A `v U :¬B −→

X ,
−→
x:A `v V :B

−→
X ,
−→
x:A `n UV

−→
X ,
−→
x:A `v V :B[µY.B/Y]

−→
X ,
−→
x:A `v fold V : µY.B

−→
X ,
−→
x:A `v V :µY.B

−→
X ,
−→
x:A, y:B[µY.B/Y] `n M

−→
X ,
−→
x:A `n pm V as fold y. M

−→
X ` C −→

X ,
−→
x:A `v V :B[C/Y]

−→
X ,
−→
x:A `v 〈C, V 〉 : ∃Y.B

−→
X ,
−→
x:A `v V :∃Y.B −→

X , Y,
−→
x:A, y:B `n M

−→
X ,
−→
x:A `n pm V as 〈Y, y〉. M

Figure 1. Syntax of JWA, with type recursion

pm 〈V, V ′〉 as 〈x, y〉. M M [V/x, V ′/y]
pm 〈̂ı, V 〉 as {〈i, x〉. Mi}i∈I Mı̂[V/x]
(λx.M)V M [V/x]
pm fold V as fold x. M M [V/x]
pm 〈A, V 〉 as 〈X, x〉. M M [A/X][V/x]

Figure 2. C-machine transitions

JWA has three judgements: types written
−→
X ` A, values

written
−→
X ,
−→
x:A `v V :B, and nonreturning commands writ-

ten
−→
X ,
−→
x:A `n M . The syntax is shown in Fig. 1. We write

pm as an abbreviation for “pattern-match”, and write let to
make a binding. We omit typing rules, etc., for 1, since 1 is
analogous to ×, and we omit the rules for the types judge-
ments

−→
X ` A, they just say that the free type identifiers in

A are included in the set {−→X }.

Operational semantics To evaluate a command
−→
X ,
−→
x:A `n M , simply apply the transitions (β-reductions)

in Fig. 2 until a terminal command in Fig. 3 is reached.
Every command M is either a redex or terminal (that is,
terminals are β-normal forms). By determinism, either
M ∗ T for unique terminal T , or else M ω . This
operational semantics is called the C-machine.

Examples JWA can be used as the target language for
continuation-passing style transformations from direct-style

pm z as 〈x, y〉. M
pm z as {〈i, x〉. Mi}i∈I
zV
pm z as fold x. M
pm z as 〈X, x〉. M

Figure 3. Terminal commands

programming language calculi, one such transform is the
stack-passing transform from the Call-By-Push-Value to
JWA [16]. We will not describe any such transforms in
this paper. Instead we describe some examples of JWA
programs. Familiarity with continuation-passing style pro-
gramming is useful (see, e.g., [21]).

Example 1 We define a polymorphic fixed point combina-
tor Fix as Fix def= Φ(fold V), where

V
def= λ〈w, 〈X, 〈x, f〉〉〉.f〈x, λy.Φ(w)〈X, 〈y, f〉〉〉)

Φ(W) def= λu.pmW as fold v.v〈fold v, u〉

and notation λ〈w, 〈X, 〈x, f〉〉〉.M is short for

λa.pm a as 〈w, u〉.pm u as 〈X, b〉.pm b as 〈x, f〉.M

(we use this kind of short hand in examples throughout).
We assign type ¬∃X. X×¬(X×¬X) to Fix by assigning

the recursive type µZ.¬(Z×∃X. X×¬(X×¬X)) to fold V.

3

The calculation

Fix〈X, 〈x, f〉〉
 pm fold V as fold v.v〈fold v, 〈X, 〈x, f〉〉〉
 V〈fold V, 〈X, 〈x, f〉〉〉
 4 f〈x, λy.Φ(fold V)〈X, 〈y, f〉〉〉
= f〈x, λy.Fix〈X, 〈y, f〉〉〉

shows that Fix is a solution to the fixed point equation

`v Fix =β λ〈X, 〈x, f〉〉.f〈x, λy.Fix〈X, 〈y, f〉〉〉
: ¬∃X. X× ¬(X× ¬X)

We encode finite lists with elements of type X as type
List(X) def= µZ. 1 + X × Z and let nil def= fold 〈1, 〈〉〉,
cons〈U, V 〉 def= fold 〈2, 〈U, V 〉〉, and [U1, ..., Un] def=
cons〈U1, ..., cons〈Un, nil〉...〉. We use the syntactic sugar

pm V as {nil.M, cons〈h, t〉.N} def=
pm V as fold x. pm x as {〈1, 〈〉〉.M, 〈2, 〈h, t〉〉.N}

where x is fresh.

Example 2 Using the fixed point combinator Fix we can
write a polymorphic, recursive list reversal function

reverse : ¬∃X. List(X)×¬List(X)

that takes a type X, a list u of type List(X), and a continu-
tion k of type ¬List(X) and applies k to the reversal of the
list u.

reverse
def= λ〈X, 〈u, k〉〉. Fix〈List(X)×List(X),

〈〈u, nil〉, reverse′〉〉

reverse′
def= λ〈〈u, v〉, r〉.

pm u as {nil. k v,
cons〈x, w〉. r〈w, cons〈x, v〉〉}〉

In the next example we use Boolean and natural number
types and the notation:

Bool
def= 1 + 1 Nat

def= µX.1 + X

false
def= 〈1, 〈〉〉 zero

def= fold 〈1, 〈〉〉
true

def= 〈2, 〈〉〉 SV
def= fold 〈2, V 〉

We use syntactic sugar for pattern matching, like we did for
lists, and write the negation function neg on Booleans as:

neg
def= λ〈b, k〉.pm b as {false. k true, true. k false}

and the parity function even on natural numbers as:

even
def= λp. Fix〈Nat×¬Bool, 〈p, even′〉〉

even′
def= λ〈〈x, k〉, e〉. pm x as {

zero. k true,
S y. pm y as {

zero. k false,
S z. e〈z, k〉}}

Example 3 Consider the abstract data type

Semaphore
def= ∃X.X×¬(X×¬X)×¬(X×¬Bool)

The following values are two equivalent implementations
where the three components of the triple are (1) an initial
value, (2) a function that “flips” a value, and (3) a third
component that reads the parity of the number of flips.

semaphore1
def= 〈Bool, 〈true, neg, id〉〉

semaphore2
def= 〈Nat, 〈zero, succ, even〉〉

where id def= λ〈x, k〉. k x and succ
def= λ〈x, k〉. k(S x).

3 Ultimate Patterns

We are going to define a LTS describing the interaction
between a program and its environment. In each labelled
transition, the program passes a value V to the environment,
or vice versa. Some parts of V are visible to the recipient.
Other parts are hidden to the recipient, who regards them as
free identifiers. “Ultimate pattern matching” is the process
of decomposing V into an “ultimate value pattern” (the vis-
ible part) and “filling” (the hidden part). It is essential to
our theory that any value V has a unique decomposition.

In the absence of polymorphism, this distinction is quite
straightforward [14]: V consists of its first-order structure,
which is visible, and functions, which are hidden. In our
polymorphic setting, V will also contain types, which are
hidden. More subtly, V will contain opaque values, i.e.,
values whose type has been passed during the interaction.
These are of two kinds. In the case of an output from the
program to the environment:

1. An output opaque value, one whose type was sent by
the program either (a) in an earlier transition, or (b) in
the current transition (meaning that the type appears in
V). Such values are hidden to the environment.

2. An input opaque value, one whose type was previously
received from the environment. Such a value must
itself have been previously received by the program,
who regards it as a free identifier. This identifier is
deemed visible to the program. (The rationale for this
is that the environment could have chosen to send the
type Nat and a different number for each opaque value
of that type.)

Thus the ultimate value pattern of V consists of the first-
order structure and input opaque values. The filling consists
of the functions, types and output opaque values. Syntacti-
cally, an ultimate value pattern is a value with free type and
value identifiers and a filling is a substitution of types and
values for the free identifiers.

4

The “signature” of the filling is described by a three-part
type context of the form

∆ =
−→
X ,
−−→
x:Ξ,

−−−→
f:¬A,

which we call a flat type context; we use the meta-variables
Ξ, Υ to range over type identifiers;

−→
Ξ ,
−→
Υ are sequences of

type identifiers, not necessarily distinct; and
−→
X `
−→
Ξ means

that the type identifiers in
−→
Ξ are drawn from

−→
X . We write

∅ for the empty type context.
We use notation∆† to refer to the first part of∆ (the type

identifiers) and ∆‡ to the first two parts (the type identifiers
and opaque value identifiers), that is, ∆† =

−→
X and ∆‡ =

−→
X ,
−−→
x:Ξ , if ∆ =

−→
X ,
−−→
x:Ξ,

−−−→
f:¬A. We write dom(∆) for the

set {−→X ,−→x ,−→f }.
When ∆ and Θ are two flat type contexts,

∆ =
−→
X ,
−−→
x:Ξ,

−−−→
f:¬A, Θ =

−→
Y ,
−→
y:Υ ,
−−−→
g:¬B,

we write ∆,Θ for the combined flat type context

∆,Θ =
−→
X ,
−→
Y ,
−−→
x:Ξ,

−→
y:Υ ,
−−−→
f:¬A,

−−−→
g:¬B,

when the type identifiers
−→
Y = Θ† do not occur in ∆.

The ultimate value patterns p are given by a judgement

−→
X ,
−−→
x:Ξ ‖ −→Y | ∆ ` p : D (1)

where ∆ has the form ∆ =
−→
Z ,
−→
y:Υ ,
−−−→
f:¬A and the types

satisfy
−→
X ,
−→
Y ` D;

−→
X `

−→
Ξ ;
−→
Y ,
−→
Z `

−→
Υ ;
−→
X ,
−→
Y ,
−→
Z `

−→
A .

These constraints on the types and type identifiers are im-
plicit in the rules defining the judgement in Fig. 4.

Its informal meaning is: Suppose that the current sender
has previously received types and input opaque values
known to him as

−→
X and −→x respectively, and has previ-

ously sent types known to the (then and current) recipient
as
−→
Y . Then p is an ultimate value pattern for a value of

type D, containing types, output opaque values and func-
tions known henceforth to the recipient by the identifiers in
∆.

Syntactically, an ultimate value pattern is a value

−→
X ,
−−→
x:Ξ,

−→
Y , ∆ `v p : D.

Example 4 If X is an “input type” and we have, say, m
opaque input values x1, ..., xm of type X, the ultimate value
patterns of type List(X) all have the form:

X, x1:X, ..., xm:X ‖ ∅ | ∅ ` [xi1 , ..., xin] : List(X)

where i1, ..., in ∈ {1, ...,m}. That is, the values of type
List(X) we can form in the type context X, x1:X, ..., xm:X
are arbitrary length lists with input opaque values drawn
from x1, ..., xm as elements.

(x:X) ∈
−−→
x:Ξ

−→
X ,
−−→
x:Ξ ‖ −→Y | ∅ ` x : X

−→
Y ` Υ

−→
X ,
−−→
x:Ξ ‖ −→Y | y:Υ ` y : Υ

−→
X ,
−−→
x:Ξ ‖ −→Y | ∆j ` pj : Aj (∀j ∈ {1, 2})

−→
X ,
−−→
x:Ξ ‖ −→Y | ∆1, ∆2 ` 〈p1, p2〉 : A1 ×A2

ı̂ ∈ I −→
X ,
−−→
x:Ξ ‖ −→Y | ∆ ` p : Aı̂

−→
X ,
−−→
x:Ξ ‖ −→Y | ∆ ` 〈̂ı, p〉 :

∑
i∈IAi

−→
X ,
−−→
x:Ξ ‖ −→Y | f:¬A ` f : ¬A

−→
X ,
−−→
x:Ξ ‖ −→Y | ∆ ` p : A[µX.A/X]

−→
X ,
−−→
x:Ξ ‖ −→Y | ∆ ` fold p : µX.A

−→
X ,
−−→
x:Ξ ‖ −→Y , X | ∆ ` p : A

−→
X ,
−−→
x:Ξ ‖ −→Y | X, ∆ ` 〈X, p〉 : ∃X.A

Figure 4. Ultimate Value Patterns

Example 5 If X is an “output type”, the ultimate value pat-
terns of type List(X) are lists with (distinct, fresh) output
opaque values as elements:

∅ ‖ X | −→x :X ` [−→x] : List(X).

Example 6 The ultimate value patterns of the argument
type to the reverse function, Example 2, have the form:

∅ ‖ ∅ | X,−→x :X, f:¬List(X) `
〈X, 〈[−→x], f〉〉 : ∃X. List(X)×¬List(X).

Corresponding to the three-part flat type contexts, we in-
troduce three-part flat substitutions,

u =
−−→
B/X;

−−→
U/x;

−−→
F/f.

We use the meta-variables F,G to range over function val-
ues, viz., λ-values and identifiers of function type. We
write ε for the empty substitution. We define t[u] =
t[
−−→
B/X][

−−→
U/x,

−−→
F/f] if t is a term, and Θ[u] = Θ[

−−→
B/X] if Θ is

a type or a type context, and dom(u) = {−→X ,−→x ,−→f }.
A filling of the ultimate value pattern (1) is a flat sub-

stitution u with “signature” ∆. (We postpone the formal
typing judgement for flat substitutions till Sect. 4.)

5

Theorem 1 (ultimate value pattern matching)

Any value
−→
X ,
−−→
x:Ξ,

−−−−−−−→
f:¬A[

−−→
B/Y] `v U : D[

−−→
B/Y], where

−→
X `
−→
B , uniquely decomposes U = p[w] into an ultimate

value pattern
−→
X ,
−−→
x:Ξ ‖ −→Y | ∆ ` p : D and flat substitu-

tion w with dom(w) = dom(∆). That is, p, w, and ∆ are
unique up to the choice of identifiers in dom(∆).

In particular, any closed value U of closed type D
uniquely decomposes U = p[w] into an ultimate value pat-
tern ∅ ‖ ∅ | ∆ ` p : D and flat substitution w.

Example 7 The semaphores from Example 3 decompose

semaphore1 = 〈Bool, 〈true, neg, id〉〉
= 〈X, 〈x, f, g〉〉[Bool/X; true/x; neg/f; idg],

semaphore2 = 〈Nat, 〈zero, succ, even〉〉
= 〈X, 〈x, f, g〉〉[Nat/X; zero/x; succ/f, even/g],

where the ultimate value pattern 〈X, 〈x, f, g〉〉 has type

∅ ‖ ∅ | X, x:X, f:¬(X×¬X), g:¬(X×¬Nat) ` 〈X, 〈x, f, g〉〉
: Semaphore

and Semaphore = ∃X.X×¬(X×¬X)×¬(X×¬Bool).

The following technical lemma is used in the substitution
proofs in Sect. 5.

Lemma 2 If
−→
X ,
−−→
x:Ξ,

−→
Z ,
−→
z:Υ ‖ −→Y | ∆ ` p : D and

−→
Z `

−→
Υ , there are unique

−→
X ,
−−→
x:Ξ ‖ −→Y ,−→Z |

−−→
z′:Υ ′, ∆ ` p′ : D

and renaming r from
−−→
z′:Υ ′ to

−→
z:Υ such that p = p′[r].

4 LTS

We now use flat type contexts, flat substitutions, and ul-
timate patterns to define our LTS.

The judgement ∆i a` ∆o means that the flat type con-
texts ∆i and ∆o form a joint input-output context,

−→
X `
−→
Ξ
−→
Y `
−→
Υ
−→
X ,
−→
Y `
−→
A,
−→
B

−→
X ,
−−→
x:Ξ,

−−−→
f:¬A a` −→Y ,

−→
y:Υ ,
−−−→
g:¬B

The judgement ∆i ‖ ∆o ` u means that the flat substitu-
tion u has the “signature” (output context) ∆o in the input
context ∆i,

−→
X ,
−−→
x:Ξ,

−−−→
f:¬A a` −→Y ,

−→
y:Υ ,
−−−→
g:¬B

−→
X `
−→
C

−→
X ,
−−→
x:Ξ,

−−−−−−−→
f:¬A[

−−→
C/Y] `v

−−−−−−−→
V : Υ [

−−→
C/Y],

−−−−−−−−→
G : ¬B[

−−→
C/Y]

−→
X ,
−−→
x:Ξ,

−−−→
f:¬A ‖ −→Y ,

−→
y:Υ ,
−−−→
g:¬B `

−−→
C/Y;

−−→
V/y;

−−→
G/g

We will write ∆i ‖ ∆o | ∆ ` p : A to mean ∆i a` ∆o

and ∆i a` ∆o, ∆ and ∆‡i ‖ ∆†o | ∆ ` p : A.

An ultimate terminal command pattern a = f p is an in-
put function identifier f applied to an ultimate value pattern
p, defined by the judgement ∆i ‖ ∆o | ∆ ` a,

∆i ‖ ∆o | ∆ ` p : A (f:¬A) ∈ ∆i

∆i ‖ ∆o | ∆ ` f p

Theorem 3 (ultimate command pattern matching)
If ∆i ‖ ∆o ` u, any terminal command ∆i[u] `n T
uniquely decomposes T = a[w] into an ultimate terminal
command pattern a and flat substitution w such that

∆i ‖ ∆o | ∆ ` a, ∆i ‖ ∆o, ∆ ` u,w.

There are two kinds of LTS states, active and passive.
A passive state u is just a flat substitution. An active state
c = u;M is a flat substitution plus a command component
M ,

∆i ‖ ∆o ` u ∆i[u] `n M

∆i ‖ ∆o ` u;M

A label is an ultimate terminal command pattern a. Rel-
ative to an input-output context ∆i‖∆o, we call a an out-
put label if ∆i ‖ ∆o | ∆ ` a and an input label if
∆o ‖ ∆i | ∆ ` a.

There are three kinds of transitions:
A silent transition is from an active state, with a non-

terminal command, to another active state. It corresponds
to a C-machine transition on the command component.

M N

u;M u;N

A labelled output transition is from an active state with
terminal command component to a passive state.

∆i ‖ ∆o | ∆ ` a ∆i ‖ ∆o ` u ∆i ‖ ∆o, ∆ ` u,w

∆i ‖ ∆o | ∆ ` u; a[w] a−→ u,w

Sometimes we write “u,w” as “u|w” on the right of the
output transition arrow to indicate the portion w that is the
filling of the ultimate command pattern in the label.

A labelled input transition is from a passive state to an
active state.

∆i ‖ ∆o ` u ∆o ‖ ∆i | ∆ ` a

∆i | ∆ ‖ ∆o ` u
a−→ u; a[u]

5 Bisimulation

A bisimulation is a binary relation between states in the
same input-ouput context. Since there are two kinds of
states, active and passive, there are two classes of relations,

R ⊆ {(∆i ‖ ∆o ` c, c′)}, S ⊆ {(∆i ‖ ∆o ` u, u′)}.

6

(We sometimes write (∆i ‖ ∆o ` x, x′) ∈ X with infix
notation ∆i ‖ ∆o ` x X x, where X is a passive or active
relation and x, x′ are passive or active states.)

Each class is a complete lattice ordered by subset inclu-
sion. The operators

S] def= {(∆i, ∆ ‖ ∆o ` c, c′) |
∃u, u′, a. ∆i ‖ ∆o ` u S u′ &

∆i | ∆ ‖ ∆o ` u
a−→ c &

∆i | ∆ ‖ ∆o ` u′
a−→ c′}

R[def= {(∆i ‖ ∆o ` u, u′) |
∀∆, a, c, c′. (∆i | ∆ ‖ ∆o ` u

a−→ c &
∆i | ∆ ‖ ∆o ` u′

a−→ c′)
⇒ ∆i, ∆ ‖ ∆o ` c R c′}

form a galois connection,

S] ⊆ R iff S ⊆ R[. (2)

We define a bisimulation operator B as the map from
passive to active relations:

B(S) def= {(∆i ‖ ∆o ` c, c′) |
(c ω & c′ ω) ∨
∃∆, a, u, w, u′, w′.
∆i ‖ ∆o | ∆ ` c ∗

a−→ u | w &
∆i ‖ ∆o | ∆ ` c′ ∗

a−→ u′ | w′ &
∆i ‖ ∆o, ∆ ` u,w S u′, w′}

where ∆i ‖ ∆o | ∆ ` c ∗
a−→ u | w means

∃d. c ∗ d & ∆i ‖ ∆o | ∆ ` d
a−→ u | w.

We say that a relationR is a bisimulation ifR ⊆ B(R[).
The relational operators are all monotone and therefore
there exists a greatest bisimulation, which we denote h. It
is the greatest fixed point h = B(h[).

It is sometimes more convenient to work with passive re-
lations. A passive bisimulation is a relation S ⊆ B(S)[. By
the galois connection (2), S ⊆ B(S)[iff S] ⊆ B(S). More-
over, S] is a bisimulation if S is a passive bisimulation, R[
is a passive bisimulation if R is a bisimulation, and h[is
the greatest passive bisimulation.

Example 8 Recall from Example 7 the flat type context

∆ = X, x:X, f:¬(X×¬X), g:¬(X×¬Bool)

and two flat substitutions ∅ ‖ ∆ ` v1, v2,

v1 = Bool/X, true/x, neg/f, id/g,

v2 = Nat/X, zero/x, succ/f, even/g.

They are related by the passive bisimulation

S = {(∆i ‖ ∆~n ` u~n, u′~n) | ~n ∈ N∗ &
∆i a` X & ∆~n = ∆, x1:X, . . . , x|~n|:X &
u~n = v1,

−−−−→
β(n)/x & u′~n = v2,

−−−−→
ν(n)/x}

where ν(n) def= Snzero, β(n) def=
{
true if n is even
false if n is odd.

To see that S is a passive bisimulation first observe that the
only input labels from the passive states related by S are
ai = f〈xi, k〉 and bi = g〈xi, k〉, so

S] = {(∆i, k:¬X ‖ ∆~n ` u~n; ai[u~n], u′~n; ai[u′~n]),
(∆i, k:¬Bool ‖ ∆~n ` u~n; bi[u~n], u′~n; bi[u′~n])}.

We calculate

ai[u~n] = neg〈β(ni), k〉 ∗ kβ(ni+1)

∆i, k:¬X ‖ ∆~n | x|~n|+1:X `
u~n; ai[u~n] ∗

k y−→ u~n | β(ni+1)/x|~n|+1

ai[u′~n] = succ〈ν(ni), k〉 ∗ kν(ni+1)

∆i, k:¬X ‖ ∆~n | x|~n|+1:X `
u′~n; ai[u′~n] ∗

k y−→ u′~n | ν(ni+1)/x|~n|+1

∆i, k:¬X ‖ ∆~n, x|~n|+1:X ` u~n,β(ni+1)/x|~n|+1 =
u~n,(ni+1) S u′~n,(ni+1)

= u′~n,ν(ni+1)/x|~n|+1

and

bi[u~n] = id〈β(ni), k〉 ∗ kβ(ni)

∆i, k:¬Bool ‖ ∆~n | ∅ ` u~n; bi[u~n] ∗
kβ(ni)−−−−→ u~n | ε

bi[u′~n] = even〈ν(ni), k〉 ∗ kβ(ni)

∆i, k:¬Bool ‖ ∆~n | ∅ ` u′~n; bi[u′~n] ∗
kβ(ni)−−−−→ u′~n | ε

∆i, k:¬Bool ‖ ∆~n ` u~n S u′~n.

We conclude that S] ⊆ B(S), so S is a passive bisimulation
and ∅ ‖ ∆ ` v1 h[v2.

It is easy to see that h and h[are equivalence relations
(reflexive, transitive, and symmetric) and are preserved un-
der renaming (of input context identifiers and type identi-
fiers). Moreover, they are preserved under substitution:

Lemma 4 (preservation under substitution)
If ∆ ‖ Θ ` v h[v′ and ∆ a` ∆o,

1. ∆,Θ ‖ ∆o ` c h c′ implies
∆ ‖ ∆o ` c[v] h c′[v′], and

2. ∆,Θ ‖ ∆o ` u h[u′ implies
∆ ‖ ∆o ` u[v] h[u′[v′].

7

Proof outline We have proved this result by generalizing
the “alternating tables” from the proof for the monomor-
phic calculus [14] to type identifiers, open types, and type
substitutions. Nonetheless, here we outline the argument in
a notationally simpler “relational” formulation, akin to the
substitutivity proofs in [13, 23].

We define the relation substitution operation X [S],

∆,Θ,∆i ‖ ∆o ` x X x′

∆,Θi ‖ Θ,Θo ` v, w S v′, w′
∆,Θi, ∆i a` Θo, ∆o

∆,Θi, ∆i ‖ Θo, ∆o ` w, x[v] X [S] w′, x′[v′]

where S is a passive relation and X is an active or passive
relation.

The Lemma follows from the more general result

h[h[] ⊆ h and h[[h[] ⊆ h[.

We prove this co-inductively by exhibiting active and pas-
sive bisimulationsRω ⊇ h[h[] and Sω ⊇ h[[h[], namely

Rω
def=
⋃
m<ωRm, R0

def= h, Rm+1
def= Rm[h[],

Sω
def=
⋃
m<ω Sm, S0

def= h[, Sm+1
def= Sm[h[].

By simple induction proofs one can show that Rω and Sω
are preserved under renaming and substitution and satisfy

Sω ⊆ R[ω. (3)

The main step in the proof is to establish

Rω ⊆ B(Sω). (4)

Expanding the definitions, what we need to prove is:

∆i ‖ ∆o ` c Rm c′,

∆i ‖ ∆o | ∆ ` c[v] n a−→ u | w

imply there exists u′, w′ such that

∆i ‖ ∆o | ∆ ` c′[v′] ∗
a−→ u′ | w′,

∆i ‖ ∆o, ∆ ` u,w Sω u′, w′.

The proof is by induction on n andm, ordered lexicographi-
cally. The argument is analogous to the proof of the untyped
substitution lemma in [13]. The type identifiers and opaque
values add some extra bookkeeping, using Lemma 2 and
some renaming properties of ultimate patterns, but the un-
derlying argument is concerned with the invocation of func-
tions (the labelled transitions).

The inclusions (4), (3), and (2) imply thatRω and Sω are
active and passive bisimulations, as required. 2

We now define bisimilarity on commands and values,
written

−→
X ,
−→
x:A `n M h M ′ and

−→
X ,
−→
x:A `v V h V ′:B.

First in flat type contexts:

• ∆ `n M h M ′ if ∆ ‖ ∅ ` ε;M h ε;M ′.

• ∆ `v V h V ′ : B if V = p[w] and V ′ = p[w′] for
some ultimate value pattern ∆ ‖ ∅ | ∆o ` p : B and
flat substitutions w,w′ such that ∆ ‖ ∆o ` w h[w′.

This is an equivalence relation on terms (commands and
values), in flat type contexts, because bisimilarity is an
equivalence on (active and passive) LTS states. Further-
more, it is easy to see that it includes the β-laws (the C-
machine transitions in Fig. 2), in flat type contexts. The
η-law for functions,

−→
X , f:¬A `v f h λx.fx : ¬A, if

−→
X ` A,

holds because

{(−→X , f:¬A,∆i ‖ g:¬A,∆o ` (f/g, u), (λx.fx/g, u)) |
−→
X , ∆i ‖ ∆o ` u}

is a passive bisimulation.

Example 9 In Example 7 we decomposed two semaphores
into the same ultimate value pattern and into flat substitu-
tions which were then related by a passive bisimulation in
Example 8. Thus

∅ `v semaphore1 h semaphore2 : Semaphore.

We extend bisimilarity to general type contexts by “flat-
tening” bisimilarity judgements in general type contexts
−→
X ,
−→
x:A to conjunctions of bisimilarity judgements in flat

contexts ∆:

• −→X ,
−→
x:A `n M h M ′ if

∀
−−→
∆, p. ∅ ‖ −→X |

−→
∆ `

−−→
p : A

⇒ −→X ,
−→
∆ `n M [

−→
p/x] h M ′[

−→
p/x].

(5)

• −→X ,
−→
x:A `v V h V ′ : B if

∀
−−→
∆, p. ∅ ‖ −→X |

−→
∆ `

−−→
p : A

⇒ −→X ,
−→
∆ `v V [

−→
p/x] h V ′[

−→
p/x] : B.

(6)

It is easy to see that reflexivity, transitivity, symmetry,
and the β-laws and η-law generalize to bisimilarity in gen-
eral type contexts; for the β-laws this follows from the fact
that β-reductions are preserved by term and type substitu-
tions. Now we can also show the η-laws for other types,
listed in Fig. 5. When we expand definition (5), the η-laws
become β-laws. For instance, consider the last η-law, for
existential types. We need to show

−→
X , x1:A1 . . . , ∆, . . . xn:An `n

(pm xı̂ as 〈Y, y〉.M [〈Y, y〉/xı̂])[p/xı̂] h M [p/xı̂]

8

−→
X ,
−→
x:A `n M Aı̂ = 1

−→
X ,
−→
x:A `n M [〈〉/xı̂] h M

−→
X ,
−→
x:A `n M Aı̂ = B1 ×B2

−→
X ,
−→
x:A `n pm xı̂ as 〈y1, y2〉.M [〈y1, y2〉/xı̂] h M

−→
X ,
−→
x:A,`n M Aı̂ =

∑
i∈IBi

−→
X ,
−→
x:A `n pm xı̂ as {〈i, yi〉.M [〈i, yi〉/xı̂]}i∈I h M

−→
X ,
−→
x:A `n M Aı̂ = ¬B

−→
X ,
−→
x:A `n M [λy.xı̂y/xı̂] h M

−→
X ,
−→
x:A `n M Aı̂ = µY.B

−→
X ,
−→
x:A `n pm xı̂ as fold y.M [fold y/xı̂] h M

−→
X ,
−→
x:A `n M Aı̂ = ∃Y.B

−→
X ,
−→
x:A `n pm xı̂ as 〈Y, y〉.M [〈Y, y〉/xı̂] h M

Figure 5. JWA η-laws

for all ∆, p such that ∅ ‖ −→X | ∆ ` p : ∃Y.B. According
to the ultimate value pattern definition in Fig. 4, ∆ = Y, ∆′

and p = 〈Y, p′〉 for some ∅ ‖ −→X , Y | ∆′ ` p′ : B. When
we substitute 〈Y, p′〉 for p in the equation, it turns into the
β-law for existential values.

Also note that if
−→
X ` Aı̂ is an empty type, meaning that

the set of patterns ∅ ‖ −→X | ∆ ` p : Aı̂ is empty, then

−→
X ,
−→
x:A `n M h M ′, if

−→
X ,
−→
x:A `n M,M ′, (7)

hold vacuously by the definition (5).

Example 10 List reversal is an involution,

X, a:List(X), k:¬List(X) `n

reverse〈X, 〈a, λb.reverse〈X, 〈b, k〉〉〉〉 h ka.

To prove this, we must show

X, ∆, k:¬List(X) `n

reverse〈X, 〈p, λb.reverse〈X, 〈b, k〉〉〉〉 h k p,
(8)

for every ultimate value pattern ∅ ‖ X | ∆ ` p : List(X).
Recall from Example 5 that each such p is a list of fresh
opaque values. We can prove (8) by induction on the length
of the list p.

Lemma 5 Bisimilarity on terms is substitutive.

Proof outline Follows from Lemma 4, using Lemma 2 and
renaming properties of ultimate patterns as in the proof of
Lemma 4. 2

Proposition 6 Bisimilarity on terms is a congruence.

Proof We must prove that bisimilarity is preserved by every
typing rule in Fig. 1.

In the case of ¬-introduction, this means that

−→
X ,
−→
x:A, y:B `n M h M ′

implies
−→
X ,
−→
x:A `v λy.M h λy.M ′ : ¬B.

The argument requires a lemma about preservation of h[

under concatenation of passive states. It is analogous to the
proof in [23].

All the other cases follow easily from the fact that bisim-
ilarity is an equivalence relation, the β-laws, and substitu-
tivity, Lemma 5. For instance, in the case of ∃-elimination,
consider arbitrary ultimate value patterns

∅ ‖ −→X | ∆j ` pj : Aj , for 1 ≤ j ≤ |−→x |,

and observe that any ultimate value pattern

∅ ‖ −→X | Θ ` q : ∃Y.B

has the form q = 〈Y, q′〉 with Θ = Y, Θ′ and

∅ ‖ −→X , Y | Θ′ ` q′ : B.

Moreover,

−→
X ,
−→
∆, Y, Θ′ `n M [

−→
p/x, q′/y] h M ′[

−→
p/x, q′/y]

implies

−→
X ,
−→
∆, Y, Θ′ `n (pm z as 〈Y, y〉.M)[

−→
p/x, q/z] h

(pm z as 〈Y, y〉.M ′)[
−→
p/x, q/z]

by β-equality and transitivity. Hence

−→
X ,
−→
x:A, z:∃Y.B `n pm z as 〈Y, y〉.M h

pm z as 〈Y, y〉.M ′

and the result

−→
X ,
−→
x:A `n pm V as 〈Y, y〉.M h pm V ′ as 〈Y, y〉.M ′

follows from the premiss
−→
X ,
−→
x:A `v V h V ′ : ∃Y.B and

substitutivity, Lemma 5 2

Bisimilarity is non-trivial in the sense that it does not re-
late all well-typed terms. More specifically, it is immediate
from the definition of bisimilarity that it is computationally
adequate in the sense that no diverging command (one with

9

an infinite reduction sequence) is bisimilar to a terminating
command (one that reduces to a terminal command).

We can define contextual equivalence to be the great-
est computationally adequate congruence relation (cf. [11,
Sect. 3.7]). Since bisimilarity is both computational ade-
quate and a congruence, it is included in contextual equiva-
lence.

6 Type Isomorphisms

To illustrate the bisimulation proof principle we now
prove two type isomorphisms, up to bisimilarity, for exis-
tential types.

A type isomorphism between two types
−→
X ` A,A′ con-

sists of two functions F1:¬(A×¬A′), F2:¬(A′×¬A) that
are mutually inverse:

x:A, k:¬A′ `n F1〈x, λz.F2〈z, k〉〉 h kx,

x:A′, k:¬A `n F2〈x, λz.F1〈z, k〉〉 h kx.

We place the additional requirement that F1 and F2 are
“effect-free” in the sense that

x:A, j:¬¬¬A′ `n jλk.F1〈x, k〉 h F1〈x, λz.jλk.kz〉,
x:A′, j:¬¬¬A `n jλk.F2〈x, k〉 h F2〈x, λz.jλk.kz〉

(the CPS equivalent of Führmann’s thunkability [6]). This
requirement holds trivially for all our examples.

Example 11 If X, Y ` A then ∃X.∃Y.A is isormorphic to
∃Y.∃X.A, because F1 = F2 = λ〈〈X, 〈Y, x〉〉, k〉.k〈Y, 〈X, x〉〉
form an isomorphism. The proof that they are mutual in-
verses (and effect-free) follows from the η-law for existen-
tials and β-conversion, or directly from the definition (5).

Example 12 The type ∃X.X is isomorphic to 1, because

F1 = λ〈〈X, x〉, k〉.k〈〉, F2 = λ〈〈〉, k〉.k〈1, 〈〉〉,

form an isomorphism. The interesting equation is:

z:∃X.X, k:¬∃X.X `n F1〈z, λz.F2〈z, k〉〉 h kz.

By definition (5) and β-conversion, we must prove

X, x:X, k:¬∃X.X ‖ ∅ ` ε; k〈1, 〈〉〉 h ε; k〈X, x〉.

Each side has the output transition:

∆i ‖ ∅ | Y, y:Y ` ε; k〈1, 〈〉〉 k〈Y,y〉−−−→ ε | 1/Y, 〈〉/y,

∆i ‖ ∅ | Y, y:Y ` ε; k〈X, x〉 k〈Y,y〉−−−→ ε | X/Y, x/y.

where ∆i = X, x:X, k:¬∃X.X. The resulting passive states

∆i ‖ Y, y:Y ` 1/Y, 〈〉/y, ∆i ‖ Y, y:Y ` X/Y, x/y,

have no output functions, so they cannot receive any inputs
(there are no input labels) and are thus vacuously bisimilar.

One can extrapolate the previous example to show that
any two closed types with equally many ultimate value pat-
terns (their sets of ultimate value patterns have the same
cardinality) are isomorphic provided none of their patterns
has any function holes.

Example 13 The type ∃X.¬X is isomorphic to 1 with

F1 = λ〈〈X, f〉, k〉.k〈〉, F2 = λ〈〈〉, k〉.k〈1,⊥〉,

where ⊥ def= λx.diverge. Analogously to the previous ex-
ample we end up with two states with an output transition:

∆i ‖ ∅ | Y, g:¬Y ` ε; k〈1,⊥〉 k〈Y,g〉−−−→ ε | 1/Y,⊥/g,

∆i ‖ ∅ | Y, g:¬Y ` ε; k〈X, f〉 k〈Y,g〉−−−→ ε | X/Y, f/g.

where ∆i = X, f:¬X, k:¬∃X.¬X. The resulting passive
states

∆i ‖ Y, g:¬Y ` 1/Y,⊥/g, ∆i ‖ Y, g:¬Y ` X/Y, f/g,

again have no input labels, this time because there are
no ultimate value patterns of type Y in the requisite input-
output context,

Y, g:¬Y ‖ ∆i | ∆ ` p : Y,

as there are no output opaque values in context Y, g:¬Y, so
the passive states are vacuously bisimilar.

With some extra effort one can extend the proof of the
last example to show that ∃X.Xn×¬X, where Xn is the n-
fold product of X, is isomorphic to

∑n
1 1.

The last example shows that our system is significantly
different from those studied in [5].

7 Genericity

As another illustration of typed normal form bisimula-
tion reasoning about polymorphism, we show that our se-
mantics satisfies a form of Longo, Milsted, and Soloviev’s
[17] equational genericity principle. It captures the idea that
a generic program is unable to probe the structure of its in-
stances.

At the level of the operational semantics, we have the
following genericity property of substitution of types and
opaque values, a property that is not enjoyed by substitution
of functions.

Proposition 7 Suppose W,−→w :W, Γ `n M and Γ † ` A and
Γ [A/W] `

−→
V : A. If Γ [A/W] `n M [A/W,

−−→
V/w] ∗ T

where T is terminal, there exists terminal W,−→w :W, Γ `n T ′

such that M ∗ T ′ and T = T ′[A/W,
−−→
V/w].

10

Proof Induction on ∗ and case analysis on M . 2

The equational genericity principle is a corresponding
property for program equivalence: generic commands are
equivalent if they are equivalent at any given instance. This
principle is not valid for arbitrary instantiations. For in-
stance,

W, w1:W, w2:W, k:¬W `n kw1 6h kw2,

even though the equivalence holds if we substitute 1 for W,

w1:1, w2:1, k:¬1 `n kw1 h kw2.

A closed typeA is generic for h when, for every W, Γ `n

M,M ′, if Γ [A/W] `n M [A/W] h M ′[A/W] then M h M ′.
Generic types have been considered in [2, 17].

For illustration, we now show that Bool is a generic type.
(The proof can be adapted to many other closed types, but
a more exhaustive investigation of generic types is beyond
the scope of this paper).

Proposition 8 The type Bool is generic for h.

Proof For any active or passive relation X , we write G(X)
for the active or passive relation

{(W,−→w :W, ∆i ‖ ∆o ` x, x′) |
∆i[Bool/W] ‖ ∆o[Bool/W] ` x[k] X x′[k], for each
boolean substitution ∅ ‖ W,−→w :W ` k = Bool/W,

−−→
U/w}.

The proposition follows straightforwardly if G(h) is a
bisimulation, hence is contained in h.

Suppose

W,−→w :W, ∆i ‖ ∆o ` u;M G(h) u′;M ′ (9)

and M ∗ fp[w] where p is an ultimate value pattern and
w is the filling. Then, writing k0 for the boolean substitu-
tion Bool/W,

−−−−→
true/w, we have M [k0] ∗ fp[k0][w[k0]].

It is easy to see that p[k0] is an ultimate value pattern
and (9) gives us M ′[k0] ∗ fp[k0][w′′] for some w′′.
Prop. 7 then gives us M ′ ∗ fV for some V such that
V [k0] = p[k0][w′′]. Since the LTS is deterministic, V is
unique; we decompose it as p′[w′].

Next we prove a lemma: for any ultimate value patterns
−→
X ,
−−→
x:Ξ, W,−→w :W ‖ −→Y | ∆ ` p, p′ : D such that p[k] = p′[k]

for each boolean substitution k = Bool/W,
−−→
U/w, we have

p = p′. This is proved by induction on p.
Back to our proof. For any boolean substitution k we

have M [k] ∗ fp[k][w[k]] and M ′[k] ∗ fp′[k][w′[k]],
where W,−→w :W, ∆i ‖ ∆o | ∆ ` fp, fp′ and p[k], p′[k] are
ultimate value patterns. Then (9) gives us p[k] = p′[k] and

∆i[Bool/W] ‖ ∆o[Bool/W], ∆[Bool/W] `
u[k], w[k] h[u′[k], w′[k].

The lemma gives us p = p′ and by definition

∆i ‖ ∆o, ∆ ` u,w G(h[) u′, w′.

Thus G(h) ⊆ B(G(h[)).
It is straightforward to show that G(h[) ⊆ G(h)[, hence

G(h) ⊆ B(G(h)[), which means that G(h) is a bisimula-
tion. 2

Acknowledgements We thank Radha Jagadeesan for di-
recting our attention to the genericity theorem.

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract
game semantics for general references. In 13th LICS, pages
334–344. IEEE, 1998.

[2] S. Abramsky and R. Jagadeesan. A game semantics for
generic polymorphism. Ann. Pure Appl. Logic, 133(1-3):3–
37, 2005.

[3] A. J. Ahmed. Step-indexed syntactic logical relations for
recursive and quantified types. In 15th ESOP, volume 3924
of LNCS, pages 69–83, 2006.

[4] M. Berger, K. Honda, and N. Yoshida. Genericity and the Pi-
Calculus. Acta Informatica, 42(2):83–141, December 2005.

[5] J. de Lataillade. Quantification du second ordre en sman-
tique des jeux - Application aux isomorphismes de types.
PhD thesis, Université Paris Diderot (Paris 7), 2007.

[6] C. Führmann. Direct models of the computational lambda-
calculus. ENTCS, 20:147–172, 1999.

[7] A. D. Gordon. Operational equivalences for untyped and
polymorphic object calculi. In A. D. Gordon and A. M. Pitts,
editors, Higher Order Operational Techniques in Semantics.
Cambridge U.P., 1998.

[8] D. J. D. Hughes. Games and definability for system F. In
12th LICS, pages 76–86. IEEE, 1997.

[9] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for
PCF: I, II, and III. Inf. and Comp., 163(2):285–408, 2000.

[10] J. Laird. A fully abstract trace semantics for general refer-
ences. In 34th ICALP, volume 4596 of LNCS, pages 667–
679. Springer, 2007.

[11] S. B. Lassen. Relational Reasoning about Functions and
Nondeterminism. PhD thesis, Department of Computer Sci-
ence, University of Aarhus, Dec. 1998. BRICS Dissertation
Series DS-98-2.

[12] S. B. Lassen. Eager normal form bisimulation. In 20th LICS,
pages 345–354. IEEE, 2005.

[13] S. B. Lassen. Head normal form bisimulation for pairs and
the λµ-calculus (extended abstract). In 21st LICS, pages
297–306. IEEE, 2006.

[14] S. B. Lassen and P. B. Levy. Typed normal form bisimula-
tion. In 16th CSL, volume 4646 of LNCS, pages 283–297.
Springer, 2007.

[15] P. B. Levy. Game semantics using function inventories. Talk
given at Geometry of Computation 2006, Marseille, 2006.

[16] P. B. Levy. Call-By-Push-Value. A Functional/Imperative
Synthesis. Semantic Struct. in Computation. Springer, 2004.

11

[17] G. Longo, K. Milsted, and S. Soloviev. The genericity theo-
rem and parametricity in the polymorphic λ-calculus. Theo-
retical Computer Science, 121(1–2):323–349, 6 Dec. 1993.

[18] A. Murawski and L. Ong. Evolving games and essential nets
for affine polymorphism. In TLCA, volume 2044 of LNCS.
Springer, 2001.

[19] B. Pierce and D. Sangiorgi. Behavioral equivalence in the
polymorphic pi-calculus. J. ACM, 47(3):531–584, 2000.

[20] A. M. Pitts. Typed operational reasoning. In B. C. Pierce,
editor, Advanced Topics in Types and Programming Lan-
guages, chapter 7, pages 245–289. The MIT Press, 2005.

[21] C. Queinnec. Lisp in Small Pieces. Cambridge U.P., 1996.
[22] J. C. Reynolds. Types, abstraction and parametric polymor-

phism. Information Processing, 83:513–523, 1983.
[23] K. Støvring and S. B. Lassen. A complete, co-inductive syn-

tactic theory of sequential control and state. In 34th POPL,
pages 63–74. ACM, 2007.

[24] E. Sumii and B. C. Pierce. A bisimulation for type abstrac-
tion and recursion. J. ACM, 54(5), 2007.

[25] H. Thielecke. Categorical Structure of Continuation Passing
Style. PhD thesis, University of Edinburgh, 1997.

12

