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Abstract. We give a general framework connecing a branching time
relation on nodes of a transition system to a final coalgebra for a suit-
able endofunctor. Examples of relations treated by our theory include
bisimilarity, similarity, upper and lower similarity for transition systems
with divergence, similarity for discrete probabilistic systems, and nested
similarity. Our results describe firstly how to characterize the relation in
terms of a given final coalgebra, and secondly how to construct a final
coalgebra using the relation.
Our theory uses a notion of “relator” based on earlier work of Thijs. But
whereas a relator must preserve binary composition in Thijs’ framework,
it only laxly preserves composition in ours. It is this weaker requirement
that allows nested similarity to be an example.

1 Introduction

A series of influential papers including [1,12,18,19,20] have developed a coalge-
braic account of bisimulation, based on the following principles.

– A transition system may be regarded as a coalgebra for a suitable endofunc-
tor F on Set (or another category).

– Bisimulation can be defined in terms of an operation on relations, called a
“relational extension” or “relator”.

– This operation may be obtained directly from F , if F preserves quasi-
pullbacks [4].

– Given a final F -coalgebra, two nodes of transition systems are bisimilar iff
they have the same anamorphic image–i.e. image in the final coalgebra.

– Any coalgebra can be quotiented by bisimilarity to give an extensional coalgebra—
one in which bisimilarity is just equality.

– One may construct a final coalgebra by taking the extensional quotient of a
sufficiently large coalgebra.

Thus a final F -coalgebra provides a “universe of processes” according to the
viewpoint that bisimilarity is the appropriate semantic equivalence.

More recently [3,5,8,13,14,23] there have been several coalgebraic studies of
simulation, in which the final F -coalgebra carries a preorder. This is valuable
for someone who wants to study bisimilarity and similarity together: equality
represents bisimilarity, and the preorder represents similarity. But someone who
? supported by EPSRC Advanced Research Fellowship EP/E056091
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is exclusively interested in similarity will want the universe of processes to be a
poset: if two nodes are mutually similar, they should be equal. In this paper we
shall see that such a universe is also a final coalgebra, for a suitable endofunctor
H on the category of posets.

For example, consider countably branching transition systems. In this case,
we shall see that H maps a poset A to the set of countably generated lower
sets, ordered by inclusion. A final H-coalgebra is a universe for similarity, in two
senses.

– On the one hand, we can use a final H-coalgebra to characterize similarity,
by regarding a transition system as a discretely ordered H-coalgebra.

– On the other hand, we can construct a final H-coalgebra, by taking a suffi-
ciently large transition system and quotienting by similarity.

We give this theory in Sect. 4. But first, in Sect. 3, we introduce the notion
of relator, which gives many notions of simulation, e.g. for transition systems
with divergence and Markov chains. Finally, in Sect. 5 we look at the example of
2-nested simulation; this requires a generalization of our theory where relations
are replaced by indexed families of relations.

2 Mathematical Preliminaries

Definition 1. (Relations)

1. For sets X and Y , we write X pR // Y when R is a relation from X to Y ,
and Rel(X,Y ) for the complete lattice of relations ordered by inclusion.

2. X p
(=X) // X is the equality relation on X.

3. Given relations X pR // Y pS // Z , we write X p
R;S // Z for the compos-

ite.

4. Given functions Z
f // X and W

g // Y , and a relation X pR // Y ,

we write Z p
(f,g)−1R// W for the inverse image {(z, w) ∈ Z ×W | f(z) R g(w)}.

5. Given a relation X pR // Y , we write Y pR
c
// X for its converse. R is

difunctional when R;Rc;R ⊆ R.

Definition 2. (Preordered sets)

1. A preordered set A is a set A0 with a preorder 6A. It is a poset ( setoid,
discrete setoid) when 6A is a partial order (an equivalence relation, the
equality relation).

2. We write Preord (Poset, Setoid, DiscSetoid) for the category of pre-
ordered sets (posets, setoids, discrete setoids) and monotone functions.

3. The functor ∆ : Set −→ Preord maps X to (X,=X) and X
f // Y to

f . This gives an isomorphism Set ∼= DiscSetoid.
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4. Let A and B be preordered sets. A bimodule A pR // B is a relation such
that (6A);R; (6B) ⊆ R. We write Bimod(A,B) for the complete lattice of

bimodules, ordered by inclusion. For an arbitrary relation A0 pR // B0 , its

bimodule closure A pR // B is (6A);R; (6B).

Here are some general properties of preordered sets.

Lemma 1. (Characterization of monotonicity) Let I be a set, and let A and B

be preordered sets. For any function A0
f // B0 , the following are equivalent.

1. A
f // B is monotone.

2. A p
(f,B)−1(6B) // B is a bimodule.

3. B p
(B,f)−1(6B) // A is a bimodule.

Proof. Trivial.

Lemma 2. (Properties of posets) Let I be a set and let B be a poset.

1. For any preordered set A and monotone functions A
f,g // B , the following

conditions are equivalent.
– f = g.
– (6A) v (f, g)−1(6B) and (6A) v (g, f)−1(6B).

2. Let A be an preordered set. Then any embedding B
f // A is injective.

3. Let A be an preordered set and A
f // B an injective monotone function.

Then A is a poset.

Proof. Trivial.

Definition 3. (Quotienting)

1. Let A be a preordered set. For x ∈ A, its principal lower set [x]A is {y ∈ A | y 6A x}.
The quotient poset QA is {[x]A | x ∈ A} ordered by inclusion. (This is iso-
morphic to the quotient of A by the equivalence relation (6A) ∩ (>A).) We

write A
pA // QA for the function x 7→ [x]A.

2. Let A and B be preordered sets and A
f // B a monotone function. The

monotone function QA
Qf // QB maps [x]A 7→ [f(x)]B.

3. Let A and B be preordered sets and A pR // B a bimodule. The bimodule

QA p
QR // QB relates [x]A to [y]B iff x R y.

Lemma 3. (Quotienting preserves operations on bimodules)
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1. Let A and B be preordered sets. Then we have an isomorphism of complete
lattices:

Bimod(A,B) ∼= Bimod(QA,QB)

mapping R 7→ QR, with inverse S 7→ (pA, pB)−1S.
2. Let A be an preordered set. Then Q(6A) = (6QA).

3. Let A,B,C be preordered sets. For any bimodules A pR // B pS // C we
have Q(R;S) = QR;QS.

4. Let A,B,C,D be preorderd sets and let C
f // A and D

g // B be

monotone. For any bimodule A pR // B we have Q((f, g)−1R) = (Qf,Qg)−1QR.

5. Let A and B be preordered sets. For any bimodule A pR // B we have

Q((6B);Rc; (6A)) = (6QB); (QR)c; (6QA)

Proof. Trivial.

We give some examples of endofunctors on Set.

Definition 4. 1. For any set X and class K of cardinals, we write PKX for
the set of subsets X with cardinality in K. P is the endofunctor on Set

mapping X to the set of subsets of X and X
f // Y to u 7→ {f(x) | x ∈ u}.

It has subfunctors P [0,κ) and P [1,κ) where κ is a cardinal or ∞.
2. Maybe is the endofunctor on Set mapping X to X+1 = {Just x | x ∈ X}∪

{⇑} and X
f // Y to Just x 7→ Just f(x),⇑7→⇑.

3. A discrete subprobability distribution on a set X is a function d : X −→
[0, 1] such that

∑
x∈Xdx 6 1 (so d is countably supported). For any U ⊆ X

we write dU def=
∑
x∈Udx, and we write d ⇑def= 1−d(X). D is the endofunctor

on Set mapping X to the set of discrete subprobability distributions on X

and X
f // Y to d 7→ (y 7→ d(f−1{y})).

Definition 5. Let C be a category.

1. Let F be an endofunctor on C. An F -coalgebra M is a C-object M · and

morphism M ·
ζM // FM · . We write Coalg(C, F ) for the category of F -

coalgebras and homomorphisms.
2. Let F and G be endofunctors on C, and F

α // G a natural transforma-
tion. We write Coalg(C, α) : Coalg(C, F ) −→ Coalg(C, G) for the functor

mapping M to (M ·, ζM ;αM ·) and M
f // N to f .

Examples of coalgebras:

– a transition system is a P-coalgebra
– a countably branching transition system is a P [0,ℵ0]-coalgebra
– a transition system with divergence is a PMaybe-coalgebra
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– a partial Markov chain is a D-coalgebra.

There are also easy variants for labelled systems.

Lemma 4. [9] Let C be a category and B a reflective replete (i.e. full and
isomorphism-closed) subcategory of C.

1. Let A ∈ ob C. Then A is a final object of C iff it is a final object of B.
2. Let F be an endofunctor on C. Then Coalg(B, F ) is a reflective replete sub-

category of Coalg(C, F ).

Proof. 1. The inclusion of B in C is monadic [2], so it preserves and creates
limits.

2. Straightforward.

Examples of reflective replete subcategories:

– Poset of Preord, and DiscSetoid of Setoid. In each case the reflection is
given by Q with unit p.

– Setoid of Preord. At A, the reflection is (A0,≡), where ≡ is the least
equivalence relation containing 6A, with unit idA0 .

3 Relators

3.1 Relators and Simulation

Any notion of simulation depends on a way of transforming a relation. For ex-

ample, given a relation X pR // Y , we define

– PX pSimR // PY to relate u to v when ∀x ∈ u.∃y ∈ v. x R y

– PX pBisimR // PY to relate u to v when ∀x ∈ u.∃y ∈ v. x R y and
∀y ∈ v. ∃x ∈ u. x R y.

for simulation and bisimulation respectively. In general:

Definition 6. Let F be an endofunctor on Set. An F -relator maps each relation

X pR // Y to a relation FX pΓR // FY in such a way that the following hold.

– For any relations X p
R,S // Y , if R ⊆ S then ΓR ⊆ ΓS.

– For any set X we have (=FX) ⊆ Γ(=X)

– For any relations X pR // Y pS // Z we have (ΓR); (ΓS) ⊆ Γ(R;S)

– For any functions Z
f // X and W

g // Y , and any relation X pR // Y ,
we have Γ(f, g)−1R = (Ff, Fg)−1ΓR.

An F -relator Γ is conversive when Γ(Rc) = (ΓR)c for every relation X pR // Y .



6

For example: Sim is a P-relator, and Bisim is a conversive P-relator.
We can now give a general definition of simulation.

Definition 7. Let F be an endofunctor on Set, and let Γ be an F -relator. Let
M and N be F -coalgebras.

1. A Γ-simulation from M to N is a relation M · pR // N · such that R ⊆
(ζM , ζN )−1ΓR.

2. The largest Γ-simulation is called Γ-similarity and written .Γ
M,N .

3. M is Γ-encompassed by N , written M 4Γ N , when for every x ∈ M there
is y ∈ N such that x .Γ

M,N y and y .Γ
N,M x.

For example: a Sim-simulation is an ordinary simulation, and a Bisim-simulation
is a bisimulation.

The basic properties of simulations are as follows.

Lemma 5. Let F be an endofunctor on Set, and Γ an F -relator.

1. Let M be an F -coalgebra. Then M p
(=M· ) // M is a Γ-simulation. Moreover

.Γ
M,M is a preorder on M ·—an equivalence relation if Γ is conversive.

2. Let M , N , P be F -coalgebras. If M pR // N pS // P are Γ-simulations

then so is M p
R;S // P . Moreover (.Γ

M,N ); (.Γ
N,P ) v (.Γ

M,P ).

3. Let M and N be F -coalgebras, and let Γ be conversive. If M pR // N is a

simulation then so is N pR
c
// M . Moreover (.Γ

M,N )c = (.Γ
N,M ) and .Γ

M,N

is difunctional.

4. Let M
f // N and M ′

g // N ′ be F -coalgebra morphisms. If N pR // N ′

is a Γ-simulation then so is M p
(f,g)−1R // M ′ . Moreover (f, g)−1(.Γ

N,N ′

) = (.Γ
M,M ′).

5. 4Γ is a preorder on the class of F -coalgebras.

6. Let M
f // N be an F -coalgebra morphism. Then x and f(x) are mutually

Γ-similar for all x ∈ M ·. Hence M 4 N , and if f is surjective then also
N 4 M .

Proof. We prove these statements in a different order from the one in which they
were stated.

– For part (1), to show (=M ·) is a simulation we reason

(=M ·) v (ζM , ζM )−1(=FM ·)
v (ζM , ζM )−1Γ(=M ·)

We deduce reflexivity of .Γ
M,M .
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– For part (2), to show R;S is a simulation we reason

R;S v (ζM , ζN )−1ΓR; (ζN , ζP )−1ΓS
v (ζM , ζP )−1(ΓR; ΓS)
v (ζM , ζP )−1Γ(R;S)

and the rest follows. We deduce the transitivity of .Γ
M,M in part (1).

– Part (5) is immediate.
– For part (3), to show Rc is a simulation we reason

Rc ⊆ ((ζM , ζN )−1ΓR)c

= (ζN , ζM )−1((ΓR)c)
= (ζN , ζM )−1Γ(Rc)

We deduce (.Γ
M,N )c = (.Γ

N,M ), and in part (1) we deduce symmetry of
.Γ
M,M . For difunctionality of .Γ

M,N we reason

(.Γ
M,N ); (.Γ

M,N )c; (.Γ
M,N ) = (.Γ

M,N ); (.Γ
N,M ); (.Γ

M,N )

⊆ .Γ
M,N

– For part (4), to show (f, g)−1R is a simulation, we reason

(f, g)−1R v (f, g)−1(ζM , ζN )−1ΓR
= (ζM ′ , ζN ′)−1(Ff, Fg)−1ΓR (f, g coalgebra morphisms)
= (ζM ′ , ζN ′)−1Γ(f, g)−1R

We deduce (f, g)−1(.Γ
N,N ′) ⊆ (.Γ

M,M ′).
– To prove part (6), we reason

(=M ·) v (f, f)−1(=N ·)
= (X, f)−1(f, Y )−1(=N ·)
v (M ·, f)−1(f,N ·)−1(.Γ

N,N )

v (M ·, f)−1(.Γ
M,N )

and likewise (=M ·) v (f,M ·)−1(.Γ
N,M ).

– To complete the proof of part (4) we reason

(.Γ
M,M ′) = (=M ·); (.Γ

M,M ′); (=M ′·)

v (f,M ·)−1(.Γ
N,M ); (.Γ

M,M ′); (M ′·, g)−1(.Γ
M ′,N ′)

= (f, g)−1((.Γ
N,M ); (.Γ

M,M ′); (.Γ
M ′,N ′))

v (f, g)−1(.Γ
N,N ′)

An F -coalgebra is all-Γ-encompassing when it is greatest in the 4Γ preorder.
For example, take the disjoint union of all transition systems carried by an initial
segment of N. This is an all-Bisim-encompassing P [0,ℵ0]-coalgebra, because every
node of a P [0,ℵ0]-coalgebra has only countably many descendants.
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3.2 Relators Preserving Binary Composition

Definition 8. Let F be an endofunctor on Set. An F -relator Γ is said to pre-

serve binary composition when for all sets X,Y, Z and relations X pR // Y pS // Z
we have Γ(R;S) = (ΓR); (ΓS). If we also have Γ(=X) = (=FX) for every set
X, then F is functorial.

For example, Sim preserves binary composition and Bisim is functorial. We shall
examine relators preserving binary composition using the following notions.

Definition 9.

1. A commutative square Z
g //

f

��

Y

k

��
X

h
// W

in Set is a quasi-pullback when

∀x ∈ X. ∀y ∈ Y. h(x) = k(y)⇒ ∃z ∈ Z. x = f(z) ∧ g(z) = y

2. A commutative square C
g //

f

��

B

k

��
A

h
// D

in Preord is a preorder-quasi-pullback

when ∀x ∈ A. ∀y ∈ B. h(x) 6D k(y)⇒ ∃z ∈ C. x 6A f(z) ∧ g(z) 6B y

Definition 10. (adapted from [14]) Let F be an endofunctor on Set. A stable
preorder on F is a functor G : Set −→ Preord that makes Preord

(−)0

��
Set

F
//

G

::ttttttttt
Set

commute and sends quasi-pullbacks to preorder-quasi-pullbacks. It is a stable
equivalence relation on F when it is a functor Set −→ Setoid.

For any relation X pR // Y , we write X R
πRoo π′R // Y for the two pro-

jections. We can now give our main result.

Theorem 1. Let F be an endofunctor on Set. There is a bijection between

– F -relators preserving binary composition
– stable preorders on F

described as follows.

– Given an F -relator Γ preserving binary composition, we define the stable

preorder Γ̃ on F to map X to (FX,Γ(=X)) and X
f // Y to Ff .
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– Given a stable preorder G on F , we define the F -relator Ĝ to map a relation

X pR // Y to

{(x, y) ∈ FX × FY | ∃z ∈ FR. x 6GX (FπR)z ∧ (Fπ′R)z 6GY y}

It restricts to a bijection between

– conversive F -relators preserving binary composition
– stable equivalence relations on F .

Proof. Let Γ be an F -relator preserving binary composition.

– Clearly Γ̃X is a preordered set for any set X, and a setoid if Γ is conversive.

– Let X
f // Y be a function. Then

(=X) ⊆ (f, f)−1(=Y )
Γ(=X) ⊆ Γ(f, f)−1(=Y )

= (Ff, Ff)−1Γ(=Y )

so Γ̃X
Ff // Γ̃Y is monotone.

– Let Z
g //

f

��

Y

k

��
X

h
// W

be a quasi-pullback. Then

(h, k)−1(=W ) = (X, f)−1(=X); (g, Y )−1(=Y )
∴ (Fh, Fk)−1Γ(=W ) = Γ(h, k)−1(=W )

= Γ((X, f)−1(=X); (g, Y )−1(=Y ))
= Γ(X, f)−1(=X); Γ(g, Y )−1(=Y )
= (FX,Ff)−1Γ(=X); (Fg, fY )−1Γ(=Y )

i.e. the square

Γ̃Z
Fg //

Ff

��

Γ̃Y

Fk

��
Γ̃X Fh

// Γ̃W

is a preorder-quasi-pullback.

– Let X and Y be sets and X pR // Y a relation. Then

R = (X,πR)−1(=X); (π′R, Y )−1(=Y )
∴ ΓR = Γ((X,πR)−1(=X); (π′R, Y )−1(=Y ))

= Γ(X,πR)−1(=X); Γ(π′R, Y )−1(=Y )
= (FX,FπR)−1Γ(=X); (Fπ′R, FY )−1Γ(=Y )

= ˆ̃ΓR
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We conclude that Γ̃ is a stable preorder on F—a stable equivalence relation if Γ
is conversive—and Γ = ˆ̃Γ. Conversely, suppose G is a stable preorder on F .

– Let X and Y be sets and X p
R,S // Y relations such that R ⊆ S. We have

R

πR   @@@@@@@

π′R~~}}}}}}}
� _

i

��
X SπS
oo

π′S

// Y

where i is the inclusion of R in S. For x ∈ FX, y ∈ FY , we have

(x, y) ∈ ĜR ⇔ ∃z ∈ FR. x 6GX (FπR)z ∧ (Fπ′R)z 6GY y

⇔ ∃z ∈ FR. x 6GX (FπS)(Fi)z ∧ (Fπ′R)(Fi)z 6GY y

⇒ ∃w ∈ FS. x 6GX (FπS)w ∧ (Fπ′R)w 6GY y

⇔ (x, y) ∈ ĜS

giving ĜR ⊆ ĜS.

– LetX be a set. Both π(=X) and π′(=X) are inverse to the function X
δ // (=X)

mapping x 7→ (x, x). For x, x′ ∈ FX we have

(x, x′) ∈ Ĝ(=X)⇔ ∃z ∈ F (=X). x 6GX (Fπ(=X))z ∧ F (π′(=X))z 6GX y

⇔ ∃x′′ ∈ X. x 6GX x′′ ∧ x′′ 6GX x′

⇔ x 6GX x′

giving Ĝ(=X) = (6GX). We deduce both (=FX) ⊆ Ĝ(=X) and ˜̂
GX = GX.

– Let X,Y, Z be sets and let X pR // Y pS // Z be relations. Let

T def= {(x, y, z) | (x, y) ∈ R ∧ (y, z) ∈ S}

We have a diagram

R;SGF

πR;S



�������������������� ED

π′R;S

��(
(((((((((((((((((((

T
α

||zzzzzzzz
β

!!DDDDDDDD?�

γ

OOOO

R

πR~~}}}}}}}

π′R ""DDDDDDDD S

πS
}}zzzzzzzz

π′S ��???????

X Y Z
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where

α : (x, y, z) 7→ (x, y)
β : (x, y, z) 7→ (y, z)
γ : (x, y, z) 7→ (x, z)

The y symbol indicates a pullback square and // // a surjection. For any
x ∈ FX, z ∈ FZ, we have

(x, z) ∈ ĜR; ĜS
⇔ ∃y ∈ FY. (x, y) ∈ ĜR∧ (y, z) ∈ ĜS
⇔ ∃y ∈ FY. ∃u ∈ FR. ∃v ∈ FS.

x 6GX (FπR)u ∧ (Fπ′R)u 6GY y ∧ y 6GY (FπS)v ∧ (Fπ′S)v 6GZ z

⇔ ∃u ∈ FR. ∃v ∈ FS. x 6GX (FπR)u ∧ (Fπ′R)u 6GY (FπS)v ∧ (Fπ′S)v 6GZ z

⇔ ∃u ∈ FR. ∃v ∈ FS.
x 6GX (FπR)u
∧(∃p ∈ FT . u 6GR (Fα)p ∧ (Fβ)p 6GS v)
∧(Fπ′S)v 6GZ z (preorder-quasi-pullback property)

⇔ ∃p ∈ FT . x 6GX (FπR)(Fα)p ∧ (Fπ′S)(Fβ)p 6GZ z

(monotonicity of FπR and Fπ′S)
⇔ ∃p ∈ FT . x 6GX (FπR;S)(Fγ)p ∧ (Fπ′R;S)(Fγ)p 6GZ z

⇔ ∃w ∈ F (R;S).
x 6GX (FπR;S)w
∧(∃p ∈ FT .w 6G(R;S) (Fγ)p ∧ (Fγp) 6G(R;S) w)
∧(Fπ′R;S)w 6GZ z (monotonicity of FπR;S and Fπ′R;S)

⇔ ∃w ∈ F (R;S). x 6GX (FπR;S)w ∧ (Fπ′R;S)w 6GZ z

(surjectivity up to preorder of Fγ)
⇔ (x, z) ∈ Ĝ(R;S)

giving ĜR; ĜS = Ĝ(R;S).
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– Let Z
f // X and W

g // Y be functions and let X pR // Y be a
relation. We have a diagram

(f, g)−1R
α

xxqqqqqqqqqq
β

&&MMMMMMMMMM?�GF

π(f,g)−1R

��$
$$$$$$$$$$$$ ED

π′
(f,g)−1R



�������������

(f, Y )−1R

π(f,Y )−1Rzzuuuuuuuuuu

γ

''NNNNNNNNNNNN?�
(X, g)−1R

δ
wwpppppppppppp

π′
(X,g)−1R $$JJJJJJJJJ?�

Z

f
%%JJJJJJJJJJJ R

πR
wwoooooooooooooo

π′R ''OOOOOOOOOOOOOO W

g
yysssssssssss

X Y

where
α : (z, w) 7→ (z, gw)
β : (z, w) 7→ (fz, w)
γ : (z, y) 7→ (fz, y)
δ : (x,w) 7→ (x, gw)

For z ∈ FZ,w ∈ FW we have

(z, w) ∈ (Ff, Fg)−1ĜR
⇔ ((Ff)z, (Fg)w) ∈ ĜR
⇔ ∃t ∈ FR. (Ff)z 6GX (FπR)t ∧ (Fπ′R)t 6GY (Fg)w
⇔ ∃t ∈ FR.

(∃u ∈ F (f, Y )−1R. z 6GX (Fπ(f,Y )−1R)u ∧ (Fγ)u 6GR t)
∧(∃v ∈ F (X, g)−1R. t 6GR (Fδ)v ∧ (Fπ′(X,g)−1R)v 6GW w)

(preorder-quasi-pullback property)
⇔ ∃u ∈ F (f, Y )−1R. ∃v ∈ F (X, g)−1R.

z 6GX (Fπ(f,Y )−1R)u ∧ (Fγ)u 6GR (Fδ)v ∧ (Fπ′(X,g)−1R)v 6GW w

⇔ ∃u ∈ F (f, Y )−1R. ∃v ∈ F (X, g)−1R.
z 6GX (Fπ(f,Y )−1R)u
∧(∃p ∈ F (f, g)−1R. u 6G(f,Y )−1R (Fα)p ∧ (Fβ)p 6G(f,W )−1R v)
∧(Fπ′(X,g)−1R)v 6GW w (preorder-quasi-pullback property)

⇔ ∃p ∈ F (f, g)−1R. z 6GX (Fπ(f,Y )−1R)(Fα)p ∧ (Fπ′(X,g)−1R)(Fβ)p 6GW w

(monotonicity of Fπ(f,Y )−1R and Fπ′(X,g)−1R)

⇔ ∃p ∈ F (f, g)−1R. z 6GZ π(f,g)−1Rp ∧ π′(f,g)−1Rp 6GW w

⇔ (z, w) ∈ Ĝ(f, g)−1R

giving (Ff, Fg)−1ĜR = Ĝ(f, g)−1R.
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– Suppose that G is a stable equivalence relation on F , and let X pR // Y
be a relation. Then we have a diagram

R
α

��

πR

}}||||||||
π′R

  BBBBBBBB

X Rc

π′Rc

oo
πRc

// Y

where the isomorphism α : (x, y) 7→ (y, x). So for x ∈ FX, y ∈ FY we have

(y, x) ∈ (ĜR)c

⇔ (x, y) ∈ ĜR
⇔ ∃z ∈ FR. x 6GX (FπR)z ∧ (Fπ′R)z 6GY y

⇔ ∃z ∈ FR. y 6GY (Fπ′R)z ∧ (FπRz) 6GX x

(symmetry of (6GX) and (6GY ))
⇔ ∃w ∈ FRc. y 6GY (FπR)z ∧ (Fπ′Rz) 6GX x

⇔ (y, x) ∈ Ĝ(Rc)

giving (ĜR)c = Ĝ(Rc).

We conclude that Ĝ is an F -relator preserving binary composition, conversive if
Ĝ is a stable equivalence relation, and that ˜̂

G = G.

Corollary 1. [4] Let F be an endofunctor on Set.

1. Suppose F preserves quasi-pullbacks. Then we obtain a conversive functorial

F -relator F̂ mapping a relation X pR // Y to

{(x, y) ∈ FX × FY | ∃z ∈ FR. x = (FπR)z ∧ (Fπ′R)z = y}

2. Let Γ be a functorial F -relator. Then F preserves quasi-pullbacks and Γ = F̂ .

Proof. 1. ∆F is a stable equivalence relation on F . We also have

∆̂F (=X) = (6∆FX) = (=FX)

Therefore F̂ = ∆̂F is a conversive functorial F -relator.
2. Since Γ is functorial, Γ̃ = ∆F . We deduce that ∆F maps quasi-pullbacks

to order-quasi-pullbacks, i.e. that F preserves quasi-pullbacks; and also that
Γ = ∆̂F = F̂ .

3.3 Further examples of relators

We first note several ways of constructing relators.
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Lemma 6. 1. Let F be an endofunctor on Set, and (Γj)j∈J a family of F -
relators. Then

l

j∈J
Γj : ( X pR // Y ) 7→

⋂
j∈J

ΓjR

is an F -relator. If M and N are F -coalgebras, then M · pR // N · is ad
j∈J Γj-simulation from M to N iff, for all j ∈ J , it is a Γj-simulation

from M to N .
2. Let F be an endofunctor on Set, and Γ an F -relator. Then

Γc : ( X pR // Y ) 7→ (ΓRc)c

is an F -relator. If M and N are F -coalgebras, then M · pR // N · is a Γc-
simulation from M to N iff Rc is a Γ-simulation from N to M ; hence
(.Γc

M,N ) = (.Γ
N,M )c.

3. Let F and G be endofunctors on Set and F
α // G a natural transforma-

tion. Let Γ be an G-relator. Then

α−1Γ : ( X pR // Y ) 7→ (αX , αY )−1ΓR

is an F -relator. If M and N are F -coalgebras, then M · pR // N · is an
α−1Γ-simulation from M to N iff it is a Γ-simulation from Coalg(Set, α)M
to Coalg(Set, α)N ; hence (.α−1Γ

M,N ) = (.Γ
Coalg(Set,α)M,Coalg(Set,α)N ).

4. The identity operation on relations is an idSet-relator.
5. Let F and F ′ be endofunctors on Set. If Γ is an F -relator and Γ′ an F ′-

relator, then Γ′Γ is an F ′F -relator.

Proof. Trivial.

Note that Γ u Γc is the greatest conversive relator contained in Γ.
We give some relators for our examples:

– Via Def. 6(3), Sim and Bisim are P [0,κ)-relators and P [1,κ)-relators where κ
is a cardinal or∞. Moreover Sim preserves binary composition, and if κ 6 3
or κ > ℵ0 then Bisim is functorial. But for 4 6 κ < ℵ0, the functors P [0,κ)

and P [1,κ) do not preserve quasi-pullbacks, so Bisim does not preserve binary
composition over them.
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– We define PMaybe-relators, all preserving binary composition. For a relation

X pR // Y ,

LowerSimR def= {(u, v) ∈ PMaybeX × PMaybeY |
∀x ∈ Just−1u. ∃y ∈ Just−1v. (x, y) ∈ R}

UpperSimR def= {(u, v) ∈ PMaybeX × PMaybeY |⇑6∈ u⇒
⇑6∈ v
∧∀y ∈ Just−1v. ∃x ∈ Just−1u. (x, y) ∈ R)}

ConvexSim def= LowerSim uUpperSim

SmashSimR def= {(u, v) ∈ PMaybeX × PMaybeY |⇑6∈ u⇒
⇑6∈ v
∧∀y ∈ Just−1v. ∃x ∈ Just−1u. (x, y) ∈ R
∧∀x ∈ Just−1u. ∃y ∈ Just−1v. (x, y) ∈ R}

InclusionSimR def= {(u, v) ∈ PMaybeX × PMaybeY |
∀x ∈ Just−1u. ∃y ∈ Just−1v. (x, y) ∈ R}
∧ ⇑∈ u⇒⇑∈ v}

We respectively obtain notions of lower, upper, convex, smash and inclusion
simulation on transiton systems with divergence [11,21]. By taking converses
and intersections of these relators, we obtain—besides >—nineteen differ-
ent relators of which three are conversive. A more systematic analysis that
includes these is presented in [17].

– We define D-relators. For a relation X pR // Y

ProbSimR def= {(d, d′) ∈ DX ×DY | ∀U ⊆ X.dU 6 d′R(U)}
ProbBisimR def= {(d, d′) ∈ DX ×DY | ∀U ⊆ X.dU 6 d′R(U) ∧ d(⇑) 6 d′(⇑)}

where R(U) def= {y ∈ Y | ∃x ∈ U. (x, y) ∈ R}, and see Lemma 7 below. We
obtain notions of simulation and bisimulation on partial Markov chains as
in [6,7,22,16,23]. By Thm. 1 of [15], ProbSim preserves binary composition
and ProbBisim is functorial.

Lemma 7. ProbBisim is the greatest conversive relator contained in ProbSim.

Proof. [23] We first show it is conversive. Let X pR // Y be a relation, and
suppose that (d, d′) ∈ ProbBisimR. For any V ⊆ Y we have R(X \ Rc(V )) ⊆
Y \ V giving

d′V = 1− d′ ⇑ −d′(Y \ V )
6 1− d′ ⇑ −d′R(X \ Rc(V ))
6 1− d ⇑ −d(X \ Rc(V ))
= dRc(V )
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R(X) ⊆ Y gives

d′ ⇑ = 1− d′Y
6 1− d′R(X)
6 1− dX
= d ⇑

Thus (d′, d) ∈ ProbBisimRc as required.
We therefore see that (d, d′) ∈ ProbBisimR iff (d, d′) ∈ SimR and (d′, d) ∈

SimRc. The result follows.

4 Theory of Simulation and Final Coalgebras

Throughout this section, F is an endofunctor on Set and Γ is an F -relator.

4.1 QFΓ-coalgebras

Definition 11. FΓ is the endofunctor on Preord that maps A to (FA0,Γ(6A))

and A
f // B to Ff .

Thus we obtain an endofunctor QFΓ on Preord. It restricts to Poset and also,
if Γ is conversive, to Setoid and to DiscSetoid.

For example, if A is a preordered set, then QP [0,ℵ0]
Sim A is (isomorphic to) the

set of countably generated lower sets, ordered by inclusion. The probabilistic
case is unusual: DProbSim is already an endofunctor on Poset, so applying Q
makes no difference (up to isomorphism). This reflects the fact that, for partial
Markov chains, mutual similarity is bisimilarity [7].

A QFΓ-coalgebra M is said to be final when the following equivalent condi-
tions hold:

– M is final in Coalg(Preord, QFΓ)
– M is final in Coalg(Poset, QFΓ).

If Γ is conversive, the following are equivalent to the above:

– M is final in Coalg(Setoid, QFΓ)
– M is final in Coalg(DiscSetoid, QFΓ).

These equivalences follow from Lemma 4.
We adapt Def. 7 and Lemma 5 from F -coalgebras to QFΓ-coalgebras.

Definition 12. Let M and N be QFΓ-coalgebras.

1. A simulation from M to N is a bimodule M · pR // N · such that R ⊆
(ζM , ζN )−1QΓR.

2. The greatest simulation is called similarity and written .M,N .
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3. M is encompassed by N , written M 4 N , when for every x ∈ M there is
y ∈ N such that x .M,N y and y .N,M x.

Lemma 8. Let F be an endofunctor on Set, and Γ an F -relator.

1. Let M be a QFΓ-coalgebra. Then M p
(6M· ) // M is a simulation. Moreover

.Γ
M,M is a preorder on M ·0—an equivalence relation if Γ is conversive—that

contains 6M · .

2. Let M , N,P be QFΓ-coalgebras. If M pR // N pS // P are simulations

then so is M p
R;S // P . Moreover (.M,N ); (.N,P ) v (.M,P ).

3. Let M and N be QFΓ-coalgebras, and let Γ be conversive. If M pR // N is

a simulation then so is N pR
c // M —recall that this is (6N ·);Rc; (6M ·).

Moreover (.M,N )c = (.N,M ) and .M,N is difunctional.

4. Let M
f // N and M ′

g // N ′ be QFΓ-coalgebra morphisms. If N pR // N ′

is a simulation then so is M p
(f,g)−1R // M ′ . Moreover (.M,M ′) = (f, g)−1(.N,N ′

).
5. 4 is a preorder on the class of QFΓ-coalgebras.

6. Let M
f // N be an QFΓ-coalgebra morphism. Then x and f(x) are mu-

tually similar for all x ∈M ·. Hence M 4 N , and if f is surjective then also
N 4 M .

Proof. We prove these statements in a different order from the one in which they
were stated.

– For part (1), to show 6M · is a simulation we reason

(6M ·) v (ζM , ζM )−1(6QFΓM ·) (monotonicity of ζ)
= (ζM , ζM )−1(Q 6FΓM ·) (Lemma 3(2))
= (ζM , ζM )−1QΓ(6M ·)

We deduce that .M,M contains 6M · and hence is reflexive.
– For part (2), to show R;S is a simulation we reason

R;S v (ζM , ζN )−1QΓR; (ζN , ζP )−1QΓS
v (ζM , ζP )−1(QΓR;QΓS)
= (ζM , ζP )−1Q(ΓR; ΓS) (by Lemma 3(3))
v (ζM , ζP )−1QΓ(R;S)

and the rest follows. We deduce the transitivity of .M,M in part (1).
– Part (5) is immediate.
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– For part (3), to show Rc is a simulation we reason

Rc ⊆ ((ζM , ζN )−1QΓR)c

= (ζN , ζM )−1((QΓR)c)
v (ζN , ζM )−1((6FΓN ·); (ΓR)c; (6FΓM ·)) (by Lemma 3(5))
= (ζN , ζM )−1((6FΓN ·); Γ(Rc); (6FΓM ·))
= (ζN , ζM )−1(Γ(6N ·); Γ(Rc); Γ(6M ·))
= (ζN , ζM )−1Γ((6N ·);Rc; (6N ·))

Since the RHS is a bimodule, it contains the bimodule closure of Rc, which
must therefore be a simulation. We deduce (.M,N )c = (.N,M ), and in part
(1) we deduce symmetry of .M,M . For difunctionality of .Γ

M,N we reason

(.M,N ); (.M,N )c; (.M,N ) = (.M,N ); (.N,M ); (.M,N )
⊆ .M,N

– For part (4), to show (f, g)−1R is a simulation, we reason

(f, g)−1R v (f, g)−1(ζM , ζN )−1QΓR
= (ζM ′ , ζN ′)−1(QFΓf,QFΓg)−1QΓR (f, g coalgebra morphisms)
= (ζM ′ , ζN ′)−1Q(FΓf, FΓg)−1ΓR (by Lemma 3(4))
= (ζM ′ , ζN ′)−1QΓ(f, g)−1R

We deduce (f, g)−1(.N,N ′) ⊆ (.M,M ′).
– To prove part (6), we reason

(=M ·) v (f, f)−1(=N ·)
= (X, f)−1(f, Y )−1(=N ·)
v (M ·, f)−1(f,N ·)−1(.N,N )
v (M ·, f)−1(.M,N )

and likewise (=M ·) v (f,M ·)−1(.N,M ).
– To complete the proof of part (4) we reason

(.M,M ′) = (=M ·); (.M,M ′); (=M ′·)
v (f,M ·)−1(.N,M ); (.M,M ′); (M ′·, g)−1(.M ′,N ′)
= (f, g)−1((.N,M ); (.M,M ′); (.M ′,N ′))
v (f, g)−1(.N,N ′)

We can also characterize coalgebra morphisms.

Lemma 9. Let M and N be QFΓ-coalgebras. For any function M ·0
f // N ·0 ,

the following are equivalent.
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1. M
f // N is a QFΓ-coalgebra morphism.

2. M p
(f,N ·0)−1(6N· ) // N and N p

(N ·0,f)−1(6N· ) // M are both simula-
tions.

Proof. (⇒) is immediate from Lemma 8. For (⇐), Lemma (1) tells us that

M ·
f // N · is monotone. We then observe

(6M ·) v (f, f)−1(6N ·)
= (M ·, f)−1(f,N ·)−1(6N ·)
v (M ·, f)−1ΨM,N (f,N ·)−1(6N ·)
= (M ·, f)−1(ζM , ζN )−1QΓ(f,N ·)−1(6N ·)
= (ζM , (f ; ζN ))−1Q(FΓf, FΓN

·)−1Γ(6N ·)
= (ζM , (f ; ζN ))−1(QFΓf,QFΓN

·)−1Q(6FΓN ·)
= ((ζM ;QFΓf), (f ; ζN ))−1(6QFΓN ·)

By the same argument (6M ·) v ((f ; ζN ), (ζM ;QFΓf))−1(6QFΓN ·). By Lemma 2(1),
since QFΓN

· is a poset, we have f ; ζN = ζM ;QFΓf as required.

A QFΓ-coalgebra N is all-encompassing when it is encompasses every M ∈
Coalg(Preord, QFΓ), or equivalently everyM ∈ Coalg(Poset, QFΓ), or equivalently—
if Γ is conversive—everyM ∈ Coalg(Setoid, QFΓ) or everyM ∈ Coalg(Setoid, QFΓ).
These equivalences follow from the surjectivity of the units of the reflections.

4.2 Extensional Coalgebras

Definition 13. An extensional coalgebra is M ∈ Coalg(Poset, QFΓ) such that
(.M,M ) = (6M ·). We write ExtCoalg(Γ) for the category of extensional coalge-
bras and coalgebra morphisms.

These coalgebras enjoy several properties.

Lemma 10. Let N be an extensional coalgebra.

1. If Γ is conversive, then N · is a discrete setoid.

2. Let M be a QFΓ-coalgebra and N
f // M a coalgebra morphism. Then f

is order-reflecting and injective.

3. Let M be a QFΓ-coalgebra and M
f // N an order-reflecting, injective

coalgebra morphism. Then M is extensional.
4. Let M be a QFΓ-coalgebra such that M 4 N . Then there is a unique QFΓ-

coalgebra morphism M
f // N .

Proof. 1. Since .N,N has these properties.
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2. It is an embedding because

(f, f)−1(6M ·) v (f, f)−1(.M,M )
= (.N,N )
= (6N ·)

and injective by Lemma 2(2).
3. (6M ·) is a poset by Lemma 2(3), and we then have

(6M ·) = (f, f)−1(6N ·)
= (f, f)−1(.N,N )
= (.M,M )

4. For each x ∈ M ·, define f(x) ∈ N · to be the unique element such that
x .N,M f(x) and f(x) .M,N x. By Lemma 8(6) this is the only possibility
for f(x). Now for any x ∈M · and y ∈ N · we have x .M,N y iff f(x) .M,M y
i.e. iff f(x) 6N · y. So

(f,N ·0)−1(6N ·) = (.M,N )
Likewise (N ·0, f)−1(6N ·) = (.N,M )

so Lemma 9 tells us that M
f // N is a QFΓ-coalgebra morphism.

Thus ExtCoalg(Γ) is just a preordered class. It is a replete subcategory of
Coalg(Poset, QFΓ) and also—if Γ is conversive—of Coalg(DiscSetoid, QFΓ).
We next see that is reflective within Coalg(Preord, QFΓ).

Lemma 11. (Extensional Quotient) Let M be a QFΓ-coalgebra, and define pM
def=

p(M ·0,.M,M ).

1. There is a QFΓ-coalgebra QM carried by Q(M ·0,.M,M ), uniquely charac-

terized by the fact that M
pM // QM is a coalgebra morphism.

2. QM , with unit pM , is a reflection of M in ExtCoalg(Γ).

Proof.
Put A def= (M ·0,.M,M ). We then have a commutative diagram in Preord:

M ·

r

))SSSSSSSSSSSSSSSSSS

ζM

��

pM // QA

v

��

A

t

��

pA

55kkkkkkkkkkkkkkkkkk

((QFΓM
·)0, QΓ(.M,M )) u // QFΓA

QFΓpA

��
QFΓM

·

s
55llllllllllllll QFΓr

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
QFΓpM

// QFΓQA
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In this diagram,

– M ·
r // A is given by idM ·0 and is monotone because (6M ·) v (.M,M ).

– QFΓM
· s // ((QFΓM

·)0, QΓ(.M,M )) is given by idQFΓM ·0 and is mono-
tone because

(6QFΓM ·) = QΓ(6M ·)
v QΓ(.M,M )

– A
t // ((QFΓM

·)0, QΓ(.M,M )) is given by ζM and is monotone because

(6A) = (.M,M )
v (ζM , ζM )−1QΓ(.M,M )

– ((QFΓM
·)0, QΓ(.M,M )) u // QFΓA is given by QFΓr and is monotone

because

QΓ(.M,M ) = QΓ((r, r)−1(6A))
= (QFΓr,QFΓr)−1QΓ(6A)
= (QFΓr,QFΓr)−1(6QFΓA)

– v is chosen, by the reflection property, to make the right-hand quadrilateral
commute

All parts commute by the definition of the morphisms. We accordingly set QM def=
(QA, (v;QFΓpA)) and we see that pM is a coalgebra morphism from M to QM .

To show uniqueness, suppose (A, ξ) and (A, ξ′) be two such coalgebras. Then

QA

ξ

%%LLLLLLLLLL

M ·

pM

;;vvvvvvvvv

pM ##HHHHHHHHH
ζM // QFΓM

·QFΓpM// QFΓQA

QA

ξ
99rrrrrrrrrr

is a commutative diagram in Preord. Epicity of QM gives ξ = ξ′.
Both (6QA) and (.QM,QM ) are endobimodules on QA that are mapped by
(pA, pA)−1 to .M,M . So by Lemma 3(1) they must be equal. Therefore QM is
extensional, and surjectivity of pM gives QM 4 M . Given another coalgebra

morphism M
f // N with N extensional, we have M 4 N and hence QM 4

N . So by Lemma 10(4) there is a unique coalgebra morphism QM
g // N ,

and moreover f = pM ; g.
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More generally, a QFΓ-coalgebra M can be quotiented by any (6M ·)-containing
preorder that is an endosimulation on M ; but we shall not need this.

Lemma 12. Let M be a QFΓ-coalgebra. The following are equivalent.

1. M is a final QFΓ-coalgebra.
2. M is all-encompassing and extensional.
3. M is extensional, and encompasses all extensional QFΓ-coalgebras.

Proof. (3) says that M is a final object in ExtCoalg(Γ), and this is equivalent
to (1) by Lemma 4. (2) clearly implies (3), and is implied by the conjunction of
(1) and (3).

Lemma 13. Let M be a QFΓ-coalgebra. The following are equivalent.

1. M is all-encompassing.
2. M encompasses all extensional coalgebras.
3. QM is a final QFΓ-coalgebra.

Proof. Since the coalgebra morphism from M to QM is surjective, these two
coalgebras encompass each other.

(1) ⇒ (2) Trivial.
(2) ⇒ (3) QM encompasses M , so it encompasses any extensional coalegbra,

and it is extensional.
(3) ⇒ (1) M encompasses QM which by finality encompasses anyQFΓ-coalgebra.

4.3 Relating F -coalgebras and QFΓ-coalgebras

We have studied F -coalgebras and QFΓ-coalgebras separately, but now we con-
nect them: each F -coalgebra gives rise to a QFΓ-coalgebra, and the converse is
also true in a certain sense.

Definition 14. The functor ∆Γ : Coalg(Set, F ) −→ Coalg(Preord, QFΓ) maps

– an F -coalgebra M = (M ·, ζM ) to the QFΓ-coalgebra with carrier ∆M · and

structure ∆M ·
ζM // FΓ∆M ·

pFΓ∆M· // QFΓ∆M ·

– an F -coalgebra morphism M
f // N to f .

Lemma 14. Let M and N be F -coalgebras. Then a Γ-simulation from M to N
is precisely a simulation from ∆ΓM to ∆ΓN . Hence (.∆ΓM,∆ΓN ) = (.Γ

M,N ),
and M 4Γ N iff ∆ΓM 4 ∆ΓN .

Proof. For any relation M · pR // N · we have

((ζM ; pFΓ∆M ·), (ζN ; pFΓ∆N ·))−1QΓR
= (ζM , ζN )−1(pFΓ∆IM · , pFΓ∆N ·)−1QΓR
= (ζM , ζN )−1ΓR

The results follow immediately.
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We are thus able to use a final QFΓ-coalgebra to characterize similarity in
F -coalgebras.

Theorem 2. Let M be a final QFΓ-coalgebra; for any QFΓ-coalgebra P we write

P
aP // M for its anamorphism. Let N and N ′ be F -coalgebras. Then

(.Γ
N,N ′) = (a∆ΓN , a∆ΓN ′)−1(6M ·)

Proof. We have

(.Γ
N,N ′) = (.∆ΓN,∆ΓN ′) (by Lemma 14)

= (a∆ΓN , a∆ΓN ′)−1(.M,M ) (by Lemma 8(4))
= (a∆ΓN , a∆ΓN ′)−1(6M ·) (by extensionality of M)

Our other results require moving from a QFΓ-coalgebra to an F -coalgebra.

Lemma 15. Let M be a QFΓ-coalgebra. Then there is an F -coalgebra N and a

surjective QFΓ-coalgebra morphism ∆ΓN
f // M .

Proof. Using the Axiom of Choice, for each x ∈ A, choose ξ(x) ∈ FΓA such that
ζM (x) = [ξ(x)]FΓM · .

We thus obtain the following commutative diagram in Preord:

∆M ·0
r //

ξ

��

M ·

ζM

��

ξ

zztttttttttt

FΓ∆M ·0
pFΓ∆M·0

��

FΓr // FΓM
·

pFΓM· $$JJJJJJJJJ

QFΓ∆M ·0 QFΓr
// QFΓM

·

where ∆M ·0
r // M · is given by idM ·0 . The commutativity of the right hand

triangle is by definition of ξ, and M ·
ξ // FΓM

· is monotone since

(6M ·) v (ζM , ζM )−1(6QFΓM ·)
= (ζM , ζM )−1Q(6FΓM ·)
= (ξ, ξ)−1(pFΓM · , pFΓM ·)

−1Q(6FΓM ·)
= (ξ, ξ)−1(6FΓM ·)

The left-hand composite is ∆ΓN so we are done.

Theorem 3.

1. Let M be an F -coalgebra. Then Q∆ΓM is a final QFΓ-coalgebra iff M is
all-Γ-encompassing.
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2. Any final QFΓ-coalgebra is isomorphic to one of this form.

Proof. 1. By Lemma 13, Q∆ΓM is final iff ∆ΓM is all-encompassing. For (⇒),
given an F -coalgebra N , we know that ∆ΓN 4 ∆ΓM so by Lemma 14 N 4
M . For (⇐), given a QFΓ-coalgebra N , Lemma 15 gives an F -coalgebra M ′

and surjective QFΓ-coalgebra morphism ∆ΓM ′
f // N , so N 4 ∆ΓM ′.

We know M ′ 4Γ M , so Lemma 14 tells us that M ′ 4Γ M so N 4Γ M .
2. Let N be a final QFΓ-coalgebra. Lemma 15 gives us an F -coalgebra M and

surjective coalgebra morphism ∆ΓM
f // N , soN 4 ∆ΓM . SinceN is all-

encompassing, ∆ΓN is too. By Lemma 13, Q∆ΓN is a final QFΓ-coalgebra
and hence isomorphic to N .

4.4 Coalgebras on Presheaves and Sheaves

Note This section is not used in the sequel.
Throughout our paper, F is an endofunctor on Set. However, we would like

the results to hold if instead F is an endofunctor on a presheaf category, or even
a sheaf category. However, we see that the proof of Lemma 15 (and therefore
indirectly that of Thm. 3) uses the Axiom of Choice. Thus it adapts from Set to
SetS (where S is a set), but not to general presheaf or sheaf categories. Happily,
under a mild assumption, we can prove Lemma 15 in these more general settings.
We use the following concept.

A monotone function A
f // B is dense when for all y ∈ B there is x ∈ A

such that f(x) 6B y and y 6B f(x). Clearly

– the composite of dense maps is dense
– if f ; g is dense then g is dense
– if f ; g is dense and g is an embedding then f is dense
– if f is surjective, it is dense

– if A
f // B is dense and B is a poset, then f is surjective.

Lemma 16. Let A
f // B be a monotone function. Then f is dense iff Qf

is dense.

Proof. The following commutes in Preord:

A
f //

pA

��

B

pB

��
QA

Qf
// QB

(1)

Suppose f is dense. Since pB is surjective, the composite (1) is dense, so Qf is
dense.

Conversely, suppose Qf is dense. Since pA is surjective, the composite (1) is
dense, and pB is an embedding so f is dense.
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In the following, I is a site, F is an endofunctor on Sheaves(I) and Γ is an
F -relator.

Lemma 17. The following are equivalent.

– The composite Set
∆ // Preord

FΓ // Preord sends surjections to dense
functions.

– FΓ sends dense functions to dense functions.

Proof. (⇐) is trivial because ∆ sends surjections to dense functions. For (⇒),

let A
f // B be dense. The following commutes in Preord:

FΓ∆A0
Ff //

idF A0

��

FΓ∆B0
FpB // FΓ∆(QB)0

id(QB)0

��
FΓA

Ff
// FΓB

FpB

// FΓQB

(2)

Now A
f ;pB // QB is dense hence surjective, so A0

f ;pB // (QB)0 is surjective,

so ∆A0
Ff ;FpB // ∆(QB)0 is dense. Also ∆(QB)0

id(QB)0// QB is surjective

hence dense, so the composite (2) is dense. Hence A
Ff ;FpB // QB is dense.

Moreover B
pB // QB is an embedding, so FΓB

FpB // FΓQB is an embed-

ding, so FΓA
Ff // FΓB is dense.

When these conditions are satisfied, we say that Γ respects density. This is au-
tomatic if F preserves surjectivity (which must be the case if I is a discrete
category). If F

α // G is a surjective natural transformation, and Γ is a G-
relator respecting density, then the F -relator Fα−1Γ also respects density.

The analogue of Lemma 15 is as follows.

Lemma 18. Suppose that Γ respects density.
Let M be a QFΓ-coalgebra. Then there is an F -coalgebra N and a surjective

QFΓ-coalgebra morphism ∆ΓN
f // M .

Proof. We have a reflection S a U : Sheaves(I) −→ Setob I, where U is the
forgetful functor, with unit η and surjective counit ε.

We write β for the counit of ∆ a (−)0 : Preord(Sheaves(I)) −→ Sheaves(I),

so ∆A0
βA // A is just idA0 .

We put A def= FΓ∆SUM ·0 so A0 = FSUM ·0, and let α be the composite

A
pA // QA

QFΓ∆εM ·0 // QFΓ∆M ·0
QFΓβM

·
// QFΓM

·
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which is dense, since FΓ preserves density, and therefore surjective, since QFΓM
·

is a poset. Thus, using the Axiom of Choice, for each i ∈ ob I and x ∈M ·0i pick
(σi)x ∈M ·0i such that (ζM i)x = α((σi)x). We thus have a commutative diagram
in Setob I

UM ·0

σ

��

ζM

((RRRRRRRRRRRRRR

UFSUM ·0 = UA·0 α
// U(QFΓM

·)0

By the reflection, there is a unique natural transformation SUM ·0
ξ // FSUM ·0

such that

UM ·0

σ
%%KKKKKKKKKK

ηUM ·0 // USUM ·0

ξ

��
UFSUM ·0

commutes. We set N to be (SUM ·0, ξ). We have a commutative diagram in
Sheaves(I)

SUM ·0
εM ·0 //

ξ

��

M ·0

ζM

��
FSUM ·0 = A·0 α

// (QFΓM
·)0

(3)

using the reflection: if we apply U to both sides and prefix with ηUM ·0 we obtain

USUM ·0

ξ

��

UM ·0
ηUM ·0oo

σ
vvllllllllllllll

ηUM ·0 //

id ''NNNNNNNNNNN
USUM ·0

εM ·0
��

UFSUM ·0 = UA·0 α
// U(QFΓM

·)0 UM ·0ζM

oo

Finally (3) gives us the diagram in Preord(Sheaves(I))

∆SUM ·0
∆εM ·0 //

ξ

��

∆M ·0
βM · // M ·

ζM

��

FΓ∆SUM ·0 = A

pA

��

α

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

QA
QFΓ∆εM ·0

// QFΓ∆M ·0
QFΓβM

·
// QFΓM

·

which says that the surjection

∆SUM ·0
∆εM ·0 // ∆M ·0

βM · // M ·
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is a coalgebra morphism from ∆ΓN to M .

Therefore we can conclude Thm. 3 under the assumption that Γ respects
density.

5 Beyond Similarity

5.1 Multiple Relations

We recall from [10] that a 2-nested simulation from M to N (transition sys-
tems) is a simulation contained in the converse of similarity. Let us say that a
nested preordered set is a set equipped with two preorders 6n (think 2-nested
similarity) and 6o (think converse of similarity) such that (6n) ⊆ (6o) and
(6n) ⊆ (>o). It is a nested poset when 6n is a partial order. By working with
these instead of preordered sets and posets, we can obtain a characterization of
2-nested similarity as a final coalgebra.

We fix a set I. For our example of 2-nested simulation, it would be {n, o}.
Definition 15. (I-relations)

1. For any sets X and Y , an I-relation X pR // Y is an I-indexed family
(Ri)i∈I of relations from X to Y . We write RelI(X,Y ) for the complete
lattice of I-relations ordered pointwise.

2. Identity I-relations (=X) and composite I-relations R;S are defined point-
wise, as are inverse image I-relations (f, g)−1R for functions f and g.

We then obtain analogues of Def. 2 and 3. In particular, an I-preordered set A
is a set A0 equipped with an I-indexed family of preorders (6A,i)i∈I , and it is
an I-poset when

⋂
i∈I(6i) is a partial order. We thus obtain categories PreordI

and PosetI , whose morphisms are monotone functions, i.e. monotone in each
component. Given an I-preordered set A, the principal lower set of x ∈ A is
{y ∈ A | ∀i ∈ I. y 6A,i x}. The quotient I-poset QA is {[x]A | x ∈ A} with ith

preorder relating [x]A to [y]A iff x 6A,i y, and we write A
pA // QA for the

function x 7→ [x]A. Thus PosetI is a reflective replete subcategory of PreordI .
Returning to our example, a nested preordered set is a {n, o}-preordered set,

subject to some constraints that we ignore until Sect. 5.2.
For the rest of this section, let F be an endofunctor on Set, and Λ an F -

relator I-matrix, i.e. an I × I-indexed family of F -relators (Λi,j)i,j∈I . This gives
us an operation on I-relations as follows.

Definition 16. For any I-relation FX pR // FY , we define the I-relation

FX pΛR // FY as (
⋂
j∈I Λi,jRj)i∈I .

For our example, we take the P-relator {n, o}-matrix TwoSim

TwoSimn,n
def= Sim TwoSimn,o

def= Simc

TwoSimo,n
def= > TwoSimo,o

def= Simc

We can see that the operation R 7→ ΛR has the same properties as a relator.
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Lemma 19.

1. For any I-relations X p
R,S // Y , if R v S then ΛR v ΛS.

2. For any set X we have (=FX) v Λ(=X)

3. For any I-relations X pR // Y pS // Z we have (ΛR); (ΛS) v Λ(R;S)

4. For any functions X ′
f // X and Y ′

g // Y and any I-relation X pR // Y ,
we have Λ(f, g)−1R = (Ff, Fg)−1ΛR.

Proof. Trivial.

Note by the way that TwoSim as a P-relator matrix does not preserve binary
composition. Now we adapt Def. 7.

Definition 17. Let M and N be F -coalgebras.

1. A Λ-simulation from M to N is an I-relation M · pR // N · such that for all
i, j ∈ I we have Ri ∈ (ζM , ζN )−1Λi,jRj, or equivalently R v Λ(ζM , ζN )−1R.

2. The largest Λ-simulation is called Λ-similarity and written .Λ
M,N .

3. N is said to Λ-encompass M when for every x ∈ M there is y ∈ N such
that, for all i ∈ I, we have x (.Γ

M,N,i) y and y (.Γ
N,M,i) x.

In our example, the n-component of .TwoSim
M,N is 2-nested similarity, and the o-

component is the converse of similarity from N to M .
The rest of the theory in Sect. 4 goes through unchanged, using Lemma 19.

5.2 Constraints

We wish to consider not all I-preordered sets (for a suitable indexing set I) but
only those that satisfy certain constraints. These constraints are of two kinds:

– a “positive constraint” is a pair (i, j) such that we require (6i) ⊆ (6j)
– a “negative constraint” is a pair (i, j) such that we require (6i) ⊆ (>j).

Furthermore the set of constraints should be “deductively closed”. For example,
if (6i) ⊆ (>j) and (6j) ⊆ (>k) then (6i) ⊆ (6k).

Definition 18. A constraint theory on I is a pair γ = (γ+, γ−) of relations on
I such that γ+ is a preorder and γ+; γ−; γ+ ⊆ γ− and γ−; γ− ⊆ γ+.

For our example, let γnest be the constraint theory on {n, o} given by

γ+
nest = {(n, n), (n, o), (o, o)} γ−nest = {(n, o)}

A constraint theory γ gives rise to two operations γ+L and γ−L on relations
(where L stands for “lower adjoint”). They are best understood by seeing how
they are used in the rest of Def. 19.

Definition 19. Let γ be a constraint theory on I.
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1. For an I-relation X pR // Y , we define I-relations

– X p
γ+LR // Y as (

⋃
j∈I(j,i)∈γ+ Rj)i∈I

– Y p
γ−LR // X as (

⋃
j∈I(j,i)∈γ− Rc

j)i∈I .

2. An I-endorelation X pR // X is γ-symmetric when

– for all (j, i) ∈ γ+ we have Rj ⊆ Ri, or equivalently γ+LR v R
– for all (j, i) ∈ γ− we have Rc

j ⊆ Ri, or equivalently γ−LR v R.

3. We write Preordγ (Posetγ) for the category of γ-symmetric I-preordered
sets (I-posets) and monotone functions.

4. An I-relation X pR // Y is γ-difunctional when

– for all (j, i) ∈ γ+ we have Rj ⊆ Ri, or equivalently γ+LR v R
– for all (j, i) ∈ γ− we have Ri;Rc

j ;Ri ⊆ Ri, or equivalently R; γ−LR;R v R.

For our example, Preordγnest and Posetγnest are the categories of nested pre-
ordered sets and nested posets respectively. In general, Posetγ is a reflective
replete subcategory of Preordγ and Preordγ of PreordI .

Now let F be an endofunctor and Λ an F -relator I-matrix.

Definition 20. Let γ be a constraint theory on I. Then Λ is γ-conversive when

d
l∈I

(l,k)∈γ+
Λj,l v Λi,k for all (j, i) ∈ γ+ and k ∈ I

d
l∈I

(l,k)∈γ−
Λc
j,l v Λi,k for all (j, i) ∈ γ− and k ∈ I

For our example, it is clear that the matrix TwoSim is γnest-conversive.

Lemma 20. Let γ be a constraint theory on I such that Λ is γ-conversive. For

every I-relation X pR // Y we have γ+LΛR v Λγ+LR and γ−LΛR v Λγ−LR.
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Proof. Let i ∈ I. For all j ∈ I such that (j, i) ∈ γ− and all k ∈ I we have

(ΛR)c
j =

⋂
l∈I

(Λj,lRl)c

⊆
⋂
l∈I

(l,k)∈γ−

(Λj,lRl)c

=
⋂
l∈I

(l,k)∈γ−

Λc
j,lRc

l

⊆
⋂
l∈I

(l,k)∈γ−

Λc
j,l

⋃
m∈I

(m,k)∈γ−

Rc
m

= (
l

l∈I
(l,k)∈γ−

Λc
j,l)

⋃
m∈I

(m,k)∈γ−

Rc
m

⊆ Λi,k
⋃
m∈I

(m,k)∈γ−

Rc
m

= Λi,k(γ−LR)k

and so

(γ−LΛR)i =
⋃

j∈I
(j,i)∈γ−(ΛR)c

j

⊆
⋂
k∈I

Λi,k(γ−LR)k

= (Λγ−LR)i

We conclude that γ−LΛR v Λγ−LR and similarly prove γ+LΛR v Λγ+LR.

5.3 The Lattice of Constraint Theories

Let I be a set. Clearly the set of constraint theories, ordered by inclusion, form
a complete lattice.

Lemma 21. Let γ and γ′ be constraint theories on I such that γ ⊆ γ′.

1. An I-endorelation X pR // X that is γ′-symmetric is γ-symmetric.

2. An I-relation X pR // Y that is γ′-difunctional is γ-difunctional.
3. Let F be an endofunctor on Set. An F -relator I-matrix Λ that is γ′-conversive

is γ-conversive.

Proof. Trivial.

Lemma 22. Let T be a set of constraint theories on I, with supremum
∧
T .
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1. Let X pR // X be an I-endorelation that, for all γ ∈ T , is γ-symmetric.
Then R is

∨
T -symmetric.

2. Let F be an endofunctor on Set, and let Λ be an F -relator I-matrix that,
for all γ ∈ T , is γ-conversive. Then Γ is

∨
T -conversive.

Proof. 1. Put

δ+ def= {(j, i) ∈ I × I | Rj ⊆ Ri}
δ−

def= {(j, i) ∈ I × I | Rc
j ⊆ Ri}

Then δ is a constraint theory on I containing every γ ∈ T . Hence it contains∧
T .

2. Put

δ+ def= {(j, i) ∈ I × I | ∀k ∈ I.
l

l∈I
(l,k)∈(

V
T )+

Λj,l v Λi,k}

δ−
def= {(j, i) ∈ I × I | ∀k ∈ I.

l

l∈I
(l,k)∈(

V
T )−

Λc
j,l v Λi,k}

We show that δ is a constraint theory containing every γ ∈ T . Hence it
contains

∧
T .

– Let γ ∈ T . If (j, i) ∈ γ− then for all k ∈ I
l

l∈I
(l,k)∈(

V
T )−

Λj,l v
l

l∈I
(l,k)∈γ−

Λj,l

v Λc
i,k

since Λ is γ conversive; and so (j, i) ∈ γ−. We conclude γ− ⊆ δ−, and
likewise γ+ ⊆ δ+.

– Let i ∈ I. Then for all k ∈ I
l

l∈I
(l,k)∈(

V
T )+

Λi,l v Λi,k

because (k, k) ∈ (
∧
T )+, so (i, i) ∈ δ+. So δ+ is reflexive.

– Suppose (j, i) ∈ δ− and (i, h) ∈ δ−. If k ∈ I, then for all m ∈ I such
that (m, k) ∈ (

∧
T )+ and l ∈ I such that (l,m) ∈ (

∧
T )+, we have

(l, k) ∈ (
∧
T )+, so

l

l∈I
(l,k)∈(

V
T )−

Λj,l v
l

m∈I
(m,k)∈(

V
T )−

l

l∈I
(l,m)∈(

V
T )−

Λj,l

v
l

m∈I
(m,k)∈(

V
T )−

Λc
i,m

v Λh,k
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So (j, h) ∈ δ+.
– The other requirements are verified similarly.

5.4 Generalized Theory of Simulation and Final Coalgebras (Sketch)

All the results of Sect. 4, in particular Thms. 2–3, generalize to the setting of a
set I with a constraint theory γ. We replace “conversive” by “γ-conversive”.

In our nested simulation example, we thus obtain an endofunctor P [0,ℵ0]
TwoSim

on Preordγnest that maps a nested preordered set A = (A0, (6A,n), (6A,o)) to
(P [0,ℵ0]A0,Sim(6A,n) ∩ Simc(6A,o),Simc(6A,o)). We conclude:

– (from Thm. 2) Given a final QP [0,ℵ0]
TwoSim-coalgebra M , we can use (6M ·,n)

and (>M ·,o) to characterize 2-nested similarity and similarity, respectively,
in countably branching transition systems.

– (from Thm. 3) Given a countably branching transition system that is all-
Bisim-encompassing (and hence all-TwoSim-encompassing), we can quotient
it by 2-nested similarity to obtain a final QP [0,ℵ0]

TwoSim-coalgebra.

Acknowledgements I am grateful to Jean Goubault-Larrecq, Bartek Klin,
Alexander Kurz, Sam Staton and James Worrell for their help.

References

1. Aczel, P., Mendler, P.F.: A final coalgebra theorem. In: Proc. of the Conference on
Category Theory and Comp. Sci. LNCS, vol. 389, pp. 357–365 (1989)

2. Adamek, J., Herrlich, H., Strecker, G.: Abstract and concrete categories. Wiley
(1990)

3. Baltag, A.: A logic for coalgebraic simulation. ENTCS 33 (2000)
4. Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to change of base

and geometric morphisms I. Cah. Topologie Géom. Différ. Catégoriques 32(1), 47–
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