Call-By-Push-Value: A Subsuming Paradigm
(extended abstract)

Paul Blain Levy*

Department of Computer Science, Queen Mary and Westfield College
LONDON E1 4NS pbl@dcs.qmw.ac.uk

Abstract. Call-by-push-value is a new paradigm that subsumes the
call-by-name and call-by-value paradigms, in the following sense: both
operational and denotational semantics for those paradigms can be seen
as arising, via translations that we will provide, from similar semantics
for call-by-push-value.

To explain call-by-push-value, we first discuss general operational ideas,
especially the distinction between values and computations, using the
principle that “a value is, a computation does”. Using an example pro-
gram, we see that the lambda-calculus primitives can be understood as
push/pop commands for an operand-stack.

We provide operational and denotational semantics for a range of com-
putational effects and show their agreement. We hence obtain semantics
for call-by-name and call-by-value, of which some are familiar, some are
new and some were known but previously appeared mysterious.

1 Introduction

1.1 A Single Paradigm

In a recent invited lecture [Rey98], Reynolds, surveying over 30 years of pro-
gramming language development, called for a common framework for typed call-
by-name (CBN) and typed call-by-value (CBV). We consider this an important
problem, as the existence of two separate paradigms is troubling:

— it makes each language appear arbitrary (whereas a unified language might
be more canonical);

— on a more practical level, each time we create a new style of semantics,
e.g. Scott semantics, operational semantics, game semantics, continuation
semantics etc., we always need to do it twice—once for each paradigm.

We propose call-by-push-value (CBPV), a new typed paradigm based on Filin-
ski’s variant of Moggi’s computational A-calculus [Fil96,Mog91], as a solution to
this problem. We will introduce a CBPV language, and give translations from
CBN and CBYV languages into it. We claim that, via these translations, CBPV
“subsumes” CBN and CBV.

* supported by EPSRC research studentship no. 96308344

But what does it mean for one language to subsume another? After all,
there are sound, adequate translations from CBN and CBYV languages into each
other [Plo76,HD97] and into other languages such as linear A-calculus, Moggi’s
calculus [BW96,Mog91] and others [Mar98, MC88,JLST98,5J98]. So we must ex-
plain in what sense our translations into CBPV go beyond these “classic” trans-
forms, and why, consequently, CBPV is a solution to Reynolds’ problem.

We therefore introduce the following informal criterion. A translation « from
language L' into language L is subsumptive if every “naturally arising” denota-
tional semantics, operational semantics or equation for L' arises, via «, from a
“similar” denotational semantics, operational semantics or equation for L.

The importance of such a translation is that the semanticist need no longer
attend to L', because its primitives can be seen as no more than syntactic sugar
for complex constructs of L. We shall see in Sect. 1.2 that the classic translations
mentioned above are not subsumptive.

The essence of Reynolds’ problem can now be expressed as follows:

Give subsumptive translations from CBN and CBYV languages into a
single language.

The key features of CBPV that enable it to solve this problem are that

1. it divides Moggi’s type constructor 7 into two type constructors U and F,
that give types of thunks and of producers respectively;
it distinguishes between values and computations;
3. writing V*M for “M applied to V”, the A-calculus primitives can be under-
stood as commands for an operand-stack:
— V¥ can be read as “push V7”;
—)Ax can be read as “pop x”.

o

(1) is reminiscent of the division of a monad into an adjunction. However, while
an adjunction (with extra structure) gives rise to a model for CBPV, different
(non-equivalent) adjunctions can give rise to the same model, because not all of
the adjunctional structure is used. This is explained in [Lev98].

Feature (2) is shared with CBV, and feature (3) with CBN. (Indeed the
push/pop reading is widely used in implementation of lazy languages [Jon92].)

That our translations into CBPV are subsumptive is too informal a claim to
prove, but we have a diverse collection of examples to corroborate it:

— We can give operational semantics for CBPV in big-step, small-step or ma-
chine form, and recover standard operational semantics for CBV and CBN.
These can be formulated to include various computational effects.

— We can give Scott semantics for CBPV, and recover those for CBN [Plo77]
and for CBV [Plo85].

— We can give state-passing semantics for CBPV, and recover the mysterious
CBN semantics of O’Hearn [0’H93], and a straightforward CBV semantics.

— We can give continuation semantics for CBPV, and recover the CBV seman-
tics of [Plo76] and the CBN semantics of [SR96] (NB not that of [Plo76]
which is not quite CBN, as it does not validate the n-law).

— We can give game semantics for CBPV, and recover the CBN game semantics
of [HO94] and the CBV game semantics of [AM98].

— We can give an equational theory for CBPV. The equations that this gives
us for CBN include the 8- and n-laws for functions, which generally fail in
CBYV. The equations that we obtain for CBV include for example

I''x :bool - M = if x then M[true/x| else M[false/x] (1)

which generally fails in CBN. (1) is in fact a special case of the n-law for
sum types.

— We can give a (rather messy) categorical semantics for CBPV. From a
CBPV-structure we can construct for CBN a cartesian closed category, and
for CBV a premonoidal category in the sense of [PR9T].

— If we add sum types to both CBN and CBYV languages, our translations
into CBPV can be extended to include them. While both operational and
denotational semantics for sum types differ between CBN and CBV, all the
differences are recovered from their translation into CBPV.

After discussing related work, we give an operational account of the principles
of CBPV. We add divergence and recursion to the basic language, and provide
Scott semantics, which helps to motivate our translations from CBN and CBV
into CBPV. Finally, we provide operational and denotational semantics for a
range of computational effects.

Acknowledgements 1 am grateful to M. Fiore, M. Marz, E. Moggi, P. O’Hearn,
S. Peyton Jones, J. Power, U. Reddy, J. Reynolds, E. Robinson, H. Thielecke,
referees and others for their helpful comments on this and related material.

1.2 Related Work

We briefly give some ways in which other proposed translations from CBN and
CBV, even those on which ours are based, are not subsumptive. Of course, the
objectives that they were designed to achieve are different.

We first look at cases in which semantics for the source language does not,
so far as we can see, extend along the translation.

— It is not evident how to provide operational semantics for the monadic tar-
get languages of [BW96,Fil96,Mog91] so as to recover standard operational
semantics for the source languages.

— The monad language of [BW96,Mog91] does not provide semantics for CBN,
because the translation from CBN into it—like the thunking transform from
CBN to CBV [HD97,5J98]—does not preserve the n-law for functions.

— As remarked in [BW96], the linear language used there assumes “commu-
tativity” of effects, so that continuation models, for example, do not arise
from it; likewise for the language of [Mar98,MC88].

— The CPS transforms of [SR96,Plo76] do not, of course, preserve Scott se-
mantics.

More subtly, there are cases where a semantics for the source language does
extend to one for the target, but not (as subsumptiveness requires) to a “similar”
one—the semantics of type becomes more complicated.

— To decompose the CBV predomain' model of [Plo85] using A —cgy B =
A — TB [BW96,Mog91], we must drop the countable-base condition on
predomains, because the total function space operation does not preserve it.
For example, N — N is a flat, uncountable “predomain”.

— The CBN game model of [HO94] can exhibit a linear decomposition A —cgn
B =!A — B [BW96,Gir87], but types must then denote games rather
than arenas. (Some further problems with this linear approach are discussed
in [McC96], and it is abandoned for technical reasons in [AHM98].)

2 Call-by-push-value

We introduce CBPV in this section using an operational account, because (as for
CBN and CBYV) the operational ideas remain essentially constant across different
effects, whereas the range of models is wide.

2.1 Operational Principles and Types

In CBPV we distinguish between computations and values. Intuitively speaking,
a computation does, while a value is. CBPV has two disjoint classes of types: a
computation has a computation type, while a value has a value type. For clarity
we underline computation types.

The two classes of types are given by

Au= UB | Y,c/Ai | 1] AxA @)
B:u= FA| [;e;B; | A= B
where each set I of tags is countable (so the language is infinitary).
We explain the types as follows; notice how this explanation maintains the
does/is principle. Throughout execution, there is an operand-stack of values and
tags that is pushed onto and popped from.

— A value of type UB is a thunk of a computation of type B.

— A value of type } ;. A; is a pair (i,V'), where i € I and V is a value of type
A;.

— A value of type A x A’ is a pair (V, V'), where V is a value of type A and
V' is a value of type A'.

— A value of type 1 is the 0-tuple (). We largely omit further mention of this
type, as it is entirely analogous to x.

L' A predomain (X,<) is a countably based, algebraic directed-complete poset, with
joins of all nonempty bounded subsets, in which the down-set {y € X : y < =} of
each ¢ € X has a least element. (The last condition is adapted from [AM98]). A
domain (X,<, 1) is a predomain with a least element L.

— A computation of type F'A produces a value of type A.

— A computation of type [[,.,;B; pops a tag i € I from the operand-stack, and
then behaves as a computation of type B;.

— A computation of type A — B pops a value of type A from the operand-
stack, and then behaves as a computation of type B.

A computation can perform other effects besides popping and producing. For
example, a computation M of type A — F A’ might output, then pop a value
of type A, then push a value of type C, then input, then pop a value of type C
and finally produce a value of type A’. Or it might crash, diverge, make some
choices, jump out etc. But it cannot perform any further effects after producing,
for then another computation begins, using the value that M produced.

Values alone can be stored, input, output, pushed, popped or chosen. Iden-
tifiers can be bound to (or replaced by) values alone, and therefore they always
have value type. A computation is too “active” for this, although a thunk of a
computation M is a value, so it can be stored etc. Later the thunk can be forced,
and M then happens. Of course, a single thunk can be forced several times.

We call a value type of the form), ;1 a groundtype and write n or even
just n for (n,()). In particular, we write bool and nat for the groundtypes
2 ic{truefaise} L @nd >0, 1 respectively. A computation of type F} -, /1 is called
a ground producer because it produces a ground value.

Moggi’s type T'A [Mog91] becomes in our type system U F' A, because a value
of type T'A is a thunk of a computation that produces a value of type A.

2.2 The basic language

Definition 1. A contexrt I' is a finite sequence of identifiers with value types
X0 : Aoy .., Xm_1 : Apm_1. Sometimes we omit the identifiers and write I" as a
list of value types.

The calculus has two kinds of judgement
I't*M:B I''v:A

for computations and values respectively. The terms are defined by Fig. 1. We
include let, although it could be regarded as sugar. Note that] is a projection
product, whereas X is a pattern-match product. The key computations are

— produce V, the trivial producer of V;

— M to x in M', the sequenced computation (called “generalized let” by
Filinski [Fil96]) where firstly the producer M happens, and if it produces a
value V then M' happens with x bound to V.

Imperatively, V¢ means “push V” and Ax means “pop x”. This reading is
illustrated in Sect. 2.3.

'-"Vv:A INx:AF"M:B

I'letxbeVinM:B

x:AI'"x: A
r-'v:A

I''*M:FA TIx:AF°N:B

I'*Mtoxin N: B

I' - produce V: FA

'+'v:UB

r-“mM:B
I'+' thunk M : UB I'+force V:B
'V : A; FP’V:Zie]Ai - INx: A;F°M;: B -
., (4,x) in M;,...: B

IE (4, V)Y, A
I'v:A v A

I'FpmVas ..
' V:AxA INx:Ay:AFM:B

I'E (V,V): Ax A
. Fl—chv:Qi

'pmVas (x,y)in M: B
IF ML, B;
M : B,

DEX. i My, .Y [Bs

I''v:A r-*mM:A—- B

Ix:AFM:B
I'-*)XxM:A— B r-viM:B
pm is an abbreviation for pattern — match.
MV/z])T

letxbe Vin M | T
M | produce V. N[V/x] |} T

Mtoxin Ny T

produce V |} produce V

MUT
force thunk M | T
M;[V/x)y T
(%) in M, .. 4T

pm (3, V) as ..
M/, V' [y] 4T
pm (V,V') as (x,y)in M | T

MYX...,iNi,...) N;{T

M, YU AL iM, .

) FM YT
M| XxN N[V/x]{T
ViMyT

AxM | AxM

Fig. 1. Terms of Basic Language, and Big-Step Semantics

Remark 1. The reader may wonder why we have not included complex values
suchasx: AxA' ' pmx as (y,z) iny : A or arithmetic expressions. The reason
is that they somewhat complicate the operational semantics, our presentation of
which exploits the fact that values do not need to be evaluated. Consequently,
and since they lie outside the range of our translations from CBN and CBV,
we omit them, except in the example program of Sect. 2.3. Nonetheless, all our
denotational and categorical models can interpret them straightforwardly.

2.3 Example Computation

The following example M illustrates the naive imperative reading of CBPV. To
this end, we add to the language arithmetic expressions as values (Remark 1)
and the facility to prefix a print command to any computation.

print "helloO";
let x be 3 in
let y be thunk (
print "hellol";
Az
print "we just popped "z;
produce x + z
) in
print "hello2";
(print "hello3";
7£
print "we just pushed 7";
force y
) to w in
print "w is bound to "w;
produce w+ 5

Note that if the word thunk were omitted, M would be ill-typed, because y
can identify only a value, not a computation. The type of y is U(nat — F nat),
because y identifies a thunk of a computation that pops a natural number and
then produces a natural number.

M outputs as follows

helloO
hello2
hello3
we just pushed 7
helloil
we just popped 7
w is bound to 10

and finally produces the value 15.

It is clear that if the lines print "hellol" and Az were exchanged, or if
the lines print "hello3" and 7‘ were exchanged, the behaviour of M would be
unchanged. We say that “effects commute with A and with ¢ ”. A more familiar
example of this phenomenon is the equivalence of Ax diverge and diverge. (We
are assuming here that, as in our example, the global computation is a producer,
so there is no danger that we will try to pop from an empty stack.)

2.4 Big-Step Operational Semantics
Terminal computations (a subset of closed computations) are given by
T := produceV | A(...,i.M;,...) | \xM (3)

Intuitively these are computations that cannot proceed if the operand-stack is
empty. We write Cp for the set of closed computations of type B, Tp for the
set of terminal elements of Cg, and V4 for the set of closed values of type A.

For the basic language, we define in Fig. 1 a relation | from Cp to Tp. It can
be proved to be a total function. Note that only computations happen; values
do not need to be evaluated.

2.5 Equations and Observational Equivalence

We form an equational theory whose axioms are the equations in Fig. 2. Compare
this theory to those of CBN and CBV.

— In CBV, equations such as n for + types hold because an identifier can be
bound only to a value.

— In CBN, equations such as 7 for — types hold because a term of — type can
be evaluated only by applying it.

Since CBPYV has both of these features, it has both kinds of equation, which is
essentially why it can subsume both paradigms.

Definition 2. A ground context C[] is a closed ground producer with zero or
more occurrences of a hole which can be either a computation or a value.

Definition 3. We say that M ~ M’ when for all ground contexts C[], C[M] |
produce n iff C[M'] |} produce n.

In all of our CBPV languages (e.g. in Sect. 5.1) the equations of the theory
hold as observational equivalences (for the appropriate variation on Def. 3). As
usual, this will follow from the soundness and adequacy of our models.

It is worth noticing that, with our imperative understanding of V* and Ax,
the B-law for — equates “push V', then pop x, then M” with M[V/x]. Similarly,
the n-law for — equates M (in which x is not free) with “pop x, then push x,
then M”. These are both intuitively compelling.

I'+“letxbeV in M = M[V/x] : B
I' +¢ (produce V) to x in M = M[V/x] ' B
I' ¢ force thunk M =M : B
I'pm (3,V) as ...,(i,x) in M;,... = M;[V/x] ' B
'+ pm (V,V') as (x,y) in M =M[V/x,V']y]: B
ke i‘)\(,lM,,) Zqu Zﬁi
'+ VeiaxM = M[V/x] : B
rrm = M to x in produce x :FA (x¢g I
rv'v = thunk force V :UB
' M[V/z|=pmV as ..., (4,x) in M[(3,x)/2],...: B (x¢g I
I M[V/z] = pn V as (x,) in M](x,y)/2] B (eygD)
FFM = M...,idM,..) TLic: B
rrm =Axx'M :A—>B (x¢I)
' (Mtoxin M')toyin M" = M toxin (M’ toyin M"): B (x,y ¢ T)
ke (M to x in M'") = M to x in #*M’ :B; (x¢T)
r V(M toxin M = M to x in V'M B (x¢gTI'
|_c ¢ ! ¢ !

Fig. 2. §-laws, n-laws and other laws

3 Divergence, Recursion and Scott Semantics

As divergence is the computational effect most familiar to semanticists, we study
it first. We add to the basic language the computations

I'x:UBFM:B
I'+° diverge: B ' uxM: B

and the big-step rules
diverge | T M[thunk puxM/x] |} T
diverge | T pxM | T

so that |} is now a partial function from Cp to Tp. The recursion binder px can
be read imperatively as “bind-to-a-thunk-of-the-present-computation x”, and
therefore uxM is a computation.

The Scott semantics for CBPV interprets value types (and hence contexts)
as predomains and computation types as domains. For example,

— [FA] is the lift of [A];
— if [B] is the domain (X, <, L) then [UB] is its underlying predomain (X, <);
— [A — B] is the domain of continuous functions from [A] to [B]

Then to each computation I' F¢ M : B we associate a continuous function
[M] : [T — [B], and to each value I' ¥ V : A we associate a continuous
function [V] : [I'] — [A]. For example, where p € [I'],

[produce V]p = lift ([V]p)

1 if [MJp=1L
[N](p,x — z) if [M]p = lift =
[thunk M]p = [M]p

[force V]p=[V]p

[[MtoxinN]]p:{

In particular, [thunk diverge]p is the least element of the predomain [UB].

Proposition 1 (Soundness/Adequacy). For any closed computation M,

1. if M | T, then [M] = [T7];
2. if [M] > L, then M | T for some T.

4 Translating CBN and CBYV into CBPV

As we would expect from the Scott semantics of Sect. 3, CBN types translate
into computation types, while CBV types translate into value types. The most
important type decomposition into CBPV is

B —»;n B ' =UB) - B (4)

This corresponds to the fact that in CBN a function is effectively applied to a
thunk. Perhaps it is because the interpretation of U and of thunk is almost
invisible in CBPV Scott semantics that this decomposition has remained hidden
for so long.

Another important type decomposition into CBPYV is

A —>CBV AI = U(A — FAI) (5)

This is similar, and in a sense equivalent, to Moggi’s decomposition [Mog91]
as A — T B, but notice that (5) avoids the countability problem mentioned in
Sect. 1.1. It says that a CBV function from A to A’ is a thunk of a computation
that pops a value of type A and then produces a value of type A'.

The translations into CBPV are given in Fig. 3 and Fig. 4. The source lan-
guages of these translations are prototypical CBN and CBV languages like PCF
and PCF,, with sum types. They are equipped with Scott semantics [—]cen and
[-Icev (together with a semantics [—]&, for CBV values) and big-step seman-
tics Jcen and {cgy- We omit presenting them in detail. For simplicity, we have
supplied a projection product for CBN but a pattern-match product for CBV;
although in principle one could have both kinds of product in each paradigm.

Some of the technical results for the CBN translation concern not the function
—" (which does not commute with substitution) but a relation —" from CBN to
CBPYV terms. Informally, M —" M' means that M' is M" with possibly some
extra force thunk prefixes. The direct inductive definition of —" is comprised
of one rule for each CBN term-constructor, e.g.

N="N' MM
x —" forcex N‘M " (thunk N')‘M’

C

|C" (a computation type)

bool sze{true,false}]'
A—B UA" — B"
Ax B A" B
A+ B F(UA"+UB")
Ao,...,Amfll—M:C UAon,...,UAmflnl—cMn:Cn
X force x
false produce false
if M then N else N’ M" to z in pm z as true in N", false in N'"
AxM AxM"
N‘M (thunk N")‘M"
(M, M'") M0.M™ 1M
™™ oM
inl M produce inl thunk M"
pm M as inl x in N,inr x in N'|M to z in pm z as inl x in N, inr x in N'"
pxM

pxM"

Fig. 3. Translation of CBN types and terms

C |C" (a value type)
bool Ebe {true,false} 1
A— B| U(A" - FBY)
AxB A’ x BY
A+ B A"+ BY
Ao, ..., A 1 FV i ClA, .. A " VY OV
x x
false false
AxM thunk AxM"
pyAxM thunk pyAxM"
v,V (v, V")
inl V inl V¥
Aoy s A F M C | Ao’y A" FC MY FC"
V (a value) produce V'
if M then N else N’ M" to z in pm z as true in N", false in N'"
MN (M first)

pm M as (x,y) in NV

M" to £ in N' to x in x‘(force f)
M" to z in pm z as (x,y) in N'¥

. . . . 1 v
pm M as inl x in N,inr x in N'|M" to z in pm z as inl x in N',inr y in V

Fig. 4. Translation of CBV types, values and terms

M =" M’
M —" force thunk M’

Proposition 2. 1. (M[V/X])" — MV[Vval/x]
2. If M =" M' and N =" N’ then M[N/x] =" M'[thunk N'/x]

and the additional rule

We are now in a position to describe the fundamental subsumption properties:
that the Scott and big-step semantics of CBN and CBV can be recovered from
those of CBPV.

The preservation of the Scott semantics is straightforward:

Proposition 3. 1. If A is a CBN type then [A]can = [4"]
2.IfI'+ M : AisaCBN term and M —" M’ then [M]cen = [M']
3. If A is a CBV type then [A]csv = [4"]

4. If '+ V : Ais a CBV value then [V]&, = [V*]
5. fI'k M : Ais a CBV term then [M]cevy = [M"]

That the equations of CBN/CBV are preserved follows from Prop. 2.
Proposition 4. Suppose M is a closed CBN term, and M —" M'.

1. If M’ is terminal then M is, and M is terminal iff M" is.
2. If M {cgn T then, for some T', T —" T' and M' || T".
3. If M'" |} T', then, for some T, T —" T'" and M {cgn T-

Proposition 5. Suppose M is a closed CBV term.

1. M is terminal iff MV is terminal.
2. If M Ycgv T then MY | TV.
3. If MV | T', then, for some T, TV =T', and M {csv T.

Parts (2) and (3) of these are proved by induction, primarily on the big-step
derivation, and secondarily on —" (for Prop. 4) or M (for Prop. 5).

5 Operational Semantics for Computational Effects

It is straightforward to adapt the big-step semantics of Sect. 2.4 to various com-
putational effects (except for control effects, which require machine semantics,
where the search for a redex is made explicit). We give two examples: global
store and nondeterminism.

5.1 Global Groundtype Store

We will consider a single global storage cell X that stores a value of groundtype
> scsl- We add to the basic langugage the computations

I V:y,sl THFM:B
I'FCderef X: Fy ¢l I'*X.=V;M:B

While it is possible to give type F'1 to commands such as assignment and output,
here we regard them as prefixes.

We define a relation | from S x Cp to S x Tpg, adapting the rules of Sect. 2.4
and adding rules for the new constructs. For example:

s, M | s, \xN s N[V/x]{|s",T

s, T |s,T s, VM | s",T
sSM|s"T
s,deref X |} s, produce s s,X:=s:M|s",T

U can be proved to be a total function.
Finally, we say that M ~ M’ when for all ground contexts C[] and s,s' € S,
s,C[M] | s',produce n iff s,C[M'] | ', produce n.

5.2 Nondeterminism

We add to the basic language the divergence and recursion facilities of Sect. 3
together with the following term and big-step rule:

Ix:AF*M:B M[V/x]y T
I'H¢ choosex M : B choosex M | T

6 Denotational Semantics for Computational Effects

We describe denotational semantics for the effects of Sect. 5. Part is easy: a value
type (or a context) should denote a set, with x and " interpreted in the usual
way, and a value I' FY V : A should denote a function [V] : [I'] — [4].

The remainder of the semantics differs between the effects. While logically we
should present the various semantics first, and then state the soundness results,
this makes the interpretation of type constructors appear ad hoc. So we will
proceed in reverse order. For global store and nondeterminism, we will state
first the soundness and adequacy theorems that we are aiming to achieve, even
though they are not yet meaningful, and use this to motivate the semantics.
We will also give continuation semantics for the basic language. (Using machine
semantics, this can be similarly motivated.)

Proposition 6 (Soundness/Adequacy). Let M be a closed computation.

1. For global store, if s, M |} s',T then [M]s = [T]s’.
2. For nondeterminism, [M] = U7 [T]-

By looking at Prop. 6, we can guess the interpretation of a computation
I' ¢ M : B. (Recall that if B = F' A then this judgement corresponds to a CBV
term of type A, so its interpretation is familiar.)

— For global store, [M] will be a function from S x [I'] to [B], where [B] is a
set. If B = F'A then [B] = S x [A], so that [M] is a function from S x [I']
to S x [4].

— For nondeterminism, [M] will be a relation from [I'] to [B], where [B] is a
set. If B = F A, then [B] = [A], so that [M] is a relation from [I'] to [A4].

— For continuation semantics, [M] will be a function from [I'] x [B] to Ans
(a fixed set that we regard as the set of “answers”), where [B] is a set. If
B = F A, then [B] = [A] — Ans, so that [M] is a function from [I']x ([A] —
Ans) to Ans.

We next turn our attention to the interpretation of U, [[;.; and —. For U,
we know that values I' ¥ U B correspond to computations I' F¢ B. Thus, in the
case of global store, functions from [I'] to [UB] must correspond to functions
from S x [I'] to [B]. Therefore we set [UB] = S — [B]. Similarly we can
determine the interpretation of U for each effect. As expected, it follows in each
case that UF A denotes the same set as Moggi’s type T'A [Mog91]:

effect | U | F | T=UF
global store | S — — | Sx — S—=(Sx-)
nondeterminism| P — P
control — — Ans|— — Ans|(— — Ans) — Ans

For A — B, we know that computations I' F¢ A — B correspond to com-
putations I', A F¢ B. Thus, in the case of nondeterminism, relations from [I'] to
[A — B] must correspond to relations from [I'] x [A] to [B]. Therefore we set
[A — B] to be [A] x [B]. Similar reasoning suggests interpretations for both —
and [];c, for each of our effects:

effect [Lic:|—
global store |[[;c/|—
nondeterminism| ;| X
control Y ier| X

We omit the straightforward semantics of terms.

Proposition 7. These five denotational semantics for CBPV all validate the
equations of Sect. 2.5. More precisely, if M = M' is provable in the equational
theory then [M] = [M'].

Prop. 6 is now meaningful and can be proved. In particular, (1) is trivial.

All these models induce models for CBN and CBV. For CBV we recover the
familiar continuation semantics of A —cgy A’ as (A x (A’ = Ans)) — Ans. For
CBN we recover the continuation semantics of [SR96], and also, from our CBPV
global store semantics, the state-passing semantics of [O’H93].

References

[AHM98] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics
for general references. Proceedings, Thirteenth Annual IEEE Symposium on
Logic in Computer Science, IEEE Computer Society Press, 1998.

[AMOS]

[BW96]

[Fil96]

[Gir87]
[HD97]

[HO94]

S. Abramsky and G. McCusker. Call-by-value games. In M. Nielsen and
W. Thomas, editors, Computer Science Logic: 11th International Workshop
Proceedings, Lecture Notes in Computer Science. Springer-Verlag, 1998.

N. Benton and P. Wadler. Linear logic, monads and the lambda calculus. In
Proceedings, 11" Annual IEEE Symposium on Logic in Computer Science,
pages 420-431, New Brunswick, 1996. IEEE Computer Society Press.

A. Filinski. Controlling Effects. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1996.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
J. Hatcliff and O. Danvy. Thunks and the A-calculus. Journal of Functional
Programming, 7(3):303-319, May 1997.

M. Hyland and L. Ong. On full abstraction for PCF. submitted, 1994.

[JLST98] S. Peyton Jones, J. Launchbury, M. Shields, and A. Tolmach. Bridging the

[Jon92]

[Lev9s]

[Mar98]
[MC88]

[McC96]
[Mog91]

[O’H93]
[Plo76]

[Plo77]
[Plo85]
[PR97]
[Rey98]

[ST98]
[SR96]

gulf: A common intermediate language for ML and Haskell. In Proc. 25th
ACM Symposium on Principles of Programming Languages, San Diego, 1998.
S. L. Peyton Jones. Implementing lazy functional languages on stock hard-
ware: the spineless tagless G-machine. Journal of Functional Programming,
2(2):127-202, July 1992.

P. B. Levy. Categorical aspects of call-by-push-value. draft, available at
http://www.dcs.gmw.ac.uk/ pbl/papers.html, 1998.

M. Marz. A fully abstract model for sequential computation. draft, 1998.
A. Meyer and S. Cosmodakis. Semantical Paradigms. In Proc. Third Annual
Symposium on Logic in Computer Science. Computer Society Press, 1988.
G. McCusker. Games and Full Abstraction for a Functional Metalanguage
with Recursive Types. PhD thesis, University of London, 1996.

E. Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55-92, 1991.

P. W. O’Hearn. Opaque types in algol-like languages. manuscript, 1993.

G. D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical
Computer Science, 1(1):125-159, 1976.

G. D. Plotkin. LCF as a programming language. Theoretical Computer
Science, 5, 1977.

G. D. Plotkin. Lectures on predomains and partial functions. Course notes,
Center for the Study of Language and Information, Stanford, 1985.

A. J. Power and E. P. Robinson. Premonoidal categories and notions of
computation. Math. Struct. in Comp. Sci., 7(5):453—468, October 1997.

J. Reynolds. Where theory and practice meet: POPL past and future. In-
vited Lecture, 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, California, January 19-21, 1998.

M. Shields and S. Peyton Jones. Bridging the gulf better. Draft, 1998.

Th. Streicher and B. Reus. Continuation semantics, abstract machines and
control operators. submitted to Journal of Functional Programming, 1996.

