
Universal Properties of Impure Programming Languages

Sam Staton
Computer Laboratory, University of Cambridge

Paul Blain Levy
School of Computer Science, University of Birmingham

Abstract
We investigate impure, call-by-value programming languages. Our
first language only has variables and let-binding. Its equational
theory is a variant of Lambek’s theory of multicategories that omits
the commutativity axiom.

We demonstrate that type constructions for impure languages
— products, sums and functions — can be characterized by uni-
versal properties in the setting of ‘premulticategories’, multicate-
gories where the commutativity law may fail. This leads us to new,
universal characterizations of two earlier equational theories of im-
pure programming languages: the premonoidal categories of Power
and Robinson, and the monad-based models of Moggi. Our analy-
sis thus puts these earlier abstract ideas on a canonical foundation,
bringing them to a new, syntactic level.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]

Keywords Multicategories, Premonoidal categories, Monads

1. Introduction
In this paper we introduce a new equational account of impure
programs. This account is analogous to the βη-equality for the
pure typed λ-calculus. It provides a simple reasoning tool that
is justified both syntactically and semantically, by compositional
interpretations in a variety of models. It is given a canonical status
through universal properties and representability.

Let us stress that the βη-equality of the pure λ-calculus is not
appropriate in the impure setting under the call-by-value semantics.
For instance, if M has side effects then the η-law for products does
not hold: M /≡ ⟨#1M,#2M⟩. For this reason, the categorical
notion of product does not immediately apply to call-by-value
programming languages.

1.1 An equational account of let-binding: premulticategories
To move to the impure setting, we must reassess the nature of sub-
stitution, which we do by introducing the new notion of premulti-
category (§2). In the βη-equality of a pure λ-calculus, substitution
is essential (e.g. (λx.M)N ≡ M[N/x]). In a call-by-value lan-
guage, substitution is more intricate. The Standard ML expression

let val x = N inM end

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright © 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

is (in some sense) equivalent to M[N/x] in the pure fragment of
ML, whereas in the general it means ‘evaluate N , call the result x,
and continue as M ’. This sequencing plays a fundamental role, and
it forms the basis of our definition of premulticategory.

Our starting point is a language with at least two typing rules

−
x∶A ⊢ x ∶ A

∆ ⊢ t ∶ A Γ, x∶A,Γ′ ⊢ u ∶ B
Γ,∆,Γ′ ⊢ let val x = t inu end ∶ B

and satisfying three equations

let val x=x in t end ≡ t let val x=t in x end ≡ t (x /∈ fv(t))
let val x = t in let val y = u in v end end

≡let val y = (let val x = t inu end) in v end (x /∈ fv(v)).
Any reasonable call-by-value programming language will have an
analogue of let val. Roughly speaking it is the essence of A-
Normal Form and Single-Static-Assignment (e.g. [10]).

It is often helpful to understand a term in context Γ ⊢ t ∶ A as a
generalized function which takes a valuation for the context Γ and
returns a result of type A. If we thus draw a term graphically

. . .

one input for
every

variable in !

output of
type At

then we can understand let val as composition of functions, and
a single variable is just a wire. The third law says

. . . u. . . t . . . v
y

x

. . . u. . . t . . . v
y

x=

The three laws are thus the laws of identity and associativity for
composing multivariate functions. The classical theory of multicat-
egories also proposes a commutativity law:

. . . t . . . v
x

. . . u y

. . . t . . . v
x

. . . u y

=

let val x = t in let val y = u in v end end (x /∈ fv(u),
≡let val y = u in let val x = t in v end end y /∈ fv(t))

This law does not hold for impure programs: consider the case
where t

def= print "hello " and u
def= print "world". Our equa-

tional theory of let val is thus a non-commutative variant of mul-
ticategories, which we call ‘premulticategories’ (§2).

(Jeffrey [18] resolves the inaccuracy of the graphical calculus
by introducing special control arrows.)

1.2 First class types via representability
We argue that type and term constructions should be defined in
the context of the simple language with let val, in a canonical
and universal way. To this end, we give universal properties for
products (§3), sums (§4) and call-by-value functions (§6) in impure
languages. One important consequence of universal properties is
that although there may be many isomorphic implementations of
(say) a product type, there is exactly one isomorphism between any
two implementations, which means that there is a canonical way to
translate between them.

We focus on product types for now, but we will later deal with
sum types and function types. The concept of ‘product’ is already
present in the little language with let val, for we can describe
terms ‘Γ, x∶ (A × B) ⊢ t ∶ C’ as terms Γ, x1∶A,x2∶B ⊢ t′ ∶ C.
The principle of representability says that this concept determines
the product types, if they exist. Concretely, representability requires
that there is a term

x∶A,y∶B ⊢ ⟨x, y⟩ ∶ A ×B
which is universal in the following sense. The term induces a family
of functions between sets:

PΓ,C ∶ {t ∣ Γ, z∶A ×B ⊢ t ∶ C}→ {u ∣ Γ, x∶A,y∶B ⊢ u ∶ C}
where PΓ,C(t) def= let val z = ⟨x, y⟩ in t end, and this family
of functions is required to be a natural family of bijections. The
bijectivity condition means that each PΓ,C has an inverse, in other
words that there is an assignment

Γ, x∶A,y∶B ⊢ u ∶ C
Γ, z∶A ×B ⊢ P −1Γ,C(u) ∶ C

satisfying some equations. In Standard ML, we can define P −1Γ,C by
pattern matching: let P −1Γ,C(u) def= let val ⟨x, y⟩ = z inu end.

The technique of representability is syntactic, in that it suggests
constructors and destructors for product types. It is also semantic,
because it only determines the types up-to unique isomorphism of
types. It gives a universal property: there is a unique isomorphism
between any two implementations.

The principle of representability is a fundamental idea in ab-
stract mathematics. Hermida [14] gives an account of representabil-
ity for multicategories. One of our main technical contributions is
to develop the theory of representability in the non-commutative
setting of premulticategories (§7) and to demonstrate its relevance
to the principles of programming languages (§3–6).

1.3 Explaining monads and premonoidal categories
Two important precursors to this work are Moggi’s work on mon-
ads [29, 30] and the line of work on premonoidal categories and
Freyd categories [12, 33, 34] begun by Power and Robinson. This
earlier work has been very influential in programming languages
research. Our criticism of it is that its analysis of impure compu-
tation is inextricably tied with its treatment of types. Using pre-
monoidal categories, we show that impure computation can be sep-
arated from types in these models (§8).

Moggi’s notion of λC -model [29, Def. 2.6] is defined in terms
of strong monads. It axiomatizes in one fell swoop the structure
of impure programming languages with product types and function
types.

One of the contributions of Power and Robinson’s work [33]
is to decouple the function types from Moggi’s notion of λC -
model. They do this by directly axiomatizing categorical structures
of ‘computations’ which they call premonoidal categories. This is
in contrast to Moggi’s development which centres around monads
on a category of ‘values’. The notion of premonoidal category ax-
iomatizes (again, in one fell swoop) the structure of impure lan-

guages with product types. Freyd categories adjoin the distinction
between computations and values to the theory of premonoidal cat-
egories.

In this paper we isolate the principles of impure computation
from type structure by introducing the notion of premulticategory
and the related notion of Freyd multicategory, a premulticategory
with a distinguished class of values. Our main theorems recover the
earlier constructions by using universal properties to introduce type
structure to this framework:

• A premonoidal category [33] is a premulticategory with prod-
ucts (Theorem 26);

• A Freyd category [33, 34] is a Freyd multicategory with prod-
ucts (Proposition 33).

• A λC -model [29] is a Freyd multicategory with products and
function spaces (§8.3).

Coherence from representability. We now give a more technical
summary of the connections between premonoidal categories and
premulticategories. In a programming language, the types

(A*B)*C and A*(B *C) (1)

are not identical but they are isomorphic in a canonical way. In
the approach of Power and Robinson, the isomorphism between
the two types (1) is given as part of the data for a premonoidal
category [33]. This ‘coherence’ approach has proved extremely
successful in many areas of mathematics, but it appears several
steps away from programming language syntax. In our work, the
isomorphism (1) does not need to be given: instead, it can be
derived from the universal property of products. This is a non-
commutative version of Hermida’s result [14]: to give a monoidal
category is to give a multicategory with tensor products.

The situation is actually more complicated. Power and Robin-
son require that the given isomorphism (1) is ‘central’, which infor-
mally means that it doesn’t matter when it is executed. Although
this requirement is reasonable from a pragmatic point of view, it
does not seem to arise from a requirement of higher category the-
ory: premonoidal categories do not seem to be pseudomonoids in
a monoidal bicategory. This problem is remedied by our repre-
sentability result, which provides a principled explanation of the
centrality requirements in premonoidal categories.

In summary, whereas the original definition of premonoidal cat-
egory is several steps away from programming language syntax,
our new characterization essentially is programming language syn-
tax. This is because rather than axiomatizing everything in one fell
swoop, we characterize type constructions as universal properties
over a basic framework for impure computation.

2. A basic equational account of impure
programs: premulticategories

We begin by analyzing the basic structure of an impure program-
ming language with variables and let-binding. The equations which
we propose are three of the four equations of multicategories.

Recall that an ordinary category comprises a collection of ob-
jects, a collection of morphisms between the objects, a selection
of identity morphisms, and an associative composition operation.
Roughly speaking, a premulticategory is similar except that the
morphisms do not go from one object to another. Rather, they go
from a context Γ to an object A. This is a natural way to study
typed programming languages, since a program in a context Γ has
a type A.

At this stage, we do not ask for the objects to be closed under op-
erations (product types, unit types) nor for any special morphisms
(printing, arithmetic). Nonetheless we certainly do not forbid these

things at this stage: a premulticategory can have more content than
the basic structural requirements.

As well as the syntactic examples of premulticategories that
arise from programming languages, we have more concrete exam-
ples coming from set theory, pointed sets, and we explain how a
strong monad gives rise to a premulticategory.

2.1 Definitions: premulticategories and centrality
Notational convention. Informally, the language of premulti-
categories can be thought of as a language for terms in con-
text. Formally, a morphism Γ → A goes from a list Γ of ob-
jects to an object. We introduce the following informal conven-
tion. We will often write a list (A,B,C) annotated with variables(x ∶ A,y ∶ B, z ∶ C). This allows us to informally index the list us-
ing variables rather than numbers, e.g. we can write y for the second
element of the list. By doing this we can reason about concatenated
lists without fumbling with arithmetic on indices. In everything we
do, the informal variables can be translated into numbers at the
expense of readability.

The cornerstone of this paper is the following definition of pre-
multicategory. This is a non-commutative version of ‘multicate-
gory’, an idea first extensively investigated by Lambek [21].

Definition 1. A premulticategory is given by the following data.

• A collection of objects, ranged over by A, B etc.
• For each list of objects Γ and each object A a collection of

morphisms Γ → A is given. If t ∶ Γ → A then we write
Γ ⊢ t ∶ A.

• Identity morphisms: For each object A a morphism idA∶ (A)→A
must be given. We notate this requirement informally as a rule:

x∶A ⊢ x ∶ A
• Composition: Given a morphism t∶∆ → A and morphism
u∶ (Γ,A,Γ′) → B, if the length of Γ is i then a morphism(u ○i t) ∶ (Γ,∆,Γ′) → B must be given. We notate this
requirement informally as a rule:

∆ ⊢ t ∶ A Γ, x∶A,Γ′ ⊢ u ∶ B
Γ,∆,Γ′ ⊢ t↝ x.u ∶ B

The notation (t ↝ x.u) can be understood as shorthand for
let val x = t inu end: “execute t, bind the result to x, and
continue as u”.

The data is subject to the following equations.

• Identity laws.

Γ, x∶A,Γ′ ⊢ t ∶ B
Γ, x∶A,Γ′ ⊢ x↝ x. t ≡ t ∶ B

Γ ⊢ t ∶ A
Γ ⊢ t↝ x. x ≡ t ∶ A

In case the notation is unclear: the first law means that for any
morphism t∶ (Γ,A,Γ′)→ B, the composite of idA with t at
position i (where i is the length of Γ) is equal to t.

• Associativity law:

Γ3 ⊢ t ∶ A Γ2, x∶A,Γ′2 ⊢ u ∶ B Γ1, y∶B,Γ′1 ⊢ v ∶ C
Γ1,Γ2,Γ3,Γ

′
2,Γ

′
1 ⊢ (t↝ x.u)↝ y. v ≡ t↝ x. (u↝ y. v) ∶ C

More formally this law is notated v ○i (u ○j t) = (v ○i u) ○i+j t,
where i is the length of Γ1 and j is the length of Γ2.

Commutativity and centrality. In general, given morphisms
t∶Γ1 → A and u∶Γ2 → B, we say that t commutes with u if it
doesn’t matter which order t and u are executed. To be precise, t

commutes with u if the following equations hold (for all v):
∆1, x∶A,∆2, y∶B,∆3 ⊢ v ∶ C

∆1,Γ1,∆2,Γ2,∆3 ⊢ t↝ x.u↝ y. v ≡ u↝ y. t↝ x. v ∶ C
∆1, y∶B,∆2, x∶A,∆3 ⊢ v ∶ C

∆1,Γ2,∆2,Γ1,∆3 ⊢ t↝ x.u↝ y. v ≡ u↝ y. t↝ x. v ∶ C
If t commutes with all u, then we say that t is central. In other
words, t is central if it doesn’t matter when it is executed. A
premulticategory is a multicategory if all morphisms are central.
(Lambek [21] calls this the axiom of commutativity.)

2.2 Examples of premulticategories
Multicategories have attracted significant recent interest in category
theory, logic and algebra (e.g. [7, 14, 15, 22]), and in the semantics
of continuation-passing [27] and of state [26, 35]. Premulticate-
gories have not been studied before, to our knowledge.

First simple example: multicategory of sets. We begin by de-
scribing the multicategory of sets, but let us first set up some nota-
tion. Given a list Γ of sets, we write ∏Γ for the product of those
sets. For instance,∏(A,B,C) = {(a, b, c) ∣ a ∈ A, b ∈ B, c ∈ C}.
If we view Γ as a context, then∏Γ is the set of valuations for that
context.

In the multicategory of sets, the objects are sets, and a mor-
phism Γ → A is a function ∏Γ → A. Thus a morphism Γ → A
is something which assigns a result in A to every valuation of Γ.
The identity morphisms are the identity functions. Composition
is by composition of functions: given morphisms t∶∆ → A and
u∶ (Γ, x∶A,Γ′) → B and given valuations a⃗ ∈ ∏Γ, b⃗ ∈ ∏∆,
c⃗ ∈ ∏Γ′, let (t ↝ x.u)(a⃗, b⃗, c⃗) def= u(a⃗, t(b⃗), c⃗). This is a mul-
ticategory: all morphisms are central.

Second simple example: multicategory of pointed sets. In the
multicategory of pointed sets, the objects are sets A equipped with
a distinguished element %A. A morphism t∶Γ → A is a function
t∶∏Γ → A that is strict in each argument: if a⃗ ∈ ∏Γ is such that
ai = % for some i, then t(a⃗) = %A. Identities and composition
are as in the multicategory of sets; it is easy to check that these
yield functions that are strict in each argument. All morphisms are
central.

Third simple example: premulticategory of ‘stateful’ functions.
Let S be a fixed set, thought of as a set of states. We form a
premulticategory whose objects are sets and where a morphism
Γ→ A is a function (∏Γ)×S → A×S. The idea is that a ‘stateful’
function takes as an argument a valuation of its context and also an
initial state; it returns a result and also a final state.

Composition is defined as follows. Given t∶∆ → A and
u∶ (Γ, x∶A,Γ′)→ B and given valuations a⃗ ∈ ∏Γ, b⃗ ∈ ∏∆,
c⃗ ∈ ∏Γ′ and an element s ∈ S, let (t ↝ x.u)(a⃗, b⃗, c⃗, s) def=
u(a⃗, a, c⃗, s′) where (a, s′) = t(b⃗, s). This premulticategory is not
a multicategory unless S has at most one element. The central mor-
phisms t∶Γ → A are the functions that do not change the state, i.e.
for each valuation a⃗ ∈∏Γ there is an element t1(a⃗) of A such that
for all states s ∈ S we have t(a⃗, s) = (t1(a⃗), s).
Connection with programming languages. Well-typed terms of
a programming language such as Standard ML form a premulticat-
egory, modulo observational equivalence. Composition (t ↝ x.u)
amounts to the ML syntax let val x = t inu end. The identity and
associativity laws are simple observational equations under this in-
terpretation. Not all morphisms are central. For instance

print ”hello”↝ x.print ” world”↝ y. (x, y)
/≡ print ”world”↝ x.print ” hello”↝ y. (x, y).

Connection with deductive systems. As Lambek observed [21],
multicategories are closely related to deductive systems such as the
sequent calculus. The identity morphisms correspond to the axiom,
and composition corresponds to cut. The identity and associativ-
ity laws provide a starting point for a cut-elimination procedure.
However, whereas the commutativity axiom plays a natural role in
equivalence of proofs, we are rejecting it in the context of program-
ming languages. Moreover, we are not interested in cut elimination,
since cut/sequencing plays a crucial role. For instance, we cannot
eliminate sequencing from the following program without chang-
ing its meaning.

(print ”Enter your name:”)↝ x. readline↝ y.print ”Hello ”^y

Connection with algebra. The words ‘commutativity’ and ‘cen-
trality’ are used by analogy with algebra. Let (M, ⋅, e) be a monoid,
i.e. a set with an associative binary operation ⋅ and unit e. We can
build a premulticategory from M : it has one object ∗ and a mor-
phism Γ → ∗ for each element of M . The identity morphism is e
and composition m↝ x.n is monoid multiplication, m ⋅ n.

A morphism m in this premulticategory is central if and only if
it is central in the usual algebraic sense: ∀n.m ⋅ n = n ⋅m. The
premulticategory is a multicategory if and only if the monoid is
commutative: ∀m,n.m ⋅ n = n ⋅m.

This is a simple motivating example. Let Σ be an alphabet, and
let Σ∗ be the monoid of strings over the alphabet. The unit is the
empty string and multiplication is concatenation. When we think of
this as a premulticategory, we can think of the object ∗ as the unit
type in ML, and we can think of elements s of the monoid Σ∗ as
commands Γ ⊢ output s ∶ ∗, with the equation

Γ ⊢ (output s↝ x.output t) ≡ output (st) ∶ ∗.

Examples from monads. Moggi proposed monads as models of
impure programming languages [30]. Let-binding plays a key role
in his metalanguage. This can be explained by noting that every
strong monad induces a premulticategory. Examples of monads on
the category of sets include the state monad (S ⇒ ((−) × S)), the
continuations monad ((−)⇒ R)⇒ R, and the exceptions monad((−) ⊎E). All of these computational effects can be accommo-
dated in premulticategories.

Recall that a monad on the (ordinary) category of sets is given
by an assignment of a set T (A) to each set A, a family of func-
tions ηA∶A → T (A) and an assignment from functions f ∶A →
T (A) to functions f∗∶T (A)→ T (B), all satisfying some axioms.
Given a monad T , we can define a ‘Kleisli’ premulticategory of T -
functions. The objects are sets, and a morphism Γ → A is a func-
tion∏Γ→ T (A). The identities are defined using η. Composition
is defined as follows: given t∶∆→ A and u∶ (Γ, x∶A,Γ′)→ B and
valuations a⃗ ∈∏Γ, b⃗ ∈∏∆, c⃗ ∈∏Γ′, let

(t↝ x.u)(a⃗, b⃗, c⃗) def= u∗(str(a⃗, t(b⃗), c⃗))
where str ∶∏(Γ, T (A),Γ′)→ T (∏(Γ,A,Γ′)) is a strength which
is uniquely defined for any set-theoretic monad [30, Prop. 3.4].
This construction can be carried out for any strong monad on a
symmetric monoidal category.

The Kleisli premulticategory induced by a monad is a multicat-
egory if and only if the monad is commutative in the sense of [19].
Commutative monads have special relevance in the study of linear
logic (e.g. [4, 16]).

Any monoid (M, ⋅, e) induces a monad M × (−) on the cate-
gory of sets. The premulticategory induced by the monoid embeds
in the Kleisli premulticategory induced by its monad, and the three
notions of commutativity for monoids, monads and premulticate-
gories coincide in this situation.

While many notions of computation can be described by mon-
ads, there is a difference between premulticategories and monads: a

strong monad cannot be defined without having a product structure
and a construction T . We argue that these constructions on types
(× and T) have nothing to do with impure computation. In Sec-
tion 8.3 we show that these constructions (× and T) have universal
properties when they exist, so that they need not be specified at all.

2.3 Structural laws
Our language for premulticategories doesn’t have any structural
laws. In a composite t ↝ x.u, there is a linearity constraint: the
variables in t must be distinct from the variables in u (except for x).
Moreover, the context cannot necessarily be reordered. There are
many situations in programming languages where non-linearity is
essential, and so we now explain how to introduce the structural
laws into the theory of premulticategories.

If Γ = (A1, . . . ,Am) and ∆ = (B1, . . . ,Bn) are lists of objects
then we define a renaming f ∶Γ → ∆ to be a function m → n such
that Ai = Bf(i) for i ≤ m. Renamings compose as functions. (See
also e.g. [9, §II.1].)

Definition 2. A premulticategory is cartesian when for every
morphism t∶Γ1 → A and every renaming f ∶Γ1 → Γ2 a morphism
t[f]∶Γ2 → A is given,

Γ1 ⊢ t ∶ A (f ∶Γ1 → Γ2)
Γ2 ⊢ t[f] ∶ A

such that t[idΓ] = t and t[f ; g] = (t[f])[g] when both sides are
defined, and satisfying the rule

∆1 ⊢ t ∶ A Γ1, x∶A,Γ′1 ⊢ u ∶ B
Γ2,∆2,Γ

′
2 ⊢ (t↝ x.u)[g1∣f∣g2] ≡ t[f]↝ x.u[g1∣idA∣g2] ∶ B

for any f ∶∆1 → ∆2, g1∶Γ1 → (Γ2,Γ
′
2) and g2∶Γ′1 → (Γ2,Γ

′
2),

where the renamings (g1∣f∣g2) ∶ (Γ1,∆,Γ′1) → (Γ2,∆2,Γ
′
2)

and (g1∣idA∣g2)∶ (Γ1, x∶A,Γ′1)→ (Γ2, x∶A,Γ′2) are defined in the
obvious way.

Special kinds of renaming correspond to the classical structural
laws. The bijective renamings of the form (Γ, x∶A,y∶B,Γ′) →(Γ, y∶B,x∶A,Γ′) determine the exchange laws; the injective re-
namings of the form wkx ∶ (Γ,Γ′) → (Γ, x∶A,Γ′) determine
the weakening laws; and the surjective renamings of the form
ctrcty,zx ∶ (Γ, y∶A, z∶A,Γ′)→ (Γ, x∶A,Γ′) determine the contrac-
tion laws. All renamings can be built from morphisms of these three
kinds (e.g. [6, 20]). We can work with a subset of the structural laws
by focusing on a particular well-behaved class of renamings:

Definition 3 (c.f. [22], Def 2.2.21). A premulticategory is symmet-
ric when for every morphism t∶Γ1 → A and every bijective renam-
ing f ∶Γ1 → Γ2 a morphism t[f] ∶ Γ2 → A is given such that the
rules in Definition 2 are satisfied.

(We emphasize that ‘symmetric’ and ‘commutative’ are not syn-
onyms.)

In a cartesian premulticategory, some morphisms interact par-
ticularly well with the renaming structure (c.f. [12]). We say that a
morphism t∶∆→ A is discardable if, for all u∶ (Γ,Γ′)→ B,

Γ,∆,Γ′ ⊢ t↝ x. (u[wkx]) ≡ u[wk∆] ∶ B
and t∶∆→ A is copyable if, for all u∶ (Γ, y∶A, z∶A,Γ′)→ B,

Γ,∆,Γ′ ⊢ t↝ x. (u[ctrcty,zx]) ≡ (t↝y. t↝z. u)[ctrct∆,∆
∆] ∶ B.

Definition 4. A cartesian multicategory is a cartesian premulticat-
egory in which every morphism is central, discardable and copy-
able.

(Various authors have investigated general categorical frame-
works that include symmetric multicategories, cartesian multicat-
egories, and many more elaborate examples [5, 7, 15, 22], but

those frameworks are based on simultaneous substitution and do
not seem to work well for premulticategories.)

3. Product types and tensor products
In the previous section we introduced an equational theory for pro-
grams with let-binding. We did this without making any assump-
tions about the type constructions in the language.

We now explain what it means for a language to have prod-
uct/record types. We do this by using the universal property of ten-
sor products, which is well understood for multicategories [14].
This universal property has the immediate consequence that any
two implementations of the product type are canonically isomor-
phic. In this sense, ‘having products’ is seen as a property and not
additional structure. (We discuss a limitation of this view in §5.2.)

In this section and in the following two sections on sums and
functions we will deal with particular concepts. In Section 7 we
provide general notions of representability and show that these
particular concepts are instances of the general notions.

3.1 Tensor products: definition
Consider a list ∆ = (A1, . . . ,An) of objects in a premulticategory.
The list ∆ can be thought of as a specification for a product type(A1 * . . .*An). The list is not actually a product type because it is
not actually an object. A tensor product for ∆ is a single object that
represents it.

Definition 5. A tensor product for a list of objects ∆ = (A1, ..,An)
is an object ⊗∆ together with a morphism ∆→ ⊗∆, which we no-
tate

x1∶A1, . . . , xn∶An ⊢ ⟨x1, . . . , xn⟩ ∶ ⊗∆
together with an operation on morphisms

Γ, x1∶A1, . . . , xn∶An,Γ
′ ⊢ t ∶ B

Γ, y∶ ⊗∆,Γ′ ⊢ y % ⟨x1 . . . xn⟩. t ∶ B (2)

for each pair of lists Γ,Γ′ and each object B. The notation
y % ⟨x1 . . . xn⟩. t should be understood as pattern matching a vari-
able of product type into its components x1 . . . xn, binding them
in t.

We require the morphism ∆ → ⊗∆ to be central (that is,⟨x1..xn⟩↝ y. t↝ z. u ≡ t↝ z. ⟨x1..xn⟩↝ y. u) and we impose
the following two conditions:

Γ, x1∶A1, . . . , xn∶An,Γ
′ ⊢ t ∶ B

Γ, x1∶A1, . . . , xn∶An,Γ
′ ⊢ ⟨x⃗⟩↝ y. (y % ⟨x⃗⟩. t) ≡ t ∶ B

Γ, y∶ ⊗∆,Γ′ ⊢ u ∶ B
Γ, y∶ ⊗∆,Γ′ ⊢ y % ⟨x1, . . . , xn⟩. (⟨x1, . . . , xn⟩↝ y. u) ≡ u ∶ B

The first equation says that if we form a tuple and then extract
its elements, nothing happens. The second equation says that if we
extract the elements of tuple and then build the tuple again, nothing
happens.

In Section 7.2.2 we will explain how this definition amounts to
representability in a more abstract sense.

3.2 Examples of tensors
In the multicategory of sets, every list of objects has a tensor
product. The tensor product of a list ∆ is the product set∏∆, that
is, the set of valuations for ∆. The universal morphism ∆→ ⊗∆ is
the identity function. Essentially the same representation works in
the premulticategory of stateful functions and the premulticategory
of arising from a monad on the category of sets.

Recall that a pointed set is a set A equipped with a chosen
element %A ∈ A. In the multicategory of pointed sets, every list

∆ = (A1, . . . ,An) has a tensor product given by the ‘smash
product’, which is a quotient of the free pointed set on the product
of ∆,

⊗∆ = ({%⊗∆} ∪∏∆)/∼
where ∼ is generated by %⊗∆ ∼ (a1, . . . ,%Ai , . . . , an).

Pointed sets are a simple algebraic theory. More generally, one
can build a multicategory from any algebraic theory, with algebras
as objects and multilinear maps as morphisms. A famous exam-
ple is the of multicategory of vector spaces which also has ten-
sor products. A well-known characterization theorem says that, for
a given algebraic theory, the multicategory of algebras has tensor
products if and only the corresponding free-algebra monad is com-
mutative (c.f. [25]).

Connection with programming languages. The syntax for tensor
products is very similar to the syntax in ML. In Standard ML, the
object ⊗∆ would be written (A1 * . . .*An), and the assignment
y % ⟨x1, . . . , xn⟩. t is written as follows:

let val (x1, . . . , xn) = y in t end.

The centrality of the universal morphism and the two equations are
straightforward observational equivalences. Thus we can build a
premulticategory with all tensor products whose objects are types
and whose morphisms are terms in context modulo observational
equivalence.

If the empty list () has a tensor product ⊗() then this behaves
like the unit type in ML. For instance, the sequencing notation(t ; u) can be understood as shorthand for t↝ x. x% ⟨⟩. u.

A convenient programming practice is to write tuples with terms
in the components. By fixing a left-to-right order of evaluation, we
have the following derived typing rule:

Γ1 ⊢ t1 ∶ A1 . . . Γn ⊢ tn ∶ An

Γ1..Γn ⊢ ⟨t1..tn⟩ def= t1 ↝ x1. .. tn ↝ xn. ⟨x1..xn⟩ ∶ ⊗∆ (3)

Connection with logic. The rule for matching (2) is the left rule
for tensor products in the sequent calculus presentation of linear
logic. The right rule of the sequent calculus looks like the derived
rule (3) although there is nothing canonical about it in the non-
commutative setting: the order of evaluation of t1 . . . tn matters
unless they are central.

3.3 Basic first results
We now state some basic results that can be derived from the
definition of tensor product. They are instances of general results
in Section 7.2.

Proposition 6. Matching associates and commutes with composi-
tion:

Γ1,∆,Γ′1 ⊢ t ∶ B Γ2, z∶B,Γ′2 ⊢ u ∶ C
Γ2,Γ1, y∶ ⊗∆,Γ′1,Γ′2 ⊢ (y%⟨x⃗⟩. t)↝z. u ≡ y%⟨x⃗⟩. (t↝z. u) ∶ C

Γ1 ⊢ t ∶ B Γ2,∆, z∶B,Γ′2 ⊢ u ∶ C
Γ2, y∶ ⊗∆,Γ1,Γ

′
2 ⊢ y % ⟨x⃗⟩. (t↝ z. u) ≡ t↝ z. (y % ⟨x⃗⟩. u) ∶ C

Proposition 7. For any list ∆ = (x1∶A1, . . . , xn∶An) of objects,
any object R and any morphism r∶∆ → R there is a unique
morphism t∶ (y∶ ⊗∆)→ R such that ⟨x1, . . . , xn⟩ ↝ y. t ≡ r. The
unique morphism t is central if r is central.

As a corollary of this result we achieve our main theorem:

Theorem 8. Tensor products are unique up to unique isomorphism,
and the unique mediating isomorphisms are central.

In other words, there is a canonical way to translate between
any two implementations of product types.

4. Sums and labelled variants
In the previous section we demonstrated that products can be given
a universal property in a model of an impure programming lan-
guage. In this section we show that sum types (labelled variants)
can also be given a universal property in a similar way.

4.1 Definitions: constructor contexts and sums
We fix an infinite set of ‘constructors’. A constructor context is a
finite partial function from constructors to objects of a premulticat-
egory. A sum for a constructor context ∆ is an object ⊕∆ and a
family of morphisms {∆(c)→ ⊕∆}c∈dom(∆):

(c ∈ dom(∆))
x∶∆(c) ⊢ c(x) ∶ ⊕∆

that is universal in the sense that each morphism is central and there
is an operation on morphisms

Γ, xc∶∆(c),Γ′ ⊢ tc ∶ A (c ∈ dom(∆))
Γ, y∶ ⊕∆,Γ′ ⊢ match y as (c(xc)⇒ tc)c∈dom(∆) ∶ A

subject to the following equations:

Γ, xc∶∆(c),Γ′ ⊢ tc ∶ A (c ∈ dom(∆))
Γ, xd∶∆(d),Γ′ ⊢ d(xd)↝y.match y as (c(xc)⇒ tc)c ≡ td ∶ A

Γ, y∶ ⊕∆,Γ′ ⊢ t ∶ A
Γ, y∶ ⊕∆,Γ′ ⊢ match y as (c(xc)⇒ (c(xc)↝ y. t))c ≡ t ∶ A

4.2 Examples of sums
Sums in set-theoretic premulticategories. The multicategory of
sets has sets as objects and multivariate functions as morphisms.
Sums of constructor contexts are given by disjoint unions:

⊕∆ def= {(c, a) ∣ a ∈∆(c)}.
The universal maps take a ∈ ∆(c) to (c, a) ∈ ⊕∆. A similar
analysis works for stateful functions and for the premulticategory
arising from a monad on a distributive category.

In the multicategory of pointed sets, the objects are sets A
equipped with an element %A, and the morphisms are multivariate
functions that are strict in each argument. This multicategory also
has sums of constructor contexts, given by a coalesced sum:

⊕∆ def= ({(c, a) ∣ a ∈∆(c)}⊎ %⊕∆)/∼ where %⊕∆ ∼ (c,%∆(c)).
Connections with programming languages. In ML-like lan-
guages, variant types must be declared. Given a constructor context
∆ = (c1∶A1, . . . , cn∶An), we would expect an ML definition

datatype ⊕∆ = c1 ∶ A1 ∣ . . . ∣ cn ∶ An.

The universal family of morphisms can be combined with compo-
sition to yield the more familiar term formation for constructors:

Γ ⊢ t ∶∆(c) (c ∈ dom(∆))
Γ ⊢ c(t) def= t↝ x. c(x) ∶ A

The equations in the definition are straightforward observational
equivalences in a programming language.

4.2.1 Basic first results
We state some basic properties that can be derived from the defini-
tion of sums. They are instances of general results in Section 7.2.

Proposition 9. Matching associates and commutes with composi-
tion:
Γ1, xc∶∆(c),Γ′1 ⊢ tc ∶ A (c ∈ dom(∆)) Γ2, z∶A,Γ′2 ⊢ u ∶ B
Γ2,Γ1, y∶ ⊕∆,Γ′1,Γ′2 ⊢match y as (c(xc)⇒ (tc ↝ z. u))c

≡ (match y as (c(xc)⇒ tc)c)↝ z. u ∶ B
Γ1 ⊢ t ∶ A Γ2, xc∶∆(c), z∶A,Γ′2 ⊢ uc ∶ B (c ∈ dom(∆))
Γ2, y∶ ⊕∆,Γ1,Γ

′
2 ⊢match y as (c(xc)⇒ (t↝ z. uc))c
≡ t↝ z. (match y as (c(xc)⇒ uc)c) ∶ B

Proposition 10. For any constructor context ∆, any object R and
any family of morphisms {rc∶ (x∶∆(c)) → R}c∈dom(∆), there is a
unique morphism t∶ (y∶ ⊕∆)→ R such that for all c ∈ dom(∆),

x∶∆(c) ⊢ c(x)↝ y. t ≡ rc ∶ R.

The mediating morphism t is central if each rc is central.
In consequence, sums are unique up to unique isomorphism, and

the unique mediating isomorphisms are central.

5. On values and Freyd multicategories
In impure programming languages it is usually necessary to iden-
tify a class of values among the class of all programs. For instance,
in an impure functional programming language, the most natural
evaluation strategy for function application is call-by-value: expres-
sions are reduced to values before they are passed as arguments.

We have proposed to understand a program as a morphism in
a premulticategory. To accommodate values, we must identify a
class of morphisms which are the values. We call this structure
a ‘Freyd multicategory’. The idea of distinguishing between val-
ues and computations is long-established in the categorical study
of semantics, stemming from Moggi’s distinction between ordi-
nary morphisms and Kleisli morphisms [30], running through the
work on premonoidal categories (e.g. [18, 32, 33]) and Freyd cat-
egories [24, 34]. The distinction between values and computations
also arises in ‘arrows’ in functional programming [2, 3, 17] and
forms the basis of recent syntactic systems (e.g. [8, 23, 28]). The
idea of identifying a class of values also plays a crucial technical
role from the perspective of morphisms between premulticategories
with tensor products.

5.1 Morphisms of premulticategories
If premulticategories represent programming languages, then a
morphism between them is a compositional translation.

Definition 11. Let C and D be premulticategories. A morphism
F ∶ C → D is given by an assignment of an object FA ofD to each
object A of C, and an assignment of a morphism Ff ∶ FΓ → FB
in D to each morphism f ∶Γ → B in C, such that identities and
composition are preserved.

Our running example concerns the two-element monoid S2 =({flip, e}, ⋅, e) where flip ⋅ flip = e. As explained in Sec-
tion 2.2, the monad S2 × (−) on the category of sets induces a
Kleisli premulticategory C whose objects are sets and where a mor-
phism Γ → B is a function∏Γ → S2 ×B. It can be thought of as
a semantics for a simple programming language with a command
flip that flips the contents of a bit of memory.

We also consider the premulticategory D of stateful functions
(§2.2) with two states Bool = {True,False}. The objects of D
are sets and the morphisms Γ → B are functions ∏Γ × Bool →
B ×Bool .

There is a morphism of multicategories F ∶C → D that is iden-
tity on objects and takes a morphism f ∶ Γ→ B in C to the stateful
function given by (Ff)(a⃗, s) = (b, s xor s′)where f(a⃗) = (b, s′),

i.e., interpreting the command flip as an instruction that flips the
state. This can be understood as arising from a monad morphism(S2 × −)→ (− ×Bool)Bool .

5.2 Discussion: Preservation of tensors
We now investigate what it means for a morphism of premulticat-
egories to preserve tensor products. Since tensor products have a
universal property we would expect preservation of tensors to be a
property rather than extra structure.

Given a list ∆ = (A1, . . . ,An) of objects of V and a tensor
product r∶∆→ R, we say that a morphism F ∶C → D preserves the
tensor if Fr is also a tensor.

Proposition 12. Let F ∶ C → D be a morphism between premulti-
categories, where C has tensor products. The following are equiva-
lent:

1. F preserves every tensor product.
2. F preserves central isomorphisms, and every list of objects inC has a tensor product that is preserved by F .

The issue here is that there may be many different tensors for a
given list of objects, all related by canonical central isomorphisms.
If F preserves central isomorphisms, e.g. ifD is is a multicategory,
then the equivalence of items 1 and 2 allows us to check that F
preserves all tensor products by checking that one chosen tensor
product is preserved.

To illustrate this, let us return to our example of the Kleisli
premulticategory C and the premulticategory D of stateful func-
tions. The premulticategory C is actually a multicategory, since e
and flip commute. The morphism F ∶ C → D does not preserve
centrality, because F (flip, id) ∶ ()→ 1 is not central in D.

This example also illustrates the complications involved with
preservation of tensor products in the non-commutative setting.
In C, every list ∆ has a tensor product given by (e, id)∶∆→∏∆.
This is a reasonable implementation of the tensor product from
the programming language perspective. This tensor product is pre-
served by the morphism F ∶ C → D into the premulticategory of
stateful functions. However, the structure (flip, id)∶∆ → ∏∆
also happens to be a tensor product of the list ∆ in C. This ten-
sor product is not preserved by the morphism F ∶C → D, because
F (flip, id) is not central in D.

In the example, informally, (flip, id) is central in C by acci-
dent: it would have been better to explicitly designate (e, id) as a
value and (flip, id) as a non-value. We could then require this
special class of central ‘value’ morphisms to be used for the rep-
resentations for tensors, and we could require this class of value
morphisms to be preserved by morphisms of premulticategories.

Before we make this formal, we briefly consider another way
to resolve the situation: we could remove the requirement that
the representing morphism ∆ → ⊗∆ be central. This is diffi-
cult to motivate from a pragmatic perspective. Moreover from the
mathematical perspective it is badly behaved, because the induced
family of associativity morphisms αA,B,C ∶ ⊗(⊗(A,B), C) →⊗(A,⊗(B,C)) is not natural and moreover does not support a co-
herence result: the pentagon diagram does not commute (see §8).

5.3 Definition: Freyd multicategory
Informally, a Freyd multicategory is a premulticategory that is
equipped with data about which morphisms are values.

Formally, a Freyd multicategory is a morphism return ∶V → C
from a multicategory V to a premulticategory C such that V and C
have the same objects and return is identity on objects and pre-
serves centrality. The idea is that morphisms in V are values, mor-
phisms in C are computations, and return(v) is the computation
that immediately returns v. We do not require return to be injec-
tive on morphisms, although it often will be in practice.

We notate Freyd multicategories by introducing a special judge-
ment Γ ⊢V v ∶ A of values (morphisms in V) and a rule

Γ ⊢V v ∶ A
Γ ⊢ return(v) ∶ A

describing the morphism return ∶V → C. The functoriality of
return is expressed by the following equations:

x∶A ⊢ x ≡ return(x) ∶ A
∆ ⊢V v ∶ A Γ, x∶A,Γ′ ⊢V w ∶ B

Γ,∆,Γ′ ⊢ return(v ↝ x.w) ≡ return(v)↝ x. return(w) ∶ B
We also have the two equations stating that values are central
among all morphisms (§2.1).

Because V is a multicategory and V → C preserves centrality
then we can understand return(v)↝ x. t as an explicit substitution
of the value v for x in t. In the syntax, we can textually substitute
t{v/x} as shorthand for return(v) ↝ x. t. (Note that this implicit
substitution is only an informal convention, whereas it is genuine
syntax in the explicit substitutions of Abadi et al. [1].)

A morphism of Freyd multicategories

(F1, F2) ∶ (V return&&&→ C) &→ (V ′ return′&&&&→ C′)
is a pair of morphisms between premulticategories (F1∶V → V ′,
F2∶C → C′) such that return ′ ○ F1 = F2 ○ return .

5.3.1 Examples of Freyd multicategories
Recall that the premulticategory of stateful functions has sets as
objects and stateful functions as morphisms. A stateful function
Γ → A is an ordinary function (∏Γ) × S → A × S, where S is
a fixed set of states. In this context we let our multicategory of
values be the multicategory of sets and pure (stateless) functions,
and return ∶V → C is the evident inclusion morphism, which is
faithful provided S is not empty.

Given a monad T , recall that the associated Kleisli premulti-
category has sets as objects and morphisms Γ → A are ordinary
functions (∏Γ) → T (A). In this context we let our multicategory
of values be the category of sets and pure functions. The morphism
return ∶V → C is defined by the unit of the monad.

We can now revisit our morphism C → D from the Kleisli pre-
multicategory induced by the monad (S2 × −) to the premulticat-
egory of stateful functions (§5.2). In both cases, the value mul-
ticategory is the multicategory of sets and pure functions, and(Id, F) ∶ C → D is a morphism of Freyd multicategories.

5.3.2 Tensors and sums in Freyd multicategories
We define a Freyd multicategory with tensors/sums to be a Freyd
multicategory return ∶V → C in which V has tensors/sums and
return preserves them. This makes sense because return preserves
centrality.

We say that a morphism of Freyd multicategories (F1, F2) ∶(V → C) → (V ′ → C′) preserves tensors (resp. sums) if F1 pre-
serves tensors (resp. sums). To illustrate, we return to our motivat-
ing example: the morphism from the Freyd multicategory induced
by the monad (S2 ×−) to the Freyd multicategory of stateful func-
tions. This does preserves tensors.

As an aside we remark that, from the syntactic point of view, it
is slightly unnatural to ask for V to have tensors/sums. For tensors,
although it is usual to consider the representing maps ⟨v1, . . . , vn⟩
as values, it is less common to consider the pattern matching syntax
x % ⟨y⃗⟩. v as a value expression. Levy [24] coined the phrase
‘complex value’ for this situation. Our framework provides us with
an option for describing tensors without using complex values,

by asking C to have tensors and for the representing maps to
come from V , without asking for V to have tensors. Using implicit
substitution, we would have a more familiar grammar for values:

v ∶∶= ⟨v1, . . . , vn⟩ ∣X[v] ∣ . . .
Notice that these maps in V are not uniquely determined unless the
functor return ∶V → C is injective on morphisms. Moreover, two
such representations are not necessarily isomorphic in V .

5.3.3 Structural laws
We can also speak of symmetric Freyd multicategories, which
are Freyd multicategories return ∶V → C such that V and C are
symmetric (Def. 3) and return preserves the renaming structure:

Γ1 ⊢V v ∶ A (f ∶Γ1
≅→ Γ2)

Γ2 ⊢ return(v[f]) ≡ (return(v))[f] ∶ A
We say that a Freyd multicategory return ∶V → C is cartesian
when V is cartesian as a multicategory (Def. 4), C is cartesian
as a premulticategory (Def. 2), and return preserves the renaming
structure. All the examples in Section 5.3.1 are cartesian.

6. Function spaces
We have introduced an equational theory for impure programs (§2)
and shown that product and sum types can be characterized by
universal properties (§3, 4). We now characterize call-by-value
function types by a universal property.

We characterize function types in the context of Freyd multi-
categories (§5.3) by retracing the steps taken by Power and Thi-
elecke [34]. The key point is that first-class call-by-value functions
can delay computations. For instance, in ML the expression

fn x => (print "testing" ; 3)

does not immediately print: it will only print when applied to an
argument. We use Freyd multicategories to distinguish between
computations, which can be delayed, and values, which cannot be
delayed.

In what follows we will assume that our premulticategories are
symmetric, in the sense of Section 2.3. This means that objects in
contexts can be reordered. It is clumsy to work with function spaces
without this assumption.

6.1 Definition: function spaces
We define the concept of function space in the setting of a sym-
metric Freyd multicategory (§5.3): a symmetric multicategory V
(values), a symmetric premulticategory C (computations) and an
identity-on-objects morphism of symmetric premulticategories
return ∶V → C such that each return(v) is central.

Let ∆ be a list of objects and let A be an object. We will define
what it means for the Freyd multicategory to have a function space(∆ ⇒ A). The idea is that the ‘inhabitants’ of the function space
are functions that take a valuation of the context ∆ and return a
result of type A, perhaps with some side-effects along the way.
When ∆ is empty then the object (∆ ⇒ A) behaves like a space
of delayed computations, like Moggi’s monadic type constructor.

We do not have the currying isomorphism in a call-by-value
language, and unless the Freyd multicategory has all tensor prod-
ucts we cannot accurately express n-ary functions in terms of unary
functions.

Definition 13. A symmetric Freyd multicategory return ∶V → C
has function spaces if for every list ∆ = (x1∶A1, . . . , xn∶An)
and every object B there is an object (∆ ⇒ B) and a morphism(∆⇒ B,∆)→ B (not necessarily central):

f ∶∆⇒ B,x1∶A1, . . . , xn∶An ⊢ f(x⃗) ∶ B

together with an operation on morphisms:
Γ,∆ ⊢ t ∶ B

Γ ⊢V λ(∆)t ∶ (∆⇒ B) (4)

subject to the following equations:
Γ,∆ ⊢ t ∶ B

Γ,∆ ⊢ return(λ(x⃗)t)↝ f. f(x⃗) ≡ t ∶ B
Γ ⊢V v ∶∆⇒ B

Γ ⊢V λ(x⃗). (return(v)↝ f. f(x⃗)) ≡ v ∶∆⇒ B

We work up to α-equivalence — we consider variables to be
informal notation for indices in lists.

6.2 Examples of function spaces
Set theoretic examples. The Freyd multicategory of sets hasV = C as the multicategory with sets as objects and multivariate
functions as morphisms. The function space (∆ ⇒ B) is the set
of functions (∏∆) → B. The representing map is the evaluation
function, which takes a function and a valuation and evaluates that
function.

Recall that the Freyd multicategory of stateful functions has V
as the multicategory of sets and functions and C as the premulticat-
egory of sets and stateful functions. The function space (∆⇒ B)
is the set of all stateful functions ∆→ B. Notice that, in particular,
the function space (()⇒ B) is the state monad (S → B × S).

Given a monad T on the category of sets, recall that the corre-
sponding Freyd multicategory has V as the multicategory of sets
and functions and C as a premulticategory of sets and Kleisli func-
tions. The function space (∆ ⇒ B) is the set of all functions(∏∆) → T (B). In particular, the function space (() ⇒ B) is
isomorphic to the monad T .

Connection to programming languages. The connection with
programming languages is hopefully clear. The two equations are
variants of the β and η equations which are straightforward obser-
vational equivalences in all higher-typed languages. We suggest the
following syntactic sugar: let

f(t1, . . . , tn) def= t1 ↝ x1. .. tn ↝ xn. f(x⃗). (5)

In this ‘call-by-value’ semantics, expressions are reduced before
being passed as arguments.

We certainly have not captured exactly observational equiva-
lence. That is not our aim. Our aim is to identify an equational
theory that holds in all good models. Our equations hold in syntac-
tic models and also in more semantic models which are not fully
abstract but which are nonetheless useful.

Connections with proof theory. Let us briefly investigate the
extent to which the Curry-Howard correspondence is relevant in the
call-by-value setting. The rule for λ-abstraction (4) is essentially
the right implication rule of the sequent calculus. The syntactic
sugar (5) leads to the left rule for implication:

Γ ⊢ t1 ∶ A1 . . . Γ ⊢ tn ∶ An Γ, y∶B ⊢ u ∶ C
Γ, f ∶ (A1, . . . ,An)⇒ B ⊢ f(t1, . . . , tn)↝ y. u ∶ C

which is clearly not canonical, because it depends on the order of
t1, . . . , tn. In fact, the explicit let-binding helps us to distinguish
different proofs. For example, consider the following two terms:

f ∶A⇒ B,x∶A ⊢ return(λ(y∶C). (f(x))) ∶ C ⇒ B

f ∶A⇒ B,x∶A ⊢ (f(x))↝ w. return(λ(y∶C).w) ∶ C ⇒ B

If (f(x)) is a value, which is an assumption that the language is
pure, then these terms are equal. Without this assumption, these

are two distinct terms which correspond to two different sequent
calculus proofs, as first observed by Herbelin [13].

7. Representability in general
The last two technical sections of this article place our work on a
secure abstract foundation.

Throughout this article we have spoken of representability and
universal properties on the understanding that these concepts lend a
canonical status to various constructions. We now provide a general
notion of representability that accounts for the constructions that
we have introduced: products, sums and function spaces.

For an ordinary category C there are two notions of repre-
sentability that are dual to each other: we can speak of repre-
sentability for a covariant functor C → Set and of representabil-
ity for a contravariant functor Cop → Set. The covariant notion of
representability allows us to describe colimits, and the contravari-
ant notion allows us to describe limits.

The situation is more sophisticated with multicategories, for
there is no reasonable notion of ‘dual’ for multicategories. Thus we
must treat the two variances differently. We do this by considering
representability for left and right modules of (pre)multicategories.

Very informally, we may say that a left or right module specifies
a concept – a concept like product, sum or function. A representa-
tion for the module is a first class type that represents the concept.

Throughout this section we work with symmetric premulticate-
gories. This means that we can reorder the contexts, which makes
the notation easier.

7.1 Left modules and left representability
We introduce a notion of left module and of representability for
premulticategories. This general notion specializes to our charac-
terization of function types.

7.1.1 Definitions and first results
Given a symmetric premulticategory C we define a left module M
to be an assignment of a set M(Γ) to each list Γ of objects, together
with a family of functions

µΓ,A,∆,Γ′ ∶ C(∆;A) ×M(Γ,A,Γ′)→M(Γ,∆,Γ′)
satisfying two conditions. We write Γ ⊢M t when t ∈ M(Γ), and
we write

∆ ⊢ t ∶ A Γ, x∶A,Γ′ ⊢M u

Γ,∆,Γ′ ⊢M t
M↝ x.u

for µΓ,A,∆,Γ′(t, u). The two conditions are

Γ, x∶A,Γ′ ⊢M t

Γ, x∶A,Γ′ ⊢M x
M↝ x. t ≡ t (LM1)

Γ3 ⊢ t ∶ A Γ2, x∶A,Γ′2 ⊢ u ∶ B Γ1, y∶B,Γ′1 ⊢M v

Γ1,Γ2,Γ3,Γ
′
2,Γ

′
1 ⊢M t

M↝ x. (u M↝ y. v) ≡ (t↝ x.u) M↝ y. v
(LM2)

Representations of left modules. For a fixed object R, we can
understand C(−;R) as a left module.

Definition 14. Let M be a left module for a symmetric premulti-
category C. A representation of M is an object R of C together with
an isomorphism of left modules:

{C(Γ;R) ≅M(Γ)}Γ
(An isomorphism of left modules is a family of bijections that
respects the left module structure.)

A representation is always determined by an object R and an
element of M(R). To show this, we use the following variant of

the Yoneda lemma. (Technically this can be seen an instance of the
Yoneda lemma for ordinary categories.)

Proposition 15. Let M be a left module for a symmetric premulti-
category C and let R be an object. To give a left module morphism{C(Γ;R)→M(Γ)}Γ is to give an element of M(R).

In more detail, given an object R and an element r ∈M(R) we
have a family of functions (R, r)Γ ∶ C(Γ;R) → M(Γ) given by
(R, r)Γ(t) def= t

M↝ x. r:
Γ ⊢ t ∶ R

Γ ⊢M t
M↝ x. r

(using x∶R ⊢M r).

Conversely, given a left module morphism, i.e. a family of func-
tions {φΓ∶C(Γ;R)→M(Γ)}Γ that respects the left module struc-
ture, we recover an element φR(idR) of M(R). Proposition 15
says that these two constructions are mutually inverse.

Corollary 16. Let M be a left module of a symmetric premulticat-
egory. The following data are equivalent.

• A representation for M (Def. 14).
• An object R and an element r ∈M(x∶R) together with a family

of functions ρΓ ∶M(Γ)→ C(Γ;R) notated
Γ ⊢M t

Γ ⊢ ρ t ∶ R
satisfying the following conditions:

Γ ⊢M t

Γ ⊢M (ρ t) M↝ x. r ≡ t
Γ ⊢ t ∶ R

Γ ⊢ ρ(t M↝ x. r) ≡ t ∶ R (LR1–2)

Uniqueness of representations.
Proposition 17. If (R, r ∈M(x∶R)) is a representation of M and
a ∈ M(y∶A) then there is a unique morphism t∶ (y∶A)→ R such
that y∶A ⊢M a ≡ t

M↝ x. r. In consequence, representations are
unique up to unique isomorphism.

7.1.2 Example: function spaces
In Section 6 we defined a notion of function space for Freyd
multicategories return ∶V → C. Given a context ∆ and an object B,
we define a module M for V as follows:

M(Γ) def= C(Γ,∆;B).
The module structure µ is defined in terms of the premulticategory
structure of C:

Γ2 ⊢V v ∶ A Γ1, x∶A,Γ′1 ⊢M u

Γ1,Γ2,Γ
′
1 ⊢M (v M↝ x.u) def= (return(v)↝ x.u)

The two conditions LM1–2 are immediately verified.
The data for a left representation is exactly the data for a func-

tion space (∆ ⇒ B). The axioms LR1–2 are exactly the axioms
for function spaces in Section 6.1.

7.1.3 Centrality in terms of module morphisms
We briefly remark that left modules provide a more abstract account
of centrality. Recall that a morphism t is central if it commutes with
all morphisms: for all u and v, t ↝ x.u ↝ y. v ≡ u ↝ y. t ↝ x. v.
This can be explained in a more abstract way as follows. Every
morphism t∶∆ → A determines a family of functions between sets
of morphisms:

(t↝ x.−) ∶ C(Γ, x∶A;B)→ C(Γ,∆;B)
The domain and codomain have an obvious left module structure,
and the morphism t is central if and only if this family of functions
is a left module morphism for all B.

7.2 Right modules and right representability
We now provide a notion of right module, which is an account
of composing on the right. The induced notion of representability
accounts for the product and sum types that we introduced in
Sections 3 and 4.

7.2.1 Definitions and first results
Given a symmetric premulticategory C we define a right module M
to be an assignment of a set M(Γ;A) to each list Γ and each
object A, together with for each B the structure of a left module
(§7.1.1)

µΓ,A,∆,Γ′;B ∶ C(∆;A) ×M(Γ,A,Γ′;B)→M(Γ,∆,Γ′;B)
and also a family of functions

µ̄Γ,∆,A,Γ′;B ∶M(∆;A) × C(Γ,A,Γ′;B)→M(Γ,∆,Γ′;B)
satisfying three conditions. We use the following notation: we write
Γ ⊢M t ∶ A if t ∈M(Γ;A), and we write

∆ ⊢ t ∶ A Γ, x∶A,Γ′ ⊢M u ∶ B
Γ,∆,Γ′ ⊢M t

M↝ x.u ∶ B
∆ ⊢M t ∶ A Γ, x∶A,Γ′ ⊢ u ∶ B

Γ,∆,Γ′ ⊢M t
M↝ x.u ∶ B

for µΓ,A,∆,Γ′;B(t, u) and µ̄Γ,A,∆,Γ′;B(t, u) respectively. The three
conditions (in addition to LM1 and LM2) are

Γ ⊢M t ∶ A
Γ ⊢M t

M↝ x. x ≡ t ∶ A (RM1)

Γ3 ⊢M t ∶ A Γ2, x∶A,Γ′2 ⊢ u ∶ B Γ1, y∶B,Γ′1 ⊢ v ∶ C
Γ1,Γ2,Γ3,Γ

′
2,Γ

′
1 ⊢M (tM↝ x.u)M↝ y. v ≡ tM↝ x. (u↝ y. v) ∶ C

(RM2)

Γ3 ⊢ t ∶ A Γ2, x∶A,Γ′2 ⊢M u ∶ B Γ1, y∶B,Γ′1 ⊢ v ∶ C
Γ1,Γ2,Γ3,Γ

′
2,Γ

′
1 ⊢M (t M↝ x.u)M↝ y. v ≡ t M↝ x. (uM↝ y. v) ∶ C

(RM3)
The last condition, RM3, specifies that the left (µ) and right (µ̄)
structures associate with each other. Technically, our notion of right
module can be seen as an instance of a general concept in locally
indexed category theory and the self construction (see [23, §9.3.4,
§9.3.6]).

Representations of right modules. For a fixed object R, the as-
signment M(Γ;A) = C(Γ,R;A) can be made into a right module
in a straightforward way.

Definition 18. Let M be a right module for a premulticategory C.
A representation of M is an object R of C together with an isomor-
phism of right modules

{C(Γ,R;A) ≅M(Γ;A)}Γ,A

(An isomorphism of right modules is a family of bijections that
respects the right module structure — that is, both µ and µ̄.)

A representation is always determined by an object R and an
element of M(R). This follows from a new variant of the Yoneda
lemma, for which we need the following definition.

Definition 19. Let M be a right module for a premulticategory.
An element t ∈ M(Γ1;A) is central if it satisfies the following
equations:

Γ2 ⊢ u ∶ B ∆1, x∶A,∆2, y∶B,∆3 ⊢ v ∶ C
∆1,Γ1,∆2,Γ2,∆3 ⊢M t

M↝ x. (u↝ y. v) ≡ u M↝ y. (tM↝ x. v) ∶ C
Γ2 ⊢ u ∶ B ∆1, y∶B,∆2, x∶A,∆3 ⊢ v ∶ C

∆1,Γ2,∆2,Γ1,∆3 ⊢M t
M↝ x. (u↝ y. v) ≡ u M↝ y. (tM↝ x. v) ∶ C

Proposition 20. Let M be a right module of a symmetric premulti-
category C and let R be an object. To give a right module mor-
phism {C(Γ,R;A) → M(Γ;A)}Γ,A is to give a central element
in M(();R).
Corollary 21. Let M be a right module of a symmetric premulti-
category. The following data are equivalent.

• A representation for M (Def. 18).
• An object R and a central element r ∈M(();R) together with

a family of functions ρΓ,A ∶M(Γ;A)→ C(Γ,R;A) notated
Γ ⊢M t ∶ A

Γ, x∶R ⊢ ρ(x, t) ∶ A
satisfying the following conditions:

Γ ⊢M t ∶ A
Γ ⊢M r

M↝ x.ρ(x, t) ≡ t ∶ A (RR1)

Γ, x∶R ⊢ t ∶ A
Γ, x∶R ⊢ ρ(x, rM↝ x. t) ≡ t ∶ A (RR2)

Uniqueness of representations.
Proposition 22. If (R, r ∈ M((),R)) is a representation of M
and a ∈M(();A) then there is a unique morphism t∶ (x∶R) → A

in C such that − ⊢M r
M↝ x. t ≡ a ∶ A. If a is central then so is t.

In consequence, representations are unique up to unique iso-
morphism and the unique mediating isomorphism is central.

7.2.2 Examples: products and sums
• Given a list ∆, define a right module M∆ by

M∆(Γ;A) def= C(Γ,∆;A).
A representation for M∆ is a tensor product ⊗∆ in the sense of
Section 3.1.

• Given a constructor context ∆ (§4.1), define a right mod-
ule M∆ by M∆(Γ;A) def= ∏c∈dom(∆) C(Γ,∆(c);A). A repre-
sentation for M∆ is a sum ⊕∆ in the sense of Section 4.1.

8. Premonoidal categories and monads
In Section 2 we defined premulticategories as a notion of model for
an impure programming language with variables and let-binding.
We argue that this is the primitive setting for studying call-by-value
impure programming languages.

In Sections 3 and 4 we showed that products and sums can
be characterized by a universal property, which means that they
are unique up to unique isomorphism. In Section 6 we provided a
similar universal property for function spaces.

We now justify our work by showing that it subsumes earlier
axiomatizations of call-by-value programming languages: the pre-
monoidal and Freyd categories of Power and Robinson [33] and the
monadic models of Moggi [30].

• We show that a premonoidal category is essentially the same
thing as a premulticategory with tensor products.

• We show that a Freyd category is essentially the same thing as
a cartesian Freyd multicategory with tensor products.

• We show that a strong monad on a category with finite products
is essentially the same thing as a cartesian Freyd multicategory
with tensor products and function types with empty domain.

• We show that a λC -model is essentially the same thing as
a cartesian Freyd multicategory with tensor products and all
function types.

The last three facts can be deduced from the first one by building
on earlier work by Levy, Power and Thielecke [24].

8.1 Premonoidal categories
We now recall the notion of premonoidal category. Before we be-
gin, we give some concrete examples. The category of sets and
functions is a premonoidal category, with the product of sets form-
ing a premonoidal structure. Indeed, any monoidal category is a
premonoidal category. But the motivating example is the Kleisli
category for a monad. Let T be a monad on the category of sets.
Recall that the Kleisli category of T has objects sets and that mor-
phisms A → B are functions A → T (B). The product of sets
induces a premonoidal structure on this Kleisli category which is
typically not monoidal.

In Section 8.2 we will show how to convert a premulticategory
to a premonoidal category. This will suggest a premonoidal cate-
gory built from the syntax of a programming language.

Our definition of premonoidal category is streamlined by tak-
ing things up a level: we take advantage of a multicategory whose
objects are themselves categories. We start by defining strict pre-
monoidal categories, and move gradually to premonoidal cate-
gories.

8.1.1 A multicategory of categories
We organize the collection of all ordinary categories into a symmet-
ric multicategory Catm. The objects of the multicategory Catm
are themselves ordinary categories, and so our contexts Γ are lists
of categories. A morphism F ∶ Γ → A in Catm is defined to
be a mapping that is functorial in each argument. For instance,
if Γ = (B,C) then for each pair of objects B and C, respec-
tively from B and C, an object F (B,C) of A must be given, and
this must extend to families of functors F (−, C) ∶ B → A and
F (B,−) ∶ C → A (but not necessarily a functor B × C → A).

This multicategory has tensor products [11] and this struc-
ture has been used in various areas, from rewriting theory [36]
to bunched implications [31, Ex. 14].

8.1.2 Strict premonoidal categories
Before turning to premonoidal categories in general, we define
strict premonoidal categories. A strict premonoidal category [33] is
a monoid in the multicategory Catm. A monoid in a multicategory
is an objectA with morphisms − ⊢ i ∶ A and x∶A, y∶A ⊢ x⊙y ∶ A
satisfying the monoid laws:

y∶A ⊢ i↝ x. x⊙ y ≡ y ∶ A x∶A ⊢ i↝ y. x⊙ y ≡ x ∶ A
x, y, z ∶ A ⊢ x⊙ y ↝ w.w ⊙ z ≡ y ⊙ z ↝ w.x⊙w ∶ A.

(6)

In Catm, the morphism i ∶ ()→ A is the same thing as an object of
the category A. The construction ⊙ ∶ (A,A) → A is not a functorA×A→ A from the product of categories, but rather a construction
that is functorial in each argument.

8.1.3 Central morphisms
Just as central morphisms play a crucial role in premulticategories,
they also play an important role in the theory of premonoidal
categories.

We begin by recalling that a binoidal category [33] is a categoryA together with a morphism ⊙ ∶ (A,A) → A in the multicategory
Catm. For each object C and each morphism f ∶A → B we have
morphisms (f⊙C) ∶ A⊙C → B⊙C and (C⊙f) ∶ C⊙A→ C⊙B.
Given morphisms f ∶A → B, g∶C → D in A we thus have two
morphisms A⊙C → B ⊙D:

A⊙C f⊙C&&→ B⊙C B⊙g&&→ B⊙D A⊙C A⊙g&&→ A⊙D f⊙D&&→ B⊙D
If these are equal, we say that f and g commute. A morphism in a
binoidal category is central if it commutes with all morphisms.

8.1.4 Premonoidal categories
In the multicategory Catm the sets of morphisms (A1 . . .An)→ B
can themselves be considered as categories. Given morphisms
F,G ∶ (A1 . . .An)→ B, a 2-cell α∶F → G comprises a family
of morphisms αA⃗∶F (A⃗) → G(A⃗) in B indexed by lists of objects(A1 . . .An) from categories A1 . . .An respectively, that is nat-
ural in each argument. With this in mind, we can weaken (6) by
replacing the equalities with central natural isomorphisms.

Definition 23 ([33]). A premonoidal category is a binoidal cate-
gory (A,⊙ ∶ (A,A) → A) with an object i and central natural
isomorphisms

λy ∶ i⊙ y ≅ y ρx ∶ x⊙ i ≅ x αx,y,z ∶ (x⊙ y)⊙ z ≅ x⊙ (y ⊙ z)
that make the following triangle and pentagon laws hold:

(i⊙ x)⊙ y

(λx⊙y) !!!!!!!!!!!

αi,x,y "" i⊙ (x⊙ y)
λx⊙y##

x⊙ y

(x⊙ y)⊙ i
ρx⊙y

##

αx,y,i "" x⊙ (y ⊙ i)
x⊙ρy$$"""""""""

x⊙ y

((wx)y)z (αw,x,y)⊙z""
αw⊙x,y,z ##

(w(xy))z αw,x⊙y,z "" w((xy)z)
w⊙αx,y,z##(wx)(yz)

αw,x,y⊙z "" w(x(yz))
Note that while the centrality of λ, ρ, and α is reasonable from

a pragmatic perspective, it is ad hoc in that it does not come from
the analysis of Catm as a 2-multicategory.

8.1.5 Coherence
The definition of premonoidal category is not based on universal
properties and so, a priori, there is nothing canonical about λ,
ρ and α. A canonical status is given by the coherence theorem
(Proposition 25) which characterizes the morphisms that can be
built from λ, ρ and α.

Definition 24. Let A be a set. An object-string is generated from
the grammar

S,T ∶∶= i ∣ (S ⊙ T) ∣ A (A ∈ A).
such that each element of the set A appears exactly once. An
isomorphism-string between object-strings, f ∶ S → T , is a string
that is built using composition,⊙, λ, ρ, α and their inverses, subject
to the obvious well-formedness condition.

Proposition 25 ([33]). Let S and T be object-strings. All isomor-
phism strings f, g ∶ S ≅ T are equal when interpreted in any pre-
monoidal category.

Coherence theorems like this form an important part of the cat-
egory theory literature. Nonetheless we contend that it is more de-
sirable that the structure arises a priori from universal properties,
which is the content of our main theorem (Theorem 26). For one
thing, the universal properties place the structure closer to program-
ming language syntax.

8.2 Main theorem
Our main theorem provides a connection between premulticate-
gories with tensor products and premonoidal categories. It is a vari-
ation of the established connection between multicategories with
tensor products and monoidal categories [14, 22].

Theorem 26. Let A be a set. The following data are equivalent.

1. A premulticategory with tensor products whose objects are A.
2. A premonoidal category whose objects are A.

This section is devoted to the proof of this theorem. We begin
with the following straightforward property of tensor products in
premulticategories.

Proposition 27. A premulticategory has all tensor products if and
only if it has tensor products of the empty list and of every two
element list.

Of course, it is sometime useful to have explicit n-ary product
types, but the universal property tells us that any two implementa-
tions are canonically isomorphic.

From a premulticategory to a premonoidal category. Given a
premulticategory C with tensor products, we define a premonoidal
category. A morphism f ∶A → B in the premonoidal category is
a morphism f ∶ (A) → B in C. Composition and identities are
immediately derived from the premulticategory too.

The unit of the premonoidal structure is ⊗(), and the pre-
monoidal tensor A ⊙ C is the tensor product ⊗(A,C) in the pre-
multicategory. This can be made into a binoidal structure: given
x∶A ⊢ f ∶ B and y∶C ⊢ g ∶D, let

f ⊙C
def= z∶ ⊗(A,C) ⊢ z % ⟨x, y⟩. f ↝ x′. ⟨x′, y⟩ ∶ ⊗(B,C)

A⊙ g
def= z∶ ⊗(A,C) ⊢ z % ⟨x, y⟩. g ↝ y′. ⟨x, y′⟩ ∶ ⊗(A,D)

One verifies that this structure is functorial (preserves composition
and identities) by some algebraic manipulation using the axioms
for premulticategories, which we omit for brevity.

Having the binoidal structure in place we can note that the two
notions of centrality are related:

Proposition 28. A morphism f ∶ (A) → B in a premulticategory
is central (§2.1) if and only if it is central in the induced binoidal
category (§8.1.3).

(This is deduced by algebraic manipulation.)
The coherence isomorphisms in the premonoidal category are

defined by

λB
def= z∶ (⊗(⊗(),B)) ⊢ z % ⟨x, y⟩. x% ⟨⟩. y ∶ B

ρA
def= z∶ (⊗(A,⊗())) ⊢ z % ⟨x, y⟩. y % ⟨⟩. x ∶ A

αA,B,C
def= xyz∶ (⊗(⊗(A,B), C)) ⊢

xyz%⟨xy,z⟩. xy%⟨x,y⟩.⟨x,⟨y,z⟩⟩ ∶ (⊗(A,⊗(B,C)))
Again, some algebraic manipulation is needed to show that these
morphisms are isomorphisms, that they are central, that they are
natural, and that they satisfy the coherence diagrams.

From a premonoidal category to a premulticategory. We begin
with some remarks about contexts in a premonoidal category. A list
of objects determines an object ∣Γ∣ of the premonoidal category:

∣A1,A2,A3, . . . ,An∣ def= ((((A1 ⊙A2)⊙A3) ⋅ ⋅ ⋅ ⊙An)⊙ I .

In particular, ∣∅∣ = I and ∣A∣ = A⊙I . We often need to concatenate
lists. The coherence result (Prop. 25) gives us a canonical central
isomorphism between ∣Γ,∆∣ and ∣Γ∣ ⊙ ∣∆∣. (The objects are typi-
cally not identical.)

Given a premonoidal category, we define a premulticategory
with the same objects. A morphism Γ→ A in the premulticategory
is a morphism ∣Γ∣ → A in the premonoidal category. The identity
morphisms (A) → A in the premulticategory are the right identity
isomorphisms A⊙I → A in the premonoidal category. For compo-
sition, given t∶ ∣∆∣ → A and u∶ ∣Γ, x∶A,Γ′∣ → B we let (t ↝ x.u)
be the following composite:

∣Γ,∆,Γ′∣ ≅ (∣Γ∣⊙ ∣∆∣)⊙ ∣Γ′∣ (∣Γ∣⊙t)⊙∣Γ′ ∣&&&&&&→ (∣Γ∣⊙A)⊙ ∣Γ′∣
≅ ∣Γ,A,Γ′∣ u&→ B

where the unlabelled isomorphisms are the canonical coherence
isomorphisms in the premonoidal category.

The identity and associativity laws for premulticategories fol-
low from the centrality and canonicity of the coherence isomor-
phisms.

Proposition 29. A morphism t∶ ∣Γ∣→ A in a premonoidal category
is central in the premonoidal category if and only if it is central in
the induced premulticategory.

The tensor product of the premulticategory is straightforward:
for any list ∆, let ⊗∆ def= ∣∆∣. The universal morphism ∆ → ∣∆∣ is
the identity morphism. Given t∶ ∣Γ,∆,Γ′∣→ B we let

y % ⟨x⃗⟩. t def= ∣Γ, y∶ ⊗∆,Γ′∣ ≅ ∣Γ,∆,Γ′∣ t&→ B.

Again, the unlabelled isomorphism is the canonical coherence iso-
morphism. The two laws for tensor products follow from the cen-
trality and canonicity of the coherence isomorphisms.

Equivalence. In the statement of Theorem 26, when we say that
the two notions are equivalent, we do not mean that they are ex-
actly the same. Rather, we mean that if we begin with a premulti-
category C, build a premonoidal category, and then recover a pre-
multicategory from the premonoidal category, we recover a pre-
multicategory that is canonically isomorphic to C. Conversely, if
we begin with a premonoidal category C, and then build a pre-
multicategory out of it, and then recover a premonoidal category
from the premulticategory, we recover a premonoidal category that
is isomorphic to C. In this sense, the two notions are equivalent.

This concludes our proof of Theorem 26.

8.3 Corollaries of the main theorem
We conclude this paper by building on the main theorem (Theo-
rem 26) to recover new universal characterizations of various mod-
els from the literature.

Structural laws. Power and Robinson [33] define a symmetric
premonoidal category to be a premonoidal category with a cen-
tral natural isomorphism {sA,B ∶A ⊙ B → B ⊙ A}A,B satisfying
coherence conditions.

Proposition 30. To give a symmetric premonoidal category is to
give a symmetric premulticategory (Def. 3) with tensor products.

Sums and predistributive categories. Power and Robinson [33]
define a predistributive category to be a premonoidal category with
finite coproducts in which the functors A ⊙ (−) and (−) ⊙ A
preserve finite coproducts for all objects A.

Proposition 31. To give a predistributive category is to give a
premulticategory with all tensor products and sums (§4).

Multicategories and monoidal categories. We turn to the well-
known representation theorem for multicategories [14, 22]. Recall
that a multicategory is a premulticategory in which all morphisms
are central (§2.1). Similarly, a monoidal category is a premonoidal
category (§8.1.4) in which all morphisms are central (§8.1.3).

Proposition 32 (c.f. [14]).

1. A premulticategory with tensor products is a multicategory
if and only if the corresponding premonoidal category is a
monoidal category.

2. To give a symmetric multicategory (Def. 3) with tensor products
is to give a symmetric monoidal category.

3. To give a cartesian multicategory (Def. 4) with tensor products
is to give a category with finite products.

Freyd multicategories and Freyd categories. We now connect
our analysis of values (§5) with the notion of Freyd category [23,
24, 34]. A Freyd category is defined to be an identity-on-objects
premonoidal functor V → C from a category V with cartesian
products to a premonoidal category C.

Proposition 33. To give a Freyd category is to give a cartesian
Freyd multicategory (§5.3.3) that has tensor products (§5.3.2).

Strong monads and function spaces. We now use the known
connections between closed Freyd categories and monads [24, 34]
to provide a universal characterization for Moggi’s monads in com-
putation [30] .

Proposition 34. Let V be a symmetric multicategory with all ten-
sors. Let Mon(V) be the corresponding symmetric monoidal cate-
gory (Proposition 32). The following data are equivalent:

1. A strong monad on Mon(V).
2. A symmetric Freyd multicategory V → C that has function

spaces with empty domain (()⇒ A) (§6.1).

Proof outline. From 1 to 2, let C be the Kleisli premulticategory
for the monad (§2.2). From 2 to 1, a monad on V is given by the
construction T (A) def= (()⇒ A).

Moggi [29] models a call-by-value functional programming
language by a λC -model, which is a strong monad on a category
with products and with certain ‘Kleisli’ function spaces. We now
give this a universal status by exhibiting an equivalent definition
using premulticategories.

Proposition 35. Let V be a cartesian multicategory with tensor
products. Let Mon(V) be the corresponding category with finite
products (Proposition 32). The following data are equivalent.

1. A λC -model structure for Mon(V).
2. A cartesian Freyd multicategory V → C with tensor products

and function spaces.

9. Concluding remarks
We have given universal properties for type constructions in impure
programming languages: products, sums, and function spaces. We
have done this using the novel notion of premulticategory, which is
a basic equational account of impure computation. We have shown
that monads and premonoidal categories can be understood from
this point of view and hence given a canonical status.

Acknowledgments
S Staton partly supported by the Isaac Newton Trust and ERC
Grant ECSYM. PB Levy supported by EPSRC Advanced Research
Fellowship EP/E056091/1.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitu-

tions. J. Funct. Program., 1(4):375–416, 1991.
[2] T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be

endofunctors. In FOSSACS’10, pages 297–311, 2010.
[3] R. Atkey. What is a categorical model of arrows? In Proc. MSFP’08,

pages 19–37, 2011.
[4] P. N. Benton and P. Wadler. Linear logic, monads and the lambda

calculus. In Proc. LICS’96, pages 420–431, 1996.
[5] A. Burroni. T-categories (catégories dans un triple). Cahiers Topologie

Géom. Différentielle, 12(3):215–312, 1971.
[6] A. Burroni. Higher dimensional word problem. In Proc. CTCS’91,

pages 94–105, 1991.

[7] P.-L. Curien. Operads, clones, and distributive laws. In Operads and
Universal Algebra, 2010.

[8] J. Egger, R. E. Møgelberg, and A. Simpson. Enriching an effect
calculus with linear types. In Proc. CSL’09, pages 240–254, 2009.

[9] M. P. Fiore. Semantic analysis of normalisation by evaluation for
typed lambda calculus. In Proc. PPDP’02, pages 26–37, 2002.

[10] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence
of compiling with continuations. In Proc. PLDI’93, pages 237–247,
1993.

[11] F. Foltz, C. Lair, and G. M. Kelly. Algebraic categories with few
monoidal biclosed structures or none. J. Pure and Applied Algebra,
17:171–177, 1980.

[12] C. Führmann. Direct models of the computational lambda-calculus.
In Proc. MFPS XV, pages 147–172, 1999.

[13] H. Herbelin. A lambda-calculus structure isomorphic to Gentzen-style
sequent calculus structure. In Proc. CSL’94, pages 61–75, 1994.

[14] C. Hermida. Representable multicategories. Advances in Mathemat-
ics, 151:164–225, 2000.

[15] M. Hyland. Multicategories in and around algebra and logic. Invited
talk, TACL’09. Slides available from the author’s home page, 2009.

[16] B. Jacobs. Semantics of weakening and contraction. Annals of Pure
and Applied Logic, 69(1):73 – 106, 1994.

[17] B. Jacobs and I. Hasuo. Freyd is Kleisli, for arrows. In
Proc. MSFP’06, 2006.

[18] A. Jeffrey. Premonoidal categories and a graphical view of programs.
Unpublished, 1997.

[19] A. Kock. Monads on symmetric monoidal closed categories. Archiv
der Math., 21:1–10, 1970.

[20] Y. Lafont. Towards an algebraic theory of Boolean circuits. J. Pure
Appl. Algebra, 184(2–3):257–310, 2003.

[21] J. Lambek. Deductive systems and categories II. In Category theory,
homology theory and their applications, volume 86 of LNM, pages
76–122. Springer, 1969.

[22] T. Leinster. Higher operads, higher categories. CUP, 2004.
[23] P. B. Levy. Call-by-push-value. Springer, 2004.
[24] P. B. Levy, J. Power, and H. Thielecke. Modelling environments in

call-by-value programming languages. Inform. Comput., 2003.
[25] F. Linton. Autonomous equational categories. Indiana Univ. Math. J.,

15:637–642, 1966.
[26] G. McCusker. A fully abstract relational model of syntactic control of

interference. In Proc. CSL’02, pages 247–261, 2002.
[27] P. Melliès and N. Tabareau. Linear continuations and duality.

hal.archives-ouvertes.fr/hal-00339156, 2008.
[28] R. E. Møgelberg and S. Staton. Linearly-used state in models of call-

by-value. In CALCO’11, pages 298–313, 2011.
[29] E. Moggi. Computational lambda-calculus and monads. In LICS’89,

pages 14–23, 1989.
[30] E. Moggi. Notions of computation and monads. Inform. Comput., 93

(1), 1991.
[31] P. W. O’Hearn. On bunched typing. J. Funct. Program., 13(4):747–

796, 2003.
[32] J. Power. Premonoidal categories as categories with algebraic struc-

ture. Theor. Comput. Sci., 278(1–2):303–321, 2002.
[33] J. Power and E. Robinson. Premonoidal categories and notions of

computation. Math. Struct. Comput. Sci., 7(5):453–468, 1997.
[34] J. Power and H. Thielecke. Closed Freyd- and kappa-categories. In

Proc. ICALP’99, 1999.
[35] U. S. Reddy. Global state considered unnecessary: An introduction to

object-based semantics. Lisp and Symbolic Computation, 9(1):7–76,
1996.

[36] J. G. Stell. Modelling term rewriting systems by sesqui-categories.
Technical Report TR94-02, Keele University, 1994.

Addendum (December 2012)
We have some remarks about cartesian premulticategories (§2.3).

In a cartesian premulticategory then it seems appropriate to
modify the definition of tensor (§3.1) to require the structure mor-
phism ∆→ ⊗∆ to be discardable and copyable as well as central.

Similarly, it is appropriate to modify the definition of sum
(§4.1) for a cartesian premulticategory, to require the injections
∆(c)→ ⊕∆ to be discardable and copyable as well as central.

On a similar note, our definition of cartesian Freyd multicate-
gory (§5.3.3) is arguably deficient: it seems appropriate to require
the identity-on-objects morphism return ∶ V → C to preserve dis-
cardability and copyabilty as well as centrality. That is, for every
morphism v in V , it is reasonable to require that the morphism
return(v) in C is discardable, copyable and central.

Consider an identity-on-objects morphism between cartesian
premulticategories with tensors. If it preserves tensors then it also
preserves discardability and copyability. As a result, the modifica-
tions in this addendum are vacuous for cartesian Freyd categories
with tensors. For this reason the theorems in Section 8 are true with
or without the modifications in this addendum.

